Research Support Revised May 1994
School of Business Administration

MODELING PERFECT SEQUENCING FLEXIBILITY
WHEN "FEWEST REMAINING STEPS"
IS USED AS THE DISPATCHING RULE

Working Paper #9403-16

Thomas J. Schriber
University of Michigan

FOR DISCUSSION PURPOSES ONLY
None of this material is to be quoted or
reproduced without the expressed permission
of the Office of Research Support

Copyright 1992, 1994
University of Michigan
School of Business Administration
Ann Arbor, Michigan 48109-1234

ABSTRACT

The concept of sequencing flexibility and its potential importance in such scheduling
environments as those of manufacturing systems are reviewed briefly. The description of a
manufacturing system is provided, asking that a simulation model be built for use in studying
system performance under conditions of perfect sequencing flexibility when the rule used to
dispatch jobs to machines is FRS (fewest remaining steps). An approach to modeling perfect
sequencing flexibility is then described and a GPSS/H model illustrating the implementation of this
approach in the setting of the given manufacturing system is presented. The emphasis in this paper
is on the model itself. The impact of both perfect and partial sequencing flexibility on measures of
manufacturing system performance are reported separately in a literature article for which a

reference is given.

1. Sequencing Flexibility

Suppose that manufacturing a particular product requires that one step be performed on the
corresponding unit of work-in-process (WIP) by each of 5 different machines. If these 5 steps
must be carried out in a strict sequence, then there is no sequencing flexibility in the manufacturing
process. If the 5 steps can be carried out in any sequence whatsoever, then there is perfect
sequencing flexibility in the process. If some of the 5 steps must be carried out in a strict
sequence, but others can be performed without adhering to a strict sequence, then the
manufacturing process has partial sequencing flexibility.

Rachamadugu and Schriber (1990a, 1990b) proposed a sequencing flexibility measure
(SFM) that quantifies the degree of sequencing flexibility in a multistep process on a scale from 0
to 1, with measures of 0 and 1 corresponding respectively to the extreme cases of no flexibility and
perfect flexibility, as described above. For an example in which their metric is applied to partial
sequencing flexibility, consider the following scenario: Operations 1 through 5 must be carried out
to do a job. Operation 1 must precede 2 and 2 must precede 3. Similarly, operation 4 must precede
5. But there are no precedence requirements otherwise. Using the Rachamadugu and Schriber
metric, an SFM value of 0.6 results for this situation. (See the referenced papers for quantitative
details. These details are also given in Rachamadugu, Nandkeolyar and Schriber 1993.)

There are potential benefits in exploiting whatever sequencing flexibility might be inherent
in a product structure. Suppose for example that the machining resources in a flexible manufactur-
ing system (FMS) are used to make a variety of products concurrently. A given unit of work-in-
process can wait logically at each of two or more alternative types of machines if there is sequenc-
ing flexibility at that stage in the manufacturing process for the WIP unit. This increases the likeli-
hood that a next step can be performed on the WIP earlier than if there were no sequencing flexi-
bility. In tumn, it is likely that this will improve such system operating characteristics as the elapsed
time between release of a job to the system and completion of the job (system residence time).

System residence time and other important measures of system performance depend not
just on sequencing flexibility but also on the choice of dispatching rule (the rule used to decide
which unit of waiting work to send to-a machine when the machine next becomes free.) This
makes it of interest to evaluate and rank various dispatching rules under conditions of sequencing
flexibility with respect to such measures of system performance as system residence time and such
tardy-job characteristics as the percentage of jobs that are tardy and the probability distribution
followed by the tardy-time response variable. Rachamadugu and Schriber (1990a, 1990b) and
Rachamadugu, Schriber and Nandkeolyar (1993) have shown that the relative goodness of well-

known dispatching rules does depend on whether sequencing flexibility is present and exploited.
For example, the shortest processing time (SPT) rule minimizes a job's system residence time in a
particular simulated setting relative to seven other dispatching rules when there is no sequencing
flexibility (or when it exists but is not exploited), whereas Rachamadugu and Schriber (1990b)
found that the least work remaining (LWR) rule minimizes this measure when there is perfect
sequencing flexibility. (In the SPT rule, that waiting WIP which needs a machine for the shortest
time is the next to be dispatched to the machine. In the LWR rule, that waiting WIP which requires
the least total remaining machining time is the next to be dispatched to the machine.)

As Rachamadugu and Schriber (1990b) additionally pointed out, “there seem to be no
known exact or approximate prescriptive models for analyzing the performance of scheduling rules
under perfect or near perfect sequencing flexibility scenarios.” This motivates the use of simulation
models to study the performance of dispatching rules under conditions of sequencing flexibility.

It is the modeling of perfect sequencing flexibility on which our attention centers here. The
logical issues involved in building a model for perfect sequencing flexibility are brought into focus
by the request to model the system described in the next section.

2. An Exercise for Modeling Perfect Sequencing Flexibility

A particular flexible manufacturing system consists of nine different machines. These
machines are used to build to order a multiplicity of products that are manufactured concurrently.
Each order (job) is for one unit of product and visits from 1 to 9 machines (uniformly distributed),
visiting no machine more than one time. The particular machines visited by a job are determined at
random. Operation times for all jobs at all machines are assumed to be identically 2-Erlang
distributed, with a mean of 30 minutes per operation. Job interarrival times are exponentially
distributed and have a mean such that the expected overall machine utilization in the system is 90
percent. The operations required by each job can be performed in any chronological order. The
rule used to dispatch jobs to machines is fewest remaining steps (FRS). That is, the waiting job
which has the fewest remaining steps to be performed on it before being completed is the next job
to be dispatched to a machine that has just become free. The flow allowance factor used in
determining a job's due date is 7.5. (A job's due date is determined by multiplying its total step
time by 7.5, then adding this product to its time of arrival.)

Build a model that can be used to simulate the operation of this system. Design the model
to measure the percentage of jobs that are tardy, the mean and standard deviation of the tardy-time

random variable, and the mean and standard deviation of the system-residence-time random
variable (with the system residence time measure based on all jobs, whether they are tardy or not).
Assume that only one step at a time can be performed on a given job.

The particular machines a job is to visit should be determined by sampling without
replacement from the set of nine machines. Whenever a job is dispatched to a machine, first-come

first-served should be used to resolve ties for the fewest remaining steps.

Perform a single simulation with the model. Initialize the model by simulating until 2500
jobs have been completed. Then continue the simulation until another 10000 jobs have been
completed. For each 500 post-initialization jobs completed, report the cumulative number of such
jobs completed, the cumulative number of tardy jobs, the cumulative percentage of jobs tardy, and
the cumulative means and standard deviations described above. (For an example of the requested

simulation report, see Figure 2 on page 18 here.)

3. An Approach to Building the Model

The following points make up the main logical considerations that need be taken into
account in building a model of the type requested in section 2.

1. When a job arrives, it needs to record its time of arrival (to support the later
measurement of its system residence time) and then sample to determine how many steps
are to be performed on it, which machines are to be involved, and what the individual step
times are to be. Total step time and the due date follow from the individual step times and
the flow allowance factor. All of these individual pieces of information can take the form
of attributes carried by the job itself.

2. The job can then create enough identical copies (clones) of itself to provide one sub-job
for each step that must be performed on the overall job. The clones should inherit from the
original the attributes described above. Each clone will then be a one-step sub-job
associated with the overall job. When all sub-jobs are finished, the overall job is finished.

Note that an attribute of each sub-job will be the total number of steps remaining for the
overall job. In the fewest-remaining-steps dispatching rule, the value of this attribute and
the values of the corresponding attribute of other sub-jobs waiting for a given machine will
be used to determine which sub-job is the next to get the machine, with first-come, first-
served used to break ties for fewest remaining steps.

3. Before the sub-jobs forming an overall job are sent to their individual machines, a
mechanism must be established so that they can send messages among themselves at

appropriate times. The following messaging needs to be accomplished:

a. When a step is about to start on a sub-job, the sub-job must signal this fact to all
associated sub-jobs to suspend temporarily their candidacy for machine use.
(Remember that only one step at a time can be performed on an job.)

b. When the processing of a sub-job is finished, it must let all associated sub-jobs
know that they are candidates once again for machine use.

c. When the processing of a sub-job is finished, it must update the "number of
steps remaining for the overall job" attribute on all associated sub-jobs.

The a, b and ¢ messaging can be supported by having the sub-jobs making up an
overall job become members of a set unique to that job. Of course these sub-jobs already
are members of such a set conceptually; but they must also be made members of such a set
operationally as well, to support the messaging needs described above. If operational sets
of this type are not provided in the modeling language used to implement the simulation,
then the modeler will have to work with other language elements in an attempt to achieve

the needed messaging capability.

4. When a sub-job finishes using its machine, it can test to determine whether it is the last
member of its set. If so, the job is finished and this last surviving sub-job simply needs to
record its system residence time and its tardiness (if it is tardy) before leaving the model.
But if this sub-job is survived by others in its set, then it needs to send the messages

corresponding to 3b and 3c above and depart the model.

5. When a sub-job finishes using its machine, there is a need to dispatch another sub-job
to the now-idle machine (assuming that there is at least one qualified sub-job waiting for
that machine; note that such a sub-job would be associated with another overall job, not
with the overall job for which a sub-job has just finished in use of the machine). There is
also a need to check whether another associated sub-job can now capture the machine for
which it is waiting. Why? Because an associated sub-job could be waiting for a machine
that is idle, with the need to wait dictated not by a lack of machine availability, but dictated
instead by the fact that until just now a kindred sub-job was in the process of being

machined.

When a sub-job finishes using a machine, the sub-job itself can assume the twofold
dispatching responsibility described above; alternatively, a watchdog not connected with
any jobs at all can be designated for each machine and take the responsibility of dispatching
a job to its machine whenever conditions permit. These responsibilities are handled by
watchdogs in the approach presented here, one watchdog per machine. It can be argued
that the watchdog approach is the better approach, because it is conceptually cleaner and
more modular to explicitly identify the job-dispatching responsibility and isolate it in its
own model section than to embed it within the model section whose purpose is to provide
the logic of using a machine after a job has been dispatched to it.

In either dispatching approach, qualifying sub-jobs waiting for the machine must be
ranked on their number-of-remaining-steps (for their overall job) attribute Jjust before the
decision is made about which sub-job is the next to get the machine, with ties resolved
first-come, first-served. (A qualifying sub-job is one which is actively contending for the
machine, as contrasted with a sub-job in a state of temporary suspension because an
associated sub-job is currently being machined.) Note that a sub-job's correct position in
the ranking cannot be determined at the time the sub-job arrives at a machine, because the
number of remaining steps for one or more waiting sub-jobs may change before the
machine's current user finishes with the machine. This means the correct ranking must be
determined just prior to dispatching a next waiting sub-job to the machine.

The foregoing points make up the main logical considerations that need be taken into
account in modeling perfect sequencing flexibility for the fewest-remaining-steps dispatching rule.
The logical considerations may be simpler for perfect sequencing flexibility with other dispatching
rules. (If SPT is the dispatching rule, for example, sub-jobs can be ranked at the time of their
arrival at their machine, and the messaging requirement described in 3b does not arise.) The logical
considerations may be more demanding, however, in cases of partial sequencing flexibility,
irrespective of the dispatching rule involved. For the extreme of no sequencing flexibility,
relatively modest logical considerations are involved.

4. Implementation of the Approach in GPSS/H

The logical considerations outlined in section 3 are implemented in the GPSS/H (Henriksen
and Crain 1989) model displayed in Figure 1 (pages 10 through 17), and output from the
simulation requested in section 2 is given in Figure 2 (page 18). In addition to showing the model
itself, Figure 1 provides an appended column of block numbers (labeled BLOCK#) at the left, and
of column labels (LOCATION, OPERATION, etc.) across the top of each part of the figure.

(See Schriber 1991 for more particulars about the composition of GPSS/H statements.)

Only brief discussion of the GPSS/H model is given here, but the comments embedded
liberally in the model itself should make it quite easy (for a person familiar with any discrete-event
modeling language, and certainly for anyone familiar with GPSS/H itself, or GPSS in general) to
understand the underlying details. Briefly, parts 1, 2 and 3 of Figure 1 (pages 10, 11 and 12)
specify the background against which the model is set. Handling of considerations 1 through 5 of

section 3 is commented on below under corresponding numbers.

1. The considerations under 1 are handled in Blocks 1 through 21, parts 4 and 5 of Figure
1 (pages 13 and 14). Blocks 3 and 4 (ADVANCE and SPLIT, page 13) structure the job
arrival process. Block 11 (page 14) determines how many steps need to be carried out on a
job. Blocks 12 through 20 (page 14) determine which machines a job needs (and what the
corresponding step times are), using a sampling-without-replacement scheme. Finally,
Block 21 (page 14) sets the due date.

Note how the logic in Blocks 11 through 20 is flexibly specified in terms of the number of
machines (&MACHINES) in the system being modeled. Although the exercise of Section
2 describes the system as consisting of nine machines, the model is flexible enough to
handle systems consisting of from 2 to 9 machines. (A one-machine system would not be
of interest in a study of perfect sequencing flexibility.) The number of machines in the
system is set with the "LET &MACHINES=9" control statement in part 2 (page 11) of
Figure 1. (If the system consisted of more than nine machines, only several changes
would be needed in the model to handle this case, too. In particular, no Blocks would have
to be changed at all to increase the number of machines in the system.)

Note similarly how the job interarrival time is flexibly specified in terms of overall machine
utilization and the number of machines in the system. See the "LET &SYSUTIL=0.90"
and the "LET &JOBIAT=..." statements in part 2 (page 11) of Figure 1.

2. Block 24 (SPLIT) in part 5 of Figure 1 (page 14) provides sub-jobs (clones) that
inherit the attributes of the original job. Each sub-job is delegated to one of the particular
machines that will be used to carry out the overall job. This delegation involves tagging
each sub-job with the identifier for its particular machine. (The SPLIT Block's serialization
option, expressed through the SPLIT Block's C Operand, is used to serially number an
overall job's sub-jobs 1, 2, 3, ..., and then the Block 26 ASSIGN relates sub-job serial
number to the particular machine to which the sub-job is delegated.)

3. Block 27 (JOIN) at the bottom of part 5 (page 14) of Figure 1 puts an overall job's
sub-jobs into a unique set (a GPSS/H Group) to support the eventual messaging needs
previously outlined. Block 28 (part 6 of Figure 1, page 15) computes a unique index for a
job such that when the various sub-jobs waiting for a machine are ranked by that index in
ascending order, the rank corresponds to first-come, first-served within fewest-remaining-

steps.

The use of all machines is modeled with a single stack of Blocks (Blocks 30 through 39 in
part 6 of Figure 1, page 15). When a sub-job arrives at its machine, it joins the set of other
sub-jobs (if any) waiting for the machine. (Sub-jobs wait on a User Chain. Sub-jobs
coming to machine one, for example, are put onto the machine-one User Chain via Block
29, LINK. The Block 29 LINK addresses User Chains at one level of indirection and so is
flexible enough to accommodate each machine's User Chain.) Note that sub-jobs do not
test the status of their machine to determine if they can capture the machine. (In the model
presented here, watchdogs have the responsibility of dispatching sub-jobs to machines.
This responsibility is not exercised by the sub-jobs themselves. See point 5 in this section
for watchdog particulars.)

In the machine-usage stack of Blocks, Block 31 (ALTER, page 15) handles the need for a
sub-job to let all other sub-jobs in its set know that a step is starting on a member of their
set. Block 38 (ALTER) accomplishes the reverse effect. Block 37 (ALTER) is used to
update the number-of-remaining-steps attribute of set members.

4. A completed sub-job uses Block 36 (TEST) to determine if more steps remain before its
overall job will be finished. If more steps remain, it accomplishes the messaging described
in Section 3 under points 3b and 3c (using Blocks 37 and 38, ALTER, for this purpose)
and leaves the model (Block 39, TERMINATE); otherwise, it simply transfers to the
JOBDONE Block (Block 40, TABULATE, part 7 of Figure 1, page 16) to record statistics
on the now-finished overall job and then leaves the model.

5. In this model, watchdogs are used to dispatch jobs to machines. Each machine has its
own watchdog. Watchdog logic is provided for all the watchdogs with Blocks 44 through
53 in part 7 of Figure 1 (page 16). Each watchdog moves repeatedly over time through this

cycle:

a. The watchdog waits at a TEST Block (Block 46) until its machine is idle and at
least one job is queued up for that machine.

b. The watchdog then executes the following logic (at one and the same simulated
time). First, it unlinks (Block 47, UNLINK) from their place of waiting (a User
Chain) all qualifying sub-jobs waiting for its machine and targets them to be re-
linked in their place of waiting, ranked ascending on the number of remaining steps
for the associated overall jobs, with first-come, first-served used to break ties. (A
sub-job qualifies for this unlink/relink process if its overall job is inactive, which
means the sub-job is a candidate for capturing its machine now.) If there are no
qualifying sub-jobs, then the watchdog's machine must remain idle for the time
being and so the watchdog skips to Block 51 (see below). But if there is at least
one qualifying sub-job, the watchdog pauses (Block 48, BUFFER) while the one
or more qualifying sub-jobs have their ranking criterion updated (Block 28,
ASSIGN) and then are relinked (at Block 29, LINK) in their updated order. At
Block 49, the watchdog then unlinks the most highly qualified waiting sub-job and
dispatches it to capture the machine. At Block 50 (BUFFER), the watchdog pauses
again to let the dispatched sub-job capture the machine and message associated sub-
jobs that the overall job is now active. The watchdog then takes note of the
simulated time of its ongoing movement (ASSIGN, Block 51) and waits (TEST,
Block 52) until the next clock advance has taken place before it resumes its
machine-monitoring role at the Block 46 TEST.

The logic under point 5 above is subtle, and merits careful study. The following points
should be considered. First, the watchdogs have lower priority than the sub-jobs. (This
means that at each clock time, arrival of a new job and/or the freeing up of one or more
machines will take place before the watchdogs do their monitoring. It also means that
when a watchdog executes a BUFFER Block, the higher-priority sub-jobs it has unlinked
from a User Chain will be processed before further processing of the watchdog itself takes
place.) Second, each watchdog makes its entire set of moves (if any are called for) before
any of the other watchdogs make their moves. (If watchdog movement were intermixed,

two or more watchdogs might try to dispatch associated sub-jobs to the respective
watchdog-machines, but this would be invalid because only one machining step at a time
can be carried out on an overall job.) Third, it is essential that when a watchdog dispatches
a sub-job to a machine, the sub-job be permitted to capture the machine and message its
associated sub-jobs that the overall job is now active before any other watchdog starts to
make its set of moves. (Otherwise, another watchdog might dispatch to its machine a sub-
job that shouldn't capture a machine at this time because its overall job is already active.) It
is also important to note the need for the Block 52 TEST; in its absence, a watchdog would
loop endlessly if the Block 46 TEST were true, that is, if the watchdog's machine were idle
and all sub-jobs waiting for the machine were inactive.

Part 8 of Figure 1 (page 17) provides for run control and the reporting logic which
leads to the simulation report shown in Figure 2 (page 18).

10

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

(2SS S RS R E SRR R RS s Rt a R sRRSSRR Rt SR RS E

*

* % % ok X H X % F A

SIMULATE

Arrival Process:
Number of Machines in the System: &MACHINES (9 maximum)

Number of Machines Used per Job: From 1 to &MACHINES (random)
Mean Machining Time:
Expected Machine Utilization: &ESYSUTIL

Base Time Unit: 1 Minute

Sequencing Flexibility Measure: 1.0
Service Order: Fewest Remaining Steps

Poisson

&MSTEPTYM Minutes, 2-Erlang Distributed

(see the "LET Statements" below for
the setting of model-parameter values)

* % X % X O X X X X X %

**

Compiler Directives
AR A A AR AR A A A A A A A AR A A A AR A AR AR AR A KRR A A AR A A KA A Ak A A Ak hkhkhhkkkhkhkkdkkkhkhkkkkxx

*

*
*

* %k o ¥ *

MAC1
MAC2
MAC3
MAC4
MAC5
MAC6
MAC7
MACS
MAC9

MACID1
MACID2
MACID3
MACID4
MACID5
MACID6
MACID7
MACIDS8
MACIDY

STEPTYM1
STEPTYM2
STEPTYM3
STEPTYM4
STEPTYMS5
STEPTYM6
STEPTYM7
STEPTYM8
STEPTYM9

..reallocate default maximum quantities of entities...

REALLOCATE COM, 75000, _ number of bytes in COMMON
GRP, 15000 number of Xact Groups

. .selected correspondences between

symbolic and numeric identifiers...

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

WO JOWUT I WN
:d:ﬁ"d:lj:ﬂ'ﬁ'ﬂ"lj"!j
QOO0 N0

1,PF
2,PF
3,PF
4,PF
5,PF
6, PF
7,PF
8, PF
9,PF

.Real Parameters

1,PL
2,PL
3,PL
4,PL
5,PL
6, PL
7,PL
8,PL
9,PL

...Facilities and User Chains (machines and their lines)...

MAC1 is Facility 1 and User Chain 1
...and so on...

. .Fullword Integer Parameters (variables local to Xacts)...

MACID1 is (in) Fullword Parameter 1
...and so on...

(variables local to Xacts)...
STEPTYM1 is (in) Real Parameter 1
...and so on...

*

Figure 1: The GPSS/H Model (part 1 of 8)

11

BLOCK# LOCATION OPERATION OPERANDS COMMENTS

* ...Integer Variables (global variables)...
INTEGER &CHOICE points to random machine choice
INTEGER &I DO-1loop counter
INTEGER &INITJOBS number of initialization jobs
INTEGER &JOBCOUNT jobs-arrived counter)
INTEGER &LISTSIZE used in machine-selection scheme
INTEGER &MACHINES number of machines in system
INTEGER &MACLIST(9) list of identifiers for

* up to 9 machines in the system
INTEGER &STEPS number of steps to do this job

*

* ...Real Variables (global variables)...
REAL &FLOFAKTR multiplier for due date
REAL &JOBIAT mean job interarrival time
REAL &MSTEPTYM mean step time (machining time)
REAL &ESYSUTIL expected system utilization

* ...Synonyms (identifiers for integer constants)...

BUSY SYN 1 code for a busy job

IDLE SYN 0 code for an idle job

TRUE SYN 1 code for testing Boolean expressions

*
Ak hhhk kKRR Ak h A A ARk h Ak khhk kA kkkkkhhhkhkkkkhhhhkkhkhkkkhhhddhkhhkdhkx
* Control Statements *
Ak kA AR K AR A KKK KA KA KA A Ik khhkhkhhkkhkkkkkhkhhkhkkkhhhkdhkhhhhdhhkhdkk
*
khkkkkkkkhkhkkkkkkkhkkhkkhkhkkhkkx Boolean ExpreSSionS khkkkk kA kkXkAhkhkkkxdhxdkkk
*

* ...the OKTOTRY expression is true if the active watchdog's
* machine is idle and at least one sub-job is waiting
* for the machine...

OKTOTRY BVARIABLE FNU (PF(MYMAC))AND (CH (PF (MYMAC))>0)

*
kkkkkhkkhkhkkhkhhkhkhkhkhkkhhkkhkkhkkk LET Statements kkkkkhkkhkkkhkkkhkkkhrhkhkhkhhkhkkx
*

* ...assignment of values to selected global variables...
LET &ESYSUTIL=0.90 expected machine utilization
LET &FLOFAKTR=7.5 flow allowance factor
LET &INITJOBS=2500 number of initialization jobs
LET &MACHINES=9 9 machines
LET &MSTEPTYM=30.0 mean step time, minutes

*
LET &JOBIAT=_ job interarrival time, minutes

(FLT (&MACHINES+1) /2) *&MSTEPTYM/ (&MACHINES*&ESYSUTIL)

Figure 1: The GPSS/H Model (part 2 of 8)

12

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

khkkhkkkkkkkkkhkhkhkhkkkhkhhkkkhkxk RMULT Statements khkkkkkkkhkhkhkhkhkhkhkkhkhkhkkdhkhhktkx
*

* ...Initial Positions of U(0,1) random-number generators...

* (antithetic random numbers result if these RMULT Operands

* are prefixed with a minus sign; see Schriber 1991a)

RMULT 100000,_ RNl (random interarrival times)

200000,_ RN2 (random number of job steps)
300000,_ RN3 (random pointer into mac-id list)
400000,_ RN4 (first piece of 2-Erlang)
500000 RN5 (second piece of 2-Erlang)

*
khkkkkkkkkkkkkkhkkkkkkkxkxx PAR]E Statements AhkAkAhkhkhkhhkhk kA hkhrxhkdhkhhkhdk
*

* ...system residence time, all jobs, hours...
SYSTYMS TABLE (AC1-PL(TIMEIN))/60.0,0,1,2

*

* » ...tardy time for tardy jobs, hours...
TARDTYMS TABLE (AC1-PL(DUEDATE))/60.0,0,1,2

*
khkkkkhkkkkkkhkkhkhkhhkkhkkkkhkhkkkkkkx UNLIST ARKK KA AKX A A h Ak Ak kA Ak Ak hhddhhdd

*

* . ..suppression of Control-Statement echoes...
UNLIST CSECHO

Figure 1: The GPSS/H Model (part 3 of 8)

13

BLOCK# LOCATION OPERATION OPERANDS COMMENTS
*
ARk K IR AR A AR AR AR AR A KRR IR KRR AR KA KA AR A A Ak Ak Ak hkkkhkdkhkhhkhkkhkhkhkkhkkhkhkhkdhkdxk
* Job Creation and Specification Segment *
P R R R R R R R R R R R R R R R 2R R RS SEEE ST RS LSS S S S S SRS R LRSS
*
* ...seed the segment with a master job-Xact (Transaction).
1 GENERATE O0,,,1,25,17PF,13PL
* ...Jjob is idle at time of its arrival...
2 ASSIGN STATUS, IDLE, PF
*
* ...interarrival time elapses...
3 NEXTJOB ADVANCE RVEXPO (1, &JOBIAT)
...create successor job-Xact;
* route it to experience its 1nterarr1val tlme
4 SPLIT 1,NEXTJOB
*
* ..record time of job's arrival at the system..
5 ASSIGN TIMEIN,AC1, PL
*
* ...update job count, then give this job a unique id number
6 BLET &JOBCOUNT=&JOBCOUNT+1
7 ASSIGN JOBID, &JOBCOUNT, PF
*
* ..initialize the list of machine id's
* prior to selecting machine id's at random...
* (a count-down loop is used)
8 ASSIGN POINTER, &MACHINES, PF
9 NEXTID BLET &MACLIST (PF (POINTER)) =PF (POINTER)
10 LOOP (POINTER) PF,NEXTID

Figure 1: The GPSS/H Model (part 4 of 8)

14

BLOCK# LOCATION OPERATION OPERANDS COMMENTS
* ...set the number of steps required by this job...
11 BLET &STEPS=RN2@&MACHINES+1

*
*k*kkx*x*** Pjck Machine id's and Step Times for This Job ******kkxxx*

* (the machine id's are stored in PF(1l)...PF(&STEPS), and
* corresponding step times are stored in PL(1)...PL(&STEPS);
* a count-down loop is used, so the storing starts with
* PF (&STEPS) and PL(&STEPS) and ends with PF(1) and PL(1))
*
* ..set the starting length of the machine-id list
* and the step whose specs (machine id and step time)
* are to be determined first...
12 BLET &LISTSIZE=&MACHINES
13 ASSIGN STEPNOW, &STEPS, PF
* .
* ...choose a random entry in the (remaining) machine-id list...
14 REPEAT BLET &CHOICE=RN3@&LISTSIZE+1
* -
...assign that machine id for the current step,
* and sample and assign a corresponding step time...
15 ASSIGN PF (STEPNOW) , &MACLIST (&CHOICE) , PF
16 ASSIGN PF (STEPNOW) , __
16 RVEXPO (4, &MSTEPTYM/2) +RVEXPO (5, &MSTEPTYM/2) , PL
* ...update the total step time for this job...
17 ASSIGN TOTSTIME+, PL (PF (STEPNOW)) , PL
..copy the last machine id in the current machine-id
list over the machine id just chosen...
18 BLET &MACLIST (&CHOICE) =&MACLIST (&LISTSIZE)
*
* ...shorten the size of the remaining machine-id list by 1...
19 BLET &LISTSIZE=&LISTSIZE-1
...repeat for each of this job's steps...
20 LOOP (STEPNOW) PF, REPEAT

*

****xxx%% End of Logic for Picking Machine id's and Step Times ****¥x
*

* ...assign this job's due date...
21 | TEST ASSIGN DUEDATE, AC1+&FLOFAKTR*PL (TOTSTIME) , PL
*
* ...initialize the number of steps to go for this job...
22 ASSIGN STEPS2GO, &STEPS, PF
*
* ..create clones so there is.one sub-job for each step,
* numbering the clones (sub-jobs) serially
* in a Fullword Parameter...
*
23 ASSIGN SERIAILNO, -1, PF
*
24 SPLIT PF (STEPS2GO) , JUMP, (SERIALNO) PF
25 TERMINATE O

26 | JuMP ASSIGN MYMAC, PF (PF (SERIALNO)) , PF

* ...each sub-job joins a Group unique to this job...
27 JOIN PF (JOBID)

Figure 1: The GPSS/H Model (part 5 of 8)

15

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

28

29

30

31

32
33
34
35

36

37

38

39

*

tZ S A LSRR RS SRR SRS RS R RS R ERS RS S RS SRS SRR SR SR SRR LT S

*

Use of Machines

*

Khkkkkhkkkhkkkkkk kA kh kA Ak kkkhkhkkhk bk kh kA hkkhkhkkkkhkk kA kk kA khkhhkhkhhkdhkkkhhkkx

*

* o * *

.assign criterion for User-Chain ordering...

(objective: form a single criterion to rank waiting
jobs by JOBID within STEPS2GO, thereby using FCFS
to resolve STEPS2GO ties)

INTOLINE ASSIGN RANKINDX, 1000000*PF (STEPS2GO) +PF (JOBID) , PF

* % ok

* X % X ¥

GETMAC

* ok *

E R

* % A *

* %

..go into appropriate waiting line (onto User Chain)

ranked in order of increasing ranking index...
LINK PF (MYMAC) , (RANKINDX) PF

..capture the appropriate machine...

(note: the following Block is reached by routing
to it Xacts that have been UNLINKed to be sent
to capture their machine)

SEIZE PF (MYMAC)

. .message other sub-jobs in this job-group

that this overall job is now becoming active...
ALTER PF (JOBID) ,ALL, (STATUS) PF, BUSY

...use the machine, free it, remove this sub-job from

its job-group, and update the remaining number of steps
this overall job requires...

ADVANCE PL (PF (SERIALNO))

RELEASE PF (MYMAC)

REMOVE PF (JOBID)

ASSIGN STEPS2GO-, 1, PF

..if the overall job is not done, do the needed messaging

and then destroy this sub-job;
else, branch to JOBDONE...
TEST NE PF (STEPS2GO) , 0, JOBDONE

.. .message updated number of remaining steps to

other sub-jobs in this job-group...
ALTER PF(JOBID),ALL,(STEPSZGO)PF,PF(STEPSZGO)

. .message other sub-jobs in this job-group

that this overall job has now become inactive...
ALTER PF (JOBID) ,ALL, (STATUS)PF, IDLE

..destroy this sub-job

TERMINATE O

Figure 1: The GPSS/H Model (part 6 of 8)

16

BLOCK#

LOCATION OPERATION OPERANDS COMMENTS

40

41

42

43

44

45

46

47

48

49

50

51

52

53

*

(2R RS RS EEER SRS RS R RS S R R R R RS SR SRR RRRAE SRS R RS RR RS R RS E RS
* Wrapup for Finished Jobs *
2RSSR S SRR R SRR RS RS RS SRR RS RS ERRRRER R R SRS E
*

* ...tabulate finished job's time in the system...
JOBDONE TABULATE SYSTYMS
*

...branch if not tardy;
* else, tabulate finished job's tardy time...
TEST G AC1, PL (DUEDATE) , NOTLATE
TABULATE TARDTYMS
N ,

...count down on finished jobs leaving the system...
NOTLATE TERMINATE 1

*
EE RS SRS E SR E RS SRR RS LR SR SRRttt R R sttt R s Rt R R R RS

* Machine Watchdog Transactions *
IS S 2SR ES RS ESES SRR SRR LRSS S SR ES R R SRS E SRR S R LRSS SRR SRR R RS S S

*

* ...Create a low-priority master watchdog...
GENERATE 0[1] 111_25, 17PF, 13PL

..bring in more watchdogs (one watchdog per machine)...
with serialization used to assign to each watchdog
the identifier for its machine...

SPLIT &MACHINES-1,AGAIN, (MYMAC)PF

* % * *

*

...wait until the machine is idle and at least one
sub-job is waiting for the machine...
AGAIN TEST E BV (OKTOTRY) , TRUE

*

..unlink all qualifying sub-jobs (if any) from the
User Chain of sub-jobs waiting for this machine;
skip to NONE if none qualify...
UNLINK PF (MYMAC) , INTOLINE, ALL, (STATUS) PF, IDLE, NONE

* % % ¥

* *

...pause to put these sub-jobs back onto their User Chain
ranked ascending by their updated ranking index...
BUFFER

b ...now unlink the first qualifying sub-job (if any) from
* the front of the User Chain and send it to the machine...
UNLINK PF (MYMAC) , GETMAC, 1, (STATUS) PF, IDLE

...pause to let the unlinked sub-job capture its machine
* and update the status of its job-group...
BUFFER

* ...copy current clock time onto this watchdog...
NONE ASSIGN TYMMOVED, AC1, PL

. .the watchdog now waits until the next clock advance...
TEST G AC1, PL (TYMMOVED)

* ...now the watchdog resumes its monitoring role...
TRANSFER ,AGAIN

Figure 1: The GPSS/H Model (part 7 of 8)

17

BLOCK# LOCATION OPERATION OPERANDS COMMENTS
ok k kKA KA I A I I I AR A I I A A A I kAR A A kA AR KK kA Ak hhkkkkhhkkhk kA kkkkhdkkkhddkkhk
* Run-Control and Customized Reporting Statements *

Kk kk kA kI IR IR A I KA KRR A KRR KA AR h Ak khkhhhkhkkkkkkkkkkhkkkhkdkhhhhhhhdhdhrk
*
kkkkkkkkkkkkkkkkkkkk*x Start Of Report Header kkkhkhkhkkhkhkhkhkkrkkhkhkhhkhhk

PUTPIC LINES=15, FILE=SYSPRINT, (&INITJOBS)
Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility

(FRS: Fewest Remaining Steps)
Number of Initialization Jobs: ****

All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)

TIME IN SYSTEM, HRS
No. of TARDY JOBS TARDY TIME, HRS (All Jobs)
Jobs Done Total Pct Avg. Std. Dev. Avg. Std. Dev.

khkkkkkkkkkkkkkkhkhxkkkxx End Of Report Header EE SRS E RS SRR R SRR RS R
*

* ...process initialization jobs,
* then flush the initialization statistics...
*
START &INITJOBS, NP
RESET
*
*

..loop through 20 sets of jobs, 500 jobs per set...
DO &I=1,20

START 500,NP

%

...for each job set, write out cumulative statistics...

PUTPIC LINES=1, FILE=SYSPRINT, _
(500*&I, TC (TARDTYMS), 100.*TC (TARDTYMS) / (500*&I) , _
TB (TARDTYMS) , TD (TARDTYMS) , TB (SYSTYMS) , TD (SYSTYMS))

*kkkk * k%% **x % *%x % **k % *%x % **x %

ENDDO
* ...line out the end of the report...
PUTPIC LINES=1, FILE=SYSPRINT
* ...that's all, folks...
END

Figure 1: The GPSS/H Model (part 8 of 8)

18

*Performance Report for FRS Dispatching Rule
Under Conditions of Perfect Sequencing Flexibility

(FRS: Fewest Remaining Steps)
Number of Initialization Jobs: 2500

All Report Entries Are Cumulative
(Subsequent to Eliminating Initialization Statistics)

TIME IN SYSTEM, HRS

No. of TARDY JOBS TARDY TIME, HRS (A1l Jobs)
Jobs Done Total Pct Avg. Std. Dev. Avg. Std. Dev.
500 24 4.8 3.6 2.8 5.1 3.2
1000 80 8.0 5.3 4.7 7.1 5.9
1500 96 6.4 4.9 4.5 6.7 5.4
2000 109 5.4 4.5 4.4 6.5 5.2
2500 123 4.9 4.1 4.3 6.2 4.9
3000 143 4.8 4.0 4.1 6.1 4.7
3500 193 5.5 4.2 4.1 6.4 5.1
4000 239 6.0 4.1 3.9 6.8 5.3
4500 334 7.4 4.9 4.4 7.4 6.0
5000 426 8.5 5.2 4.6 7.7 6.3
5500 477 8.7 5.1 4.5 7.8 6.3
6000 492 8.2 5.0 4.5 7.6 6.2
6500 514 7.9 4.9 4.4 7.5 6.1
7000 535 7.6 4.8 4.4 7.4 6.0
7500 602 8.0 5.0 4.4 7.6 6.2
8000 654 8.2 5.1 4.5 7.6 6.2
8500 674 7.9 5.0 4.5 7.4 6.1
9000 685 7.6 5.0 4.5 7.3 6.0
9500 697 7.3 5.0 4.4 7.2 5.9
10000 711 7.1 4.9 4.4 7.1 5.9

Figure 2: The Report Produced when the GPSS/H Model of Figure 1 is Executed

5. Results Produced by an Extended Experimental Study of Sequencing
Flexibility

Figure 2 above is limited to sample results produced by the GPSS/H model documented in

this paper for the case of perfect sequencing flexibility (SFM = 1.0) and the use of fewest

remaining steps as the dispatching rule (with a flow allowance factor of 7.5). Results for full

factorial designs covering a range of six SFM values (ranging from 0.0 to 1.0 in steps of (.2) and

eleven scheduling rules (with five alternative flow allowance factors) are reported in

Rachamadugu, Nandkeolyar and Schriber (1993).

19

6. Summary

The concept of sequencing flexibility in a scheduling environment has been described
briefly and the advantages potentially provided by sequencing flexibility have been commented
upon. The need to use simulation modeling to quantify the potential advantages of sequencing
flexibility has been indicated. The logical réquirements involved in modeling perfect sequencing
flexibility have been outlined, and the implementation of these requirements in the GPSS/H
modeling language has been shown. Others using GPSS/H to investigate the characteristics of
perfect sequencing flexibility can use as a starting point the model presented here, or can apply
techniques illustrated in this model to construct similar models for situations of interest to them.
And those using other modeling languages to investigate perfect sequencing flexibility can take as
guidelines for their work the logical considerations identified and outlined here.

REFERENCES

Henriksen, J.O. and R.C. Crain. 1989. GPSS/H Reference Manual, Third Edition. Wolverine
Software Corporation, Annandale, VA.

Rachamadugu, R. and T.J. Schriber. 1990a. “Performance of Dispatching Rules Under Perfect
Sequencing Flexibility." Proceedings of the 1990 Winter Simulation Conference. Society for
Computer Simulation, San Diego, CA.

Rachamadugu, R. and T. J. Schriber. 1990b. "Performance of Nondelay Schedules: Generalized
Open Shops." Working Paper No. 651, Division of Research, University of Michigan, Ann
Arbor, ML

Rachamadugu, R., U. Nandkeolyar and T. J. Schriber. 1993. "Scheduling with Sequencing
Flexibility." Decision Sciences, Vol. 24, No. 2, pp. 315-341.

Schriber, T.J. 1991. An Introduction to Simulation Using GPSS/H, John Wiley & Sons, Inc.,
New York, NY.

r

