Division of Research December 1991
School of Business Administration
The University of Michigan

AN ALTERNATIVE APPROACH TO MODELING
PERFECT SEQUENCING FLEXIBILITY

Working Paper #669

Thomas J. Schriber
The University of Michigan

FOR DISCUSSION PURPOSES ONLY -
None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research

Copyright 1991
The University of Michigan
School of Business Administration
Ann Arbor, Michigan 48109-1234

ABSTRACT

The concept of sequencing flexibility and its potential importance in such scheduling
environments as those of manufacturing systems are reviewed briefly. The description of a
manufacturing system is provided, asking that a simulation model be built for use in studying
system performance under conditions of perfect sequencing flexibility when the rule used to
dispatch jobs to machines is FRS (fewest remaining steps). An approach to modeling perfect
sequencing flexibility is then described and a GPSS/H model illustrating the implementation of this
approach in the setting of the given manufacturing system is presented.

This paper and model are modified versions of a similar paper and model by Schriber
(1991b). The present paper illustrates a modeling approach in which watchdogs are used to
dispatch jobs to machines. In the approach taken in the 1991b paper, watchdogs are not employed;
instead, jobs themselves are responsible for dispatching other jobs to machines. No matter how
the dispatching is accomplished, the freeing up of a machine brings about a twofold dispatching
responsibility when there is sequencing flexibility: another job can be dispatched to that machine;
and some other job can be dispatched to some other machine as well, if conditions permit.
(Particulars are described here on page 4 under point 5.) The 1991b model does not provide for
the second of these two dispatching activities, whereas the model presented in this paper does.

1. Sequencing Flexibility

Suppose that manufacturing a particular product requires that one step be performed on the
corresponding unit of work-in-process (WIP) by each of 5 different machines. If these 5 steps
must be carried out in a strict sequence, then there is no sequencing flexibility in the manufacturing
process. If the 5 steps can be carried out in any sequence whatsoever, then there is perfect
sequencing flexibility in the process. If some of the 5 steps must be carried out in a strict
sequence, but others can be performed without adhering to a strict sequence, then the
manufacturing process has partial sequencing flexibility.

Rachamadugu and Schriber (1990a, 1990b) have proposed a squencing flexibility measure
(SFM) that quantifies the degree of sequencing flexibility in a multistep process on a scale from 0
to 1, with measures of 0 and 1 corresponding respectively to the extreme cases of no flexibility and
perfect flexibility, as described above. For an example in which their metric is applied to partial
sequencing flexibility, consider the following scenario: Operations I through 5 must be carried out
to do a job. Operation 1 must precede 2 and 2 must precede 3. Similarly, operation 4 must
precede 5. But there are no precedence requirements otherwise.Using their metric, an SFM value
of 0.6 results for this situation. (See the referenced paper for quantitative details.)

There are important potential benefits of exploiting whatever sequencing flexibility might be
inherent in a product structure Suppose for example that the machining resources in a flexible
manufacturing system (FMS) are used to make a variety of products concurrently. A given unit of
work-in-process can wait logically at each of two or more alternative types of machines if there is
sequencing flexibility at that stage in the manufacturing process for the WIP unit. This increases
the likelihood that a next step can be performed on the WIP earlier than if there were no sequencing
flexibility. In turn, it is likely that this will improve such system operating characteristics as the
elapsed time between release of a job to the system and completion of the job (system residence
time).

System residence time and other important measures of system performance depend not
just on sequencing flexibility but also on the choice of dispatching rule (the rule used to decide
which unit of waiting work to send to a machine when the machine next becomes free.) This
makes it of interest to evaluate and rank various dispatching rules under conditions of sequencing
flexibility with respect to such measures of system performance as system residence time and such
tardy-job characteristics as the percentage of jobs that are tardy and the probability distribution
followed by the tardy-time response variable. Rachamadugu and Schriber (1990a, 1990b) have
shown that the relative goodness of well-known dispatching rules does depend on whether

sequencing flexibility is present and exploited. For example, the shortest processing time (SPT)
rule minimizes a job's system residence time in a particular simulated setting relative to seven other
dispatching rules when there is no sequencing flexibility (or when it exists but is not exploited),
whereas the least work remaining (LWR) rule minimizes this measure when there is perfect
sequencing flexibility. (In the SPT rule, that waiting WIP which needs a machine for the shortest
time is the next to be dispatched to the machine. In the LWR rule, that waiting WIP which requires
the least total remaining machining time is the next to be dispatched to the machine.)

As Rachamadugu and Schriber (1990b) additionally point out, "there seem to be no known
exact or approximate prescriptive models for analyzing the performance of scheduling rules under
perfect or near perfect sequencing flexibility scenarios.” This motivates the building and use of
simulation models to study the performance of dispatching rules under conditions of sequencing
flexibility.

It is the modeling of perfect sequencing flexibility on which our attention centers here. The
logical issues involved in building a model for perfect sequencing flexibility are brought into focus
by the request to model the system described in the next section.

2. An Exercise for Modeling Perfect Sequencing Flexibility

A particular flexible manufacturing system consists of five different machines. These
machines are used to build to order a multiplicity of products that are manufactured concurrently.
Each order (job) is for one unit of product and visits from 1 to 5 machines (uniformly distributed),
visiting no machine more than one time. The particular machines visited by a job are determined at
random. Operation times for all jobs at all machines are assumed to be identically 2-Erlang
distributed, with a mean of 30 minutes per operation. Job interarrival times are exponentially
distributed and have a mean such that the expected overall machine utilization in the system is 90
percent. The opérations required by each job can be performed in any chronological order. The
rule used to dispatch jobs to machines is fewest remaining steps (FRS). That is, the waiting job
which has the fewest remaining steps to be performed on it before being completed is the next job
to be dispatched to a machine that has just become free. The flow allowance factor used in
determining a job's due date is 7.5. (A job's due date is determined by adding to its arrival time
7.5 times its total step time.)

Build a model that can be used to simulate the operation of this system. Design the model
to measure the percentage of jobs that are tardy, the mean and standard deviation of the tardy-time

random variable, and the mean and standard deviation of the system-residence-time random
variable (with the system residence time measure based on all jobs, whether they are tardy or not).
Assume that only one step at a time can be performed on a given job.

Perform a single simulation with the model. Initialize the model by simulating until 1000
jobs have been completed. Then continue the simulation until another 2500 jobs have been
completed. For each 100 post-initialization jobs completed, report the cumulative number of such
jobs completed, the cumulative number of tardy jobs, the cumulative percentage of jobs tardy, and
the cumulative means and standard deviations described above. (For an example of the requested
simulation report, see Figure 2 on page 19 here.)

3. An Approach to Building the Model

The following points make up the main logical considerations that need be taken into
account in building a model of the type requested in section 2.

1. When a job arrives, it needs to record its time of arrival (to support the later
measurement of its system residence time) and then sample to determine how many steps
are to be performed on it, which machines are to be involved, and what the individual step
times are to be. Total step time and the due date follow from the individual step times and
the flow allowance factor. All of these individual pieces of information can take the form
of attributes conveniently carried by the job itself.

2. The job can then create enough identical copies (clones) of itself to provide one sub-job
for each step that must be performed on the overall job. The clones should inherit from the
original the attributes described above. (The original job itself can serve as one of these
sub-jobs. If the job only involves one step, then the original creates no clones and the
original is the one and only "sub-job" in this case.) Each clone will then be a one-step sub-
job associated with the overall job. When all the sub-jobs have been finished, then the
overall job is finished.

Note that an attribute of each sub-job will be the total number of steps remaining
for the overall job. In the fewest-steps-remaining dispatching rule, the value of this
attribute and the values of the corresponding attribute of other sub-jobs waiting for a given
machine will be used to determine which sub-job is the next to get the machine.

3. Before the sub-jobs making up an overall job are sent to their individual machines, a
mechanism must be established so that they can send messages among themselves at
appropriate times. The following messaging needs to be accomplished:

a. When a step is about to start on a sub-job, the sub-job must signal this fact to all
associated sub-jobs to suspend temporarily their candidacy for machine use.
(Remember that only one step at a time can be performed on an job.)

b. When the processing of a sub-job is finished, it must let all associated sub-jobs
know that they are candidates once again for machine use.

c. When the processing of a sub-job is finished, it must update the "number of
steps remaining for the overall job" attribute on all associated sub-jobs.

The a, b and ¢ messaging can be supported by having the sub-jobs making up an
overall job become members of a set unique to that job. Of course these sub-jobs already
are members of such a set conceptually; but they must also be made members of such a set
operationally as well, to support the messaging needs described above. If operational sets
of this type are not provided in the modeling language used to implement the simulation,
then the modeler will have to work with other language elements in an attempt to achieve
the needed messaging capability.

4. When a sub-job finishes using its machine, it can test to determine whether it is the last
member of its set. If so, the job is finished and this last surviving sub-job simply needs to
record its system residence time and its tardiness (if it is tardy) before leaving the model.
But if this sub-job is survived by others in its set, then it needs to send the messages
corresponding to 3b and 3c above and depart the model.

5. When a sub-job finishes using its machine, and apart from the needs described in step
4, there is a need to dispatch another sub-job to the now-idle machine (assuming that there
is at least one qualified sub-job waiting for that machine; note that such a sub-job would be
associated with another overall job, not with the overall job for which a sub-job has just
finished in use of the machine). There is also a need to check whether another associated
sub-job can now capture the machine for which it is waiting. Why? Because an associated
sub-job could be waiting for a machine that is idle, with the need to wait dictated not by a
lack of machine availability, but dictated instead by the fact that a kindred sub-job was in
the process of being machined.

When a sub-job finishes using a machine, the sub-job itself can assume the twofold
responsibility described above; alternatively, a watchdog not connected with any jobs at all
can be designated for each machine and take the responsibility of dispatching a job to its
machine whenever conditions permit. These responsibilities are left to the sub-job itself in
Schriber 1991b, but are handled by watchdogs in the present paper, one watchdog per
machine. At the philosophical level, it can be argued that the watchdog approach may be
the better approach. Why? Because it is conceptually cleaner and more modular to
explicitly identify the job-dispatching responsibility and isolate it in its own model section
than to embed it piecewise within the model sections whose purpose is to provide the logic
of using a machine after a job has been dispatched to it.

In either approach, sub-jobs waiting for the machine must be ranked on their number-
of-steps-remaining (for their overall job) attribute just before the decision is made about
which sub-job is the next to get the machine. Note that a sub-job's correct position in the
ranking cannot be determined at the time the sub-job arrives at a machine, because the
number-of-steps-remaining for one or more sub-jobs waiting for the machine may change
while the sub-jobs wait for the machine's current user to finish. This means the correct
ranking must be determined just prior to dispatching a next waiting sub-job to the machine.

The foregoing points make up the main logical considerations that need be taken into
account in modeling perfect sequencing flexibility for the fewest-steps-remaining dispatching rule.
The logical considerations may be simpler for perfect sequencing flexibility with other dispatching
rules. (If SPT is the dispatching rule, for example, sub-jobs can be ranked at the time of their
arrival at their machine, and the messaging requirement described in 3b does not arise.) The logical
considerations may be more demanding, however, in cases of partial sequencing flexibility,
irrespective of the dispatching rule involved. For the extreme of no sequencing flexibility,
relatively minimal logical considerations are involved.

4. Implementation of the Approach in GPSS/H

The logical considerations outlined in section 3 are implemented in the GPSS/H (Henriksen
and Crain 1989) model displayed in Figure 1 (pages 9 through 18), and output from the simulation
requested in section 2 is given in Figure 2 (page 19). In addition to showing the model itself,
Figure 1 provides an appended column of block numbers (labeled BLOCK#) at the left, and of
column labels (LOCATION, OPERATION, etc.) across the top of each part of the figure.

Only brief discussion of the GPSS/H model is given here, but the comments embedded
liberally in the model itself (the Figure 1 comments are in lower case for the most part and begin
with an asterisk) should make it quite easy (for a person familiar with any discrete-event modeling
language, and certainly for anyone familiar with GPSS) to understand the underlying details.
Briefly, parts 1, 2 and 3 of Figure 1 (pages 10, 11 and 12) specify the background against which
the model is set. Handling of considerations 1 through 5 of section 3 is commented on below
under corresponding numbers.

1. The considerations under 1 are handled in Blocks 1 through 27, parts 4 and 5 of Figure
1 (pages 12 and 13). Blocks 8 and 9 (ADVANCE and SPLIT) structure the job arrival
process, Blocks 13 through 20 determine how many and which machines a job needs, and
Blocks 21 through 26 handle step times while Block 27 sets the due date.

2. Block 31 (SPLIT) in part 5 of Figure 1 provides sub-jobs (clones) that inherit the
attributes of the original job.

3. Block 33 (JOIN) in part 5 of Figure 1 puts an overall job's sub-jobs into a unique set
(a GPSS/H Group) to support the messaging needs described earlier. Block 35
(TRANSFER) then sends each sub-job to the waiting line for its designated machine.

The use of each machine is modeled with a stack of Blocks specific to that machine.
Hence, Blocks 36 through 46 in part 6 (page 14) are for machine one; Blocks 47 through
57 in part 7 (page 15) are for machine two; and so on. Because each of these stacks of
Blocks reflects identical logic, only the stack specific to machine one will be discussed

here.

When a sub-job arrives at its machine, it joins the set of other sub-jobs (if any)
waiting for the machine. (Sub-jobs wait on a User Chain. Sub-jobs coming to machine
one, for example, are put onto the machine one User Chain via Block 36, LINK.) Note
that the sub-job does not test the machine's status to determine if it can capture the machine.
(In the model presented here, watchdogs have the responsibility of dispatching sub-jobs to
machines. This responsibility is not exercised by the sub-jobs themselves. See point 5 in
this section for watchdog particulars.)

In the machine-one stack of Blocks, Block 38 (ALTER) handles the need for a sub-
job to let all other sub-jobs in its set know that a step is starting on a member of their set.
Block 43 (ALTER) accomplishes the reverse effect. Block 42 (ALTER) is used to update
the number-of-remaining-steps attribute of set members.

4. A completed sub-job at machine one uses Block 44 (REMOVE) to remove itself from
its sub-job set, then uses Block 45 (TEST) to determine if it is survived by other sub-jobs
in the set. If so, it leaves the model (Block 46, TERMINATE); otherwise, it transfers to
Block 91 (TABULATE, page 16) to record statistics on the now-finished overall job, and
then leaves the model.

5. In this model, watchdogs are used to dispatch jobs to machines. Each machine has its
own watchdog. Watchdog logic is provided for all the watchdogs with Blocks 95 through
106 in part 9 of Figure 1 (page 17). Each watchdog moves repeatedly over time through
this cycle:

a. The watchdog waits at a TEST Block (Block 99) until its machine is idle and at
least one job is queued up for that machine.

b. The watchdog then (at one and the same simulated time) executes the following
logic. First, it unlinks (Block 100, UNLINK) from their place of waiting (a User
Chain) all sub-jobs waiting for its machine and targets them to be relinked in their
place of waiting, ranked ascending on the number of remaining steps for the
associated overall jobs. At Block 101 (BUFFER), the watchdog pauses while the
unlinked sub-jobs are relinked (at their LINK Block), ordered ascending on their
remaining-steps attribute. At Block 102, the watchdog then unlinks the most
highly qualified waiting sub-job and dispatches it to capture the machine. At Block
103 (BUFFER), the watchdog pauses again to let the dispatched sub-job carry out
the machine capture. The watchdog then takes note of the simulated time of its
ongoing movement (ASSIGN, Block 104) and waits (TEST, Block 105) until the
next clock advance has taken place before it resumes its machine-monitoring role at
the aforementioned TEST Block (Block 99).

The preceding logic is subtle, and merits careful study. The following points should be
considered. First, the watchdogs have lower priority than the sub-jobs. (This means that
at each clock time, arrival of new jobs and/or the freeing up of machines will take place
before the watchdogs do their monitoring. It also means that when a watchdog executes a
BUFFER Block, the higher-priority sub-jobs it has unlinked from a User Chain will be
processed before further processing of the watchdog itself takes place.) Second, each
watchdog makes its entire set of moves (if any are called for) before any of the other
watchdogs make their moves. (If watchdog movement were intermixed, two or more

watchdogs might try to dispatch associated sub-jobs to the respective watchdog-machines,
but this would be invalid because only one machining step at a time can be carried out on an
overall job.) Third, it is essential that when a watchdog dispatches a sub-job to a machine,
the sub-job be permitted to capture the machine and message its associated sub-jobs that the
overall job is now active before any other watchdog starts to make its set of moves.
(Otherwise, another watchdog might dispatch to its machine a sub-job that shouldn't
capture a machine at this time because its overall job is already active.)

6. Part 10 of Figure 1 (page 18) provides for run control and the reporting logic which
leads to the simulation report shown in Figure 2 (page 19).

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

> >

Ak kkhkAhkAkARkkAAKkhhkhkkrkhkhkkkkhkhkkhkhhkkkhkhhkhkhhkhkhkhhkhkkhkkkhkkkkkhkkkkhkkhhkhkkhkk
SIMULATE Base Time Unit: 1 Minute *
Sequencing Flexibility Measure: 1.0 *

Service Order: Fewest Remaining Steps

Number of Machines in the System: 5

Number of Machines Used per Job: From 1 to 5 (Random)
Mean Machining Time: 30 Minutes, 2-Erlang Distributed
Arrival Process: Poisson

Expected Machine Utilization: 90%
AAKKKKEKAKA KKK KA K AKAKA A A KAAAKRAKA KKK AARKR Ak hkhkhkkkhkkhkhkhkhkhkkhkkhkhkhkkkkkkkkkkhkkhkk

*
AKk A KKK I KKKk K AAKAKAKKk KA K KA KRR KA hkAkIhkhkhkkkhkhkhkhdkhkhkhkhkhkkkhkkkhkkkhhkkhkhkkkkrkkxhkhkhhk

* Compiler Directives *
A KAKRKKRKRKAA KA A AAAKRA KA AR AAAAKA A Ak kA hkkkkhhhkhkhkhkhkhkkhkkkkkkkhkkhkkhkhkkkkkkkkhkk

*

* o F o A X F
* o % X %

* ...reallocate default maximum quantities of entities...
REALLOCATE COM, 40000, number of bytes in COMMON
GRP, 4000 number of Xact Groups

*

* . .selected correspondences between

* symbolic and numeric identifiers...

*

* ...Facilities (the machines)...

MAC1 EQU 1,F MACl is Facility 1
MAC2 EQU 2,F ...and so on...
MAC3 EQU 3,F

MAC4 EQU 4,F

MACS5 EQU 5,F

*

* ...Fullword Integer Parameters (variables local to Xacts)...
MACID1 EQU 1,PF MACID1l is Fullword Parameter 1
MACID2 EQU 2,PF ...and so on...

MACID3 EQU 3,PF
MACID4 EQU 4,PF
MACIDS EQU 5,PF
*
* ...Real Parameters (variables local to Xacts)...
STEPTYM1 EQU 1,PL. STEPTYMl is Real Parameter 1
STEPTYM2 EQU 2,PL ...and so on...
STEPTYM3 EQU 3,PL
STEPTYM4 EQU 4,PL
STEPTYM5 EQU 5,PL
*
* ...Integer Variables (global variables)...
INTEGER &I DO-loop counter
INTEGER &INDEX1 integer value from U(1,5)
INTEGER &INDEX2 integer value from U(1,5)
INTEGER &INITJOBS number of initialization jobs
INTEGER &JOBCOUNT jobs—arrived counter
INTEGER &LUPCOUNT Xact-loop counter
INTEGER &MACHINES number of machines in system
INTEGER &STEP number of job's current step
INTEGER &STEPS number of job's total steps
INTEGER &TEMPSTOR temporary storage location

Figure 1: The GPSS/H Model (part 1 of 10)

10

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
*
* ...Real Variables (global variables)...
REAL &FLOFAKTR multiplier for due date
REAL &JOBIAT mean job interarrival time
REAL &MSTEPTYM mean step time (machining time)
REAL &ESYSUTIL expected system utilization
*
* ...Synonyms (identifiers for integer constants)...
BUSY SYN 1 code for a busy job
IDLE SYN 0 code for an idle job
TRUE SYN 1 code for testing Boolean expressions
*
* ...suppression of Control-Statement echoes...
UNLIST CSECHO
*
* ...assignment of values to selected global variables...
LET &ESYSUTIL=0.90 expected machine utilization
LET &FLOFAKTR=7.5 flow allowance factor
LET &INITJOBS=1000 number of initialization jobs
LET &MACHINES=5 5 machines
LET &MSTEPTYM=30.0 mean machining time, minutes
*
LET &JOBIAT= job interarrival time, minutes

(FLT (§MACHINES+1) /2) *&MSTEPTYM/ (§MACHINES*§ESYSUTIL)
*

khkkkkhkhkhkkhkhkhkkhkkkhhkhkhkkkkkhkhkhkhkkkhkkkhkhkkkkkhkhkhkkhkkkkkhkhkkhkkhkhkkkhkkkkkkhkkkhhkk

* Control Statements *
P R RS TS LT LLLLELIL LS LS SELIEE LS SLEL LS LIS S LSS LSS LS TLES LSS L E L LT L L L LS E T LT

..Boolean expressions...

. .the OKTOTRY expression is true if this watchdog's
machine is idle and at least one sub-job is
waiting for the machine...

OKTOTRY BVARIABLE FNU (PF (MYMAC))AND (CH (PF (MACLINE)) >0)
*

* F * F o F

*

...the QUALIFY expression is true if this sub-job's
* overall job is inactive (idle)...
QUALIFY BVARIABLE PF (STATUS)=IDLE
*
* ...labels for the various machine SEIZE Blocks...
GETMAC FUNCTION PF (MYMAC),D5
MAC1,GETMAC1/MAC2, GETMAC2/MAC3, GETMAC3/MAC4, GETMAC4/MACS5, GETMACS
*

* ...labels for the various waiting-line LINK Blocks...

INTOLINE FUNCTION PF (MYMAC),D5
MAC1, LINEFOR1/MAC2, LINEFOR2/MAC3, LINEFOR3/MAC4, LINEFOR4/MACS, LINEFORS
* -

* ...identifiers for each machine's User Chain...

LINEID FUNCTION PF (MYMAC),D5
MAC1,MAC1LINE/MAC2,MAC2LINE/MAC3,MAC3LINE/MAC4,MACALINE/MACS, MACSLINE
*

* ...identifiers for each watchdog's machine...
MACID FUNCTION PF (SERTALNO),DS
1,MAC1/2,MAC2/3,MAC3/4,MAC4/5,MACS

Figure 1: The GPSS/H Model (part 2 of 10)

11

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
*
* ..Initial Positions of U(0,1) random-number generators...
RMULT 100000, RNl (interarrival times)
200000, RN2 (permutation index 1)
300000, RN3 (permutation index 2)
400000, RN4 (number of machines a job visits)
500000, RN5 (first piece of 2-Erlang)
600000 RN6 (second piece of 2-Erlang)
*
* ..Table Statements...
*
* ...system residence time,all jobs, minutes...
SYSTYMS TABLE (AC1-PL(TIMEIN))/60.0,0,1,2
*
* ...tardy time for tardy jobs, minutes...
TARDTYMS TABLE (AC1-PL (DUEDATE)) /60.0,0,1,2

*

Figure 1: The GPSS/H Model (part 3 of 10)

12

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
*
khkkkhkhkhkhkAkAkhkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkhkkhkkkhkhkhkkhkhkkhkkkhkkhrxhhkhkhkhkkhkkkkk
* Job Creation and Specification Segment *
AAKK AR A A AR AR A ARk kA Ak A Ak AR Ak Ak Ak ko k kA Ak Ak kk kA Ak kA Ak kA KAk hkkkhkhAkhkkkkx
*
* ...seed the segment with a master job-Xact (Transaction)...
1 GENERATE 0,,,1,25,11PF, 9PL
*
* ...put the 5 machine identifiers in 5 Fullword Parameters...
2 ASSIGN MACID1,MAC1,PF
3 ASSIGN MACID2,MAC2, PF
4 ASSIGN MACID3,MAC3, PF
5 ASSIGN MACID4,MAC4,PF
6 ASSIGN MACIDS,MACS, PF
*
* ...Job is idle at time of eventual arrival...
7 ASSIGN STATUS, IDLE, PF
*
. ... interarrival time elapses...
8 NEXTJOB ADVANCE RVEXPO (1, &JOBIAT)
*
* ...Create successor job-Xact;
* route it to experience it's interarrival time...
9 SPLIT 1, NEXTJOB
*
* ...record time of job's arrival at the system...
10 ASSIGN TIMEIN,AC1,PL
*
* ...update job count, then give this job a unique id number
11 BLET &JOBCOUNT=&JOBCOUNT+1
12 ASSIGN JOBID, &JOBCOUNT, PF
*
****** pPermute the Sequence of Machine ID's Carried by This Job ****%x
*
13 BLET &LUPCOUNT=10 set &LUPCOUNT = 10
*
14 SHUFFLE BLET &INDEX1=RN2@5+1 &INDEX1 = sample from U(1,5)
15 BLET &INDEX2=RN3@5+1 &INDEX2 = sample from U(1,5)
16 BLET &TEMPSTOR=PF (&INDEX1) swap the two
17 ASSIGN &INDEX1, PF (&INDEX2),PF randomly-chosen
18 ASSIGN &INDEX2, &TEMPSTOR, PF machine id's
*
* " ...update loop count and repeat as needed...
19 BLET &LUPCOUNT=&LUPCOUNT-1
20 TEST E &LUPCOUNT, 0, SHUFFLE

*
kkkkkkkkkkkkkkkkkkk End of Permutation LOgic ****#kkkkkkkkkkkkkkkxxk
*

Figure 1: The GPSS/H Model (part 4 of 10)

13

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
* ...set number of steps (machines) for this job...
21 BLET &STEPS=RN4@5+1

22
23
23
24
25
26

27

28

29
30

31

32

33

34
35

*

*xxx*x** Loop to Determine the 2-Erlang Step Time for Each Step *****xx

*xxx%***x This Job Requires; Also Accumulate Total Step Time ***#*k*ix
*

BLET &STEP=1
GETSTIME ASSIGN &STEP, _
RVEXPO (5, &MSTEPTYM/ 2) +RVEXPO (6, &MSTEPTYM/2) , PL
ASSIGN TOTSTIME+, PL (&STEP) , PL
BLET &STEP=&STEP+1
TEST G &STEP, &STEPS, GETSTIME

*
kkkkkkkkkkkkkkkkkkkxk End of Step-Time LOOp ***xxkkkkkkkkkkkkkkkkkkk
*

* ...assign this job's due date...
ASSIGN DUEDATE, AC1+&FLOFAKTR*PL (TOTSTIME) , PL
*
* ..create clones so there is one sub-job for each step
* (create no clones for a one-step job),
* numbering the sub-jobs serially in a Fullword Parameter...
ASSIGN STEPS2GO, &STEPS, PF
*
TEST E PF (STEPS2GO) , 1, GOSPLIT
ASSIGN SERIALNO, 1, PF
*
GOSPLIT SPLIT PF (STEPS2GO) -1, NEXTBLOK, (SERTALNO) PF
*
NEXTBLOK ASSIGN MYMAC, PF (PF (SERIALNO)) ,PF
*
* ...each sub-job joins a Group unique to this job...
JOIN PF (JOBID)
*
* ...pause while each other sub-job for this job
* joins this group...
PRIORITY PR, BUFFER
*
TRANSFER , FN (INTOLINE)

Figure 1: The GPSS/H Model (part 5 of 10)

14

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

36

37

38

39
40
41

42

43

44

45
46

*

hkhkhkhkhkhkhkhkhkkkkhkhkkkAkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkkhhkkhkkkhkkkhkhkhkhkhkkhkkhkhkix

*

Use of Machine 1

*

IAKKKKAAKIAKKKKAKKAAKAKAAK Ak kkkkkkhkkhkkkhkhkhkhkhkhkkhkkkkhkhkhkhkhkkhkhhkkhhkhkhkhkhkhkkhkkdhkkkkx

*

*

*
LINEFOR1

*

*

GETMAC1

*

*

..go into waiting line (onto User Chain) ranked

in order of increasing number of remaining steps...
LINK MAC1LINE, (STEPS2GO)PF

.capture machine 1...

SEIZE MAC1

. .message other sub-jobs making up this overall job

that this job is now becoming active...
ALTER PF (JOBID) ,ALL, (STATUS)PF,BUSY

..use the machine, free it, and update the

remaining number of steps this job requires...
ADVANCE PL (PF (SERIALNO))

RELEASE MAC1

ASSIGN STEPS2GO-,1,PF

. .message updated number of remaining steps to

other sub-jobs making up this overall job...
ALTER PF (JOBID),ALL, (STEPS2GO)PF, PF (STEPS2GO)

. .message other sub-jobs making up this overall job

that this job has now become inactive...
ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

..remove this sub-job from this job-group...

REMOVE PF (JOBID)

..if this was the last step for this job, branch to JOBDONE;

else, simply destroy this sub-job...
TEST NE G (PF (JOBID)), 0, JOBDONE
TERMINATE

Figure 1: The GPSS/H Model (part 6 of 10)

15

BLOCK#

47

48
49
50
51
52
53
54

56
57

58

59
60
61
62
63
64

66

67
68

LOCATION OPERATION OPERANDS COMMENTS
*
KKK KKK AKKA KKK KA KRR A ARk A ARk AkKA AKX A A kAKX hk Ak kkhkkkkkkkhkkkhkkkkkkkkkk
* Use of Machine 2 *
* (Comments for Machine 1 Also Apply to Machines 2-5) *
khkkhkkkkkhkkhkkhkkhkkkkkkhkkhkkkkkkkhkkkkhkkkkhkkkkikhkhkkhkhkhkkhkkhkkkkhkkhkhkkkkkhkkkkkk
*
LINEFOR2 LINK MAC2LINE, (STEPS2GO)PF
*
GETMACZ SEIZE MAC2

ALTER PF (JOBID) ,ALL, (STATUS)PF, BUSY

ADVANCE PL (PF (SERTALNO))
RELEASE MAC2

ASSIGN STEPS2GO-,1,PF

ALTER PF (JOBID) ,ALL, (STEPS2GO) PF, PF (STEPS2GO)

ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

REMOVE PF (JOBID)
*

TEST NE G (PF (JOBID)), 0, JOBDONE

TERMINATE
*
IAEKAKKRIKKREAAKK AR KR AR ARk KR KA KA AR KAk hk kAR A KAk khkkhkhkhkkhkhkkkkhkkhkhkhkkkkkkx
* Use of Machine 3 *
* (Comments for Machine 1 Also Apply to Machines 2-5) *
dkhkkhkkkkkhkhkhkhkkhkhkkhkkhkhkhkkkhkkkhkkkkkhkkkkkkkkkkkkhkkhkhkhkkhkhkhkhkhkhkhkkhkkhkkkkkhkkkkkkkk
*
LINEFOR3 LINK MAC3LINE, (STEPS2GO) PF
*
GETMAC3 SEIZE MAC3

ALTER PF (JOBID),ALL, (STATUS) PF, BUSY

ADVANCE PL (PF (SERTALNO))
RELEASE MAC3

ASSIGN STEPS2GO-, 1, PF

ALTER PF (JOBID) ,ALL, (STEPS2GO) PF, PF (STEPS2GO)
ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

REMOVE PF (JOBID)

TEST NE G (PF (JOBID)), 0, JOBDONE
TERMINATE

Figure 1: The GPSS/H Model (part 7 of 10)

16

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS

*
hhkhkkhkhkhkhkhkkkhkkkhkhkhkhkkkkhkkhkhkhkhkhkkhkhkkkhkhkhkhkkhkkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkkkhkhhkx
* Use of Machine 4 *
* (Comments for Machine 1 Also Apply to Machines 2-5) *
AR AAKAAKKAA KA KA KR AR AR KR A AR KA Ak A kA KA A A ARk Ak kA kA kA kA khkhkhkhkkhkkhkhkhhkhkkkhkkhkkkhkkhkdxhkx
*

69 LINEFOR4 LINK MAC4LINE, (STEPS2GO)PF
*

70 GETMAC4 SEIZE MAC4

71 ALTER PF (JOBID),ALL, (STATUS)PF, BUSY

72 ADVANCE PL (PF (SERTALNO))

73 RELEASE MAC4

74 ASSIGN STEPS2GO-,1,PF

75 ALTER PF (JOBID) ,ALL, (STEPS2GO) PF, PF (STEPS2GO)

76 ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

77 REMOVE PF (JOBID)
*

78 TEST NE G (PF (JOBID)), 0, JOBDONE

79 TERMINATE
*
*A KA KKK AR KA AR KA AKRKR AR KRR KRR KRNI AR A kA kA hkhkhkhkkhkkhkkhkhkhkkkhkhkkhkhkkkkhkhkhkkkkhkhkhkkik
* Use of Machine 5 *
* (Comments for Machine 1 Also Apply to Machines 2-5) *
A KA K AR KA A KA KA AR AA A K AA AR KA AR A A KA A ARk ARk A kA hkA kA hkkkkhkhkhkkhkhkkhkkhkkhhkkhkkkkk
*

80 LINEFORS5 LINK MACSLINE, (STEPS2GO)PF
*

81 GETMACS5 SEIZE MACS

82 ALTER PF (JOBID),ALL, (STATUS)PF, BUSY

83 ADVANCE PL (PF (SERIALNO))

84 RELEASE MACS

85 ASSIGN STEPS2GO-,1,PF

86 ALTER PF (JOBID) ,ALL, (STEPS2GO) PF, PF (STEPS2GO)

87 ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

88 REMOVE PF (JOBID)
*

89 TEST NE G (PF (JOBID)), 0, JOBDONE

90 TERMINATE
*
A A A AAKAAAAAKAKAAKAKRKAKRRRAA A AR A AR AR AR KA A KA AAA Ak Ak hkhkhkkhkhkhkhkkhkhkhkhkhkkhhkhkhkkkkhkhhhikhkx
* Wrapup for Finished Jobs *
kA A AKKRK KA I KAKAKAKRKAKAAKRKAKARRKR AR Ak kA Ak AR AKRAAKAA kA hkhkhkhkkAkhkhhkkkkkkkhkhkrxihk
*
* ...tabulate finished job's time in the system...

91 JOBDONE TABULATE SYSTYMS
*
* ...branch if not tardy;
* else, tabulate finished job's tardy time...

92 TEST G ACl,PL (DUEDATE) , NOTLATE

93 TABULATE TARDTYMS tardy job lateness
*
* ...count down on finished jobs leaving the system...

94 NOTLATE TERMINATE 1 '

*

Figure 1: The GPSS/H Model (part 8 of 10)

17

BLOCK#

LOCATION OPERATION OPERANDS

COMMENTS

95

96

97

98

99

100

101

102

103

104

105

106

*

Ahkhk A KKK K KA KKK KKK KKK KA KKKk AKAKAKR KA KA KAk hkhkhkkkkhkkkhkkhkkhkkkhkkhkkkkhkkhkkkkhhkhkkx

*

Machine Watchdog Transactions

*

AR KKK EKKAKRKAKAIAKRKAAKRKR KA ARk AR K kA kA hhkhkhk kA kkhkhkhkhkhkkhkkhkkhkhkhkhkkhkhkhkhkkkhkkhkkhkkkhkhk

AGAIN

*

* % * *

..Create a master watchdog...

GENERATE O0,,,1,1,11PF,9PL

..bring in more watchdogs (one watchdog per machine)...

SPLIT 4,NEXTONE, (SERIALNO) PF

..pick up the identifier for this watchdog's machine...

ASSIGN MYMAC, FN (MACID) ,PF

..pick up the identifier for the machine's User Chain...

ASSIGN MACLINE, FN (LINEID), PF

..wait until the machine is idle and at least one

sub-job is waiting for the machine...
TEST E BV (OKTOTRY) , TRUE

..unlink all sub-jobs from the User Chain

of sub-jobs waiting for this machine...
UNLINK PF (MACLINE),FN (INTOLINE) ,ALL

. .pause to put these sub-jobs back onto their User Chain

ranked ascending by the remaining number of steps
in their job-group...
BUFFER

..now unlink the first qualifying sub-job (if any) from

the front of the User Chain and send it to the machine...
UNLINK PF (MACLINE) ,FN(GETMAC),1,BV (QUALIFY)

..pause to let the unlinked sub-job capture its machine

and update the status of it's job-group...
BUFFER

.copy current clock time onto this watchdog...

ASSIGN TYMMOVED, AC1, PL

..the watchdog now waits until the clock has been advanced...

TEST G AC1,PL (TYMMOVED)

.now the watchdog resumes its monitoring role...

TRANSFER : ,AGAIN

Figure 1: The GPSS/H Model (part 9 of 10)

18

BLOCK#| LOCATION OPERATION OPERANDS COMMENTS
AR KKK KA KA A A A A A A AR AR A A AR A A A K A AR AR AR AR A AR Ak Ak Ak hkkhk kA Ak hkhkhkkhd
* Run-Control and Customized Reporting Statements *

R L L e Y L L L L Lt s L)
*
Kk KKKKKKKKKKKKKKA***% Start of Report Header **xrkxkskkkkikkkkkkkkkkk a4k
*

PUTPIC LINES=15, FILE=SYSPRINT, (&INITJOBS)

Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility

(FRS: Fewest Remaining Steps)
Number of Initialization Jobs: ****

All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)

TIME IN SYSTEM, HRS
No. of TARDY JOBS TARDY TIME, HRS (A1l Jobs)
Jobs Done Total Pct Avg. Std. Dev. Avg. Std. Dev.

kkkkkkkkkkkkkkkkkkkxkkk*x End of Report Header ****xkkkkkkkkkhkhkkkkkkkkhkk
*

...process initialization jobs,
then flush the initialization statistics...

* %

START &INITJOBS, NP
RESET

*

...loop through 25 sets of jobs, 100 jobs per set...
DO &I=1,25
START 100,NP
* ...for each job set, write out cumulative statistics...
PUTPIC LINES=1, FILE=SYSPRINT,

(100*&I, TC (TARDTYMS) , FLT (TC (TARDTYMS)) /&I,

TB (TARDTYMS) , TD (TARDTYMS) , TB (SYSTYMS) , TD (SYSTYMS))
* kKK *kkk kK *k *k * *k K *k Kk *k *

ENDDO

* ...line out the end of the report...
PUTPIC LINES=1,FILE=SYSPRINT

* ...that's all, folks...
END

Figure 1: The GPSS/H Model (part 10 of 10)

19

Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility

(FRS: Fewest Remaining Steps)

Number of Initialization Jobs: 1000

All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)

TIME IN SYSTEM, HRS

No. of TARDY JOBS TARDY TIME, HRS (All Jobs)
Jobs Done Total Pct Avg. Std. Dev Avg. Std. Dev.
100 33 33.0 3.3 2.7 8.8 6.2
200 70 35.0 4.0 3.1 9.2 7.2
300 84 28.0 4.2 3.1 8.5 6.9
400 87 21.7 4.0 3.1 7.2 6.4
500 90 18.0 3.9 3.1 6.3 6.1
600 91 15.2 3.9 3.1 5.8 5.8
700 94 13.4 3.8 3.1 5.5 5.5
800 96 12.0 3.7 3.1 5.2 5.2
900 99 11.0 3.7 3.1 5.0 5.0
1000 99 9.9 3.7 3.1 4.8 4.8
1100 105 9.5 3.5 3.1 4.7 4.7
1200 110 9.2 3.4 3.0 4.8 4.6
1300 112 8.6 3.3 3.0 4.6 4,5
1400 116 8.3 3.3 3.0 4.6 4.3
1500 117 7.8 3.2 3.0 4.5 4.3
1600 120 7.5 3.2 3.0 4.5 4.2
1700 128 7.5 3.1 3.0 4.4 4.1
1800 129 7.2 3.1 3.0 4.4 4.1
1900 132 6.9 3.1 2.9 4.4 4.0
2000 132 6.6 3.1 2.9 4.3 4.0
2100 138 6.6 3.0 2.9 4.3 3.9
2200 145 6.6 2.9 2.9 4.3 3.9
2300 171 7.4 2.9 2.7 4.5 4,1
2400 197 8.2 2.8 2.7 4.6 4.2
2500 212 8.5 2.8 2.7 4.6 4.2

Figure 2: The Report Produced when the GPSS/H Model of Figure 1 is Executed

20

5. Summary

The concept of sequencing flexibility in a scheduling environment has been described
briefly, and the advantages potentially provided by sequencing flexibility have been commented
upon. The need to use simulation modeling to quantify the potential advantages of sequencing
flexibility has been indicated. The logical requirements involved in modeling perfect sequencing
flexibility have been outlined, and the implementation of these requirements in the GPSS/H
modeling language has been shown. Others using GPSS/H to investigate the characteristics of
perfect sequencing flexibility can use as a starting point the model presented here, or can apply
techniques illustrated in this model to construct similar models for situations of interest to them.
And those using other modeling languages to investigate perfect sequencing flexibility can take as
guidelines for their work the logical considerations identified and outlined here.

REFERENCES

Henriksen, J.O. and R.C. Crain. 1989. GPSS/H Reference Manual, Third Edition. Wolverine
Software Corporation, Annandale, VA.

Rachamadugu, R. and T.J. Schriber. 1990a. "Performance of Dispatching Rules Under Perfect
Sequencing Flexibility." Proceedings of the 1990 Winter Simulation Conference. Society for
Computer Simulation, San Diego, CA.

Rachamadugu, R. and T. J. Schriber. 1990b. "Performance of Nondelay Schedules: Generalized
Open Shops." Working Paper No. 651, Division of Research, University of Michigan, Ann
Arbor ML

Schriber, T.J. 1991a. An Introduction to Simulation Using GPSS/H, John Wiley & Sons, Inc.,
New York, NY. ‘

Schriber, T.J. 1991b. "The Modeling of Perfect Sequencing Flexibility in a Scheduling
Environment." Proceedings of the 1991 Winter Simulation Conference. Society for Computer

Simulation, San Diego, CA.

