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Abstract

The design of detection equipment that can 'learn for itself' the
values of necessary constants (parameters) unknown to the designer or
user has been the recent goal of theoretical research.

The theory developed to date required the designer to specify
the a priori distribution of the uncertain parameters. This paper points
out a physically important property: the likelihood ratio of observation
may be obtained in a two-step process. The observed input is first
processed through a receiver section designed on the basis of a simple
mathematically tractable a priori distribution. This is the major bulk
of the processing. The output of this first section is a small handful of
numbers (sufficient statistics) which are then used in calculation of the
likelihood ratio for the user’'s chosen a priori function. The output of
this second computation section is then compared to a threshold to obtain
a terminal yes-no decision. Thus the major design work can proceed

without knowledge of the actual statistical distribution to be used.
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1. Introduction

This paper deals with the theory of optimum forced choice detectors.
This means that the situation is the two-by-two situation with two possible
causes, and two possible alternative decisions. The goal of the equipment
is to deliver the best possible decision quality. The observations shall
be of the open-ended type; that is, the initial time of observation is spec-
ified (denoted by time equals zero), but the terminal time is not specified
until its moment of occurrence. Lastly we shall restrict ourselves to
situations for which only finite computation and memory capacity is required
of the optimum receiver. No restriction is placed on either the size or
cost of the receiving equipment except that they be finite.

The paper briefly reviews some of the salient points of classical
forced choice detection theory in Sec. 2. The basis for sequential receiver
design as obtained from likelihood ratio is the subject of Sec. 3. The
relationship of finite capacity requirements and reproducing density func-
tions is considered in Sec. 4. This latter subject is viewed in extended
generality by the new work presented in Sec. 5. Section 6 is a very brief
summary of the consequences of the theoretical work developed in Sec. 3.

Likelihood ratio is a demanding taskmaster. It demands that the
receiver designer and operator fully specify the situation that governs the
observation. It demands that they fully specify all distributions of random
variables to be included and with respect to which they wish to maxi-
mize performance. It demands that they fully specify the goal of the

decision device with respect to the balance of errors that is to be achieved.



The purposes of this paper are to identify the knowledge demands
placed on the equipment designer (who may be ignorant of the exact
goals and exact situations in which the receiver might be used) and to
outline the design principles that the designer may use to forestall
specifying those quantities that he is not likely to know during the design
and construction of the equipment. This must be realistic so that those
specifications which are initially postponed may be taken up at a more
appropriate time and incorporated in the use of the receiver without
detrimental effects on performance, and without placing undue require-
ments on the operator of the equipment.

All quantities are either considered as known or as random
variables with specified distributions. Although some quantities
considered as random variables may themselves be parameters in
distribution of other random variables, the total problem description
consists of the complete specifications of all distributions and all known
values. '"Unknown constants' do not appear in any of this work although
parameters usually considered as "unknowns'' are treated extensively.
The work as reported is still in the research stage, and at this time
all adaptation or learning occurs with respect to quantities that are
constant throughout the entire observation. This is a reflection of
the present state of development of the theory and is not viewed as
essential.

This paper's principal item of interest is to point out that most of

the equipment may be designed based on knowledge which is not as



stringent as that of the complete distribution of uncertainty. Indeed,
the equipment may be designed in part on mathematical tractability,
and if sufficient flexibility is put into some minor computational parts
of the hardware, the same equipment may function for a whole family
of a priori distributions of uncertain parameters. The primary
description that the receiver designer needs to know is the objective

conditional probability density functions of the observation.



2. Review of Classical Forced Choice Detection Theory

2.1. Goal Separation

One of the very first contributions of detection theory was the
separation of the processing objective from the overall objective of the
equipment. Specifically, detection theory indicates that the total obser-
vation should be processed to develop one real number at the time of
decision and that this real number should be compared with a threshold.
In order to be optimum, the threshold value w should be appropriately
determined from the goal of the user of the decision. The observation
'should be processed to yield either the likelihood ratio or any monotone
function of the likelihood ratio of the observation. The advantage of this
separation is that it allows the equipment designer to concentrate on
designing hardware which processes the total observation into one real
number; he may ignore the description of the problem in terms of values,
costs, risk functions, and a priori probabilities of hypothesis occurrence.

A second separation occurs because the detection theory result is
basically a forced-choice decision result. This means that the command
to terminate the observations and to respond with the optimum decision is
an external command. For example, Wald's sequential analysis [ Ref. 1]
and studies of deferred decision theory [ Ref. 2] concentrate on obtaining
this terminate-and-decide command from other values and costs along with

the observation. Such theories preserve the basic likelihood ratio nature



of the processing between the observation and the comparator. The
separation of the roles of processing, termination, and threshold

level are summarized in Fig. 1.

Observable | Likelihood
x(t) > Ratio —1 Gate Comparator [ Decision
Processor ;
) !

"Terminate and Decide' command

Fig. 1. Separation of roles of processing,
termination, and threshold level.

2. 2. Knowledge and Uncertainty

One of the primary concerns of the classical theory of signal
detectability [ Refs. 3, 4, 5] is the effect of uncertainty as to the
signal parameters, interacting with the interfering noise, to limit
the performance of the optimum receiver. Uncertainty and the noise
dictate the design of the optimum receiver.

The "'first case' considered in detection theory is that of the sure
signal in a known-noise process. For exposition purposes this paper
will assume that all probabilities are described by probability density
functions. The overall receiver design is, of course, based on the
likelihood ratio. The likelihood ratio for the observation x (where x

is an element in an appropriately described space) is



L(x) = £(xISN)/ f(x IN) (1)

The likelihood ratio formula for the sure signal constitutes the
basis for a number of more complicated situations usually described
as the composite signal hypothesis situation (with a known-noise process).
In each situation a number of parameters used in describing the signal
are considered imprecisely known, although they are constant throughout
the observation period if the signal is present. They are therefore
treated as random variables with known distributions. These parameters
are considered the elements of a parameter vector ¢ and their distrib-
ution as u.l(l[/). Therefore the probability density of the observation
under the condition SN is determined from the conditional statistics of
observation, conditional to fixed values of the parameters y, and then

appropriately averaged.

txISN) = [t Iy, SN) du, @) (2)

In this detection problem where the noise process is known, the
denominator of the likelihood ratio is independent of the parameters of
the signal and both sides of Eq. 2 may be divided by the noise density

function to yield

1) = [ x1y) duy W) ®)

This is the well-known result for a known-noise process that the likelihood
ratio is the average of the sure-signal likelihood ratios.
More recently, detection theory work [Ref. 6] has considered the

"doubly comiposite hypotheses' case where, in addition to unknown
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parameters ¢ in the signal process, there are unknown parameters 7 in
the noise process. This means that the noise density function must be

similarly developed. In general form

f(xIN) = [t@xln, N) dpg(n) (4)

If Eq. 2 is divided by Eq. 4, the resulting likelihood ratio is the ratio of
integrals. It is the ratio of averages, and not the average of ratios.
Development of doubly composite hypothesis detection theory proceeds
with a "two-branch' type of receiver with averaging in each branch, and
the ratio taken after the averages.

It is apparent that in classical detection theory the distributions of the
parameters of the signal and of the noise must be specified before the
likelihood ratio of the observation may be determined. Therefore, it
looks as if the designer of the hardware, which is to absorb the input obser-
vation and produce the value of the likelihood ratio, must have complete
knowledge of these distributions before he can begin. It is also apparent
that at the present level of abstraction the likelihood ratio design principle
does not suggest to the designer any specific way of proceeding. In fact, it
appears that the most obvious design is to take the complete observation X,
store it, and then compute the relevant statistics. This is not the way that
most equipment works, and hence a large part of the designer's work is to

make theory and practice come together.



3. Sequential Receiver Design and Open-Ended Observation

In an attempt to manipulate the theory of signal detectability to yield
more obvious results in terms of sequential-in-time operation, and in an
attempt to understand adaptive receiver processing, a development such
as the following has been used [Refs 7 and 8].

First, the notation for the observation is changed to indicate its

development in time. One possible notation is

X(Tl’ Tz) means x(t) on T, < t < T2

1
X(0, 0) denotes the a priori state att =0

(5)

Next, an incremental likelihood ratio (the liklihood ratio of an
observation increment conditioned by the a priori conditions and all of
the observation which has occurred up to the particular increment in

question) is developed so that
2[ X(Tl’ Tz) 1X(0, T)] = 'Q[X(O, Tz)] / 'Q[X(O; Tl)] (6)

Obviously such a development is used so that the likelihood ratio can

be written in the form
L[X(0, Ty)] = L[X(0, T,)] £[X(T;, Ty) IX(O, Ty)] 0

The logarithm of the likelihood ratio is the logarithm of the likelihood
ratio developed up to the beginning of the increment of interest, plus the

conditional log likelihood ratio for that particular increment. This is a



useful form if the random processes are such that they have statistically

independent increments when all the uncertain parameters are specified,

because then the incremental conditional likelihood ratios are determined
from incremental conditional probability density functions with respect to
each of the hypotheses. When such is the case, the theory proceeds to

use equations of the type

£|X(Ty, To) IX(0, T,), H] = / £[X(Ty, Ty)16, H] du [61X(0, T,), H](S)

The distribution of the uncertain parameters conditioned on past
observation can be determined from the conditional "objective' obser-

vation statistics and the a priori distributions. This is sketched as

f[X(0, T )16, H], w[0I1X(0,0), H] > p[61X(0, T,), H]
(9)

meaning that knowledge of the probabilities indicated on the left is
sufficient to yield the 'updated' distribution of the parameters.

The development sketched above indicates the method by which one of
the objections mentioned in Sec. 2 can be eliminated; that is, the theory
can be developed to indicate how equipment should operate 'in real time, "
The objection that has not been eliminated is that specification of the
a priori distribution of uncertain parameters must be known at the time

of the design of the equipment.



4. Reproducing Densities and Finite Capacity Requirements

In this section we shall consider that under each hypothesis the a
priori density function and the conditional observations statistics
combine to yield what are called reproducing density functions. Each
hypothesis is first considered separately, and then the effect on like-
lihood ratio for the two hypothesis situation is treated, together with

receiver models and adaptive receiver design.

4.1. Single Hypothesis Situation

One possible definition for a reproducing density is given, and
the relationship between reproducibility and finite memory require-
ments is shown. The finite set of numbers which may change as
observation progresses, that is, the quantities which must be retained
in "soft memory, " are denoted by a vector y. The receiving equip-
ment, the hardware or a computer-program software, which is
influenced by the specific mode of observation (observation statistics
and the a priori densities) will be thought of as "hard memory, " i.e.,
fixed throughbut the observation. We will concentrate on those parts
of the receiver (in other words, those parameters of the equations)
that change under the influence of the observation.

We shall assume that there are some constants 6 relating to the
probability density of observation which are "unknown.' If the specific
value of these parameters 6 were known, the random process being

observed would have statistically independent increments (at least
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independent for those increments bounded by possible observation

termination times T It is assumed that the a priori distribution

k)'
of this "uncertain' parameter 6 is known, that is, 6 is a random
variable. The receiver may wish to know the a posteriori distribution
of 6 at the possible termination times of the observation.

The concept of reproducing usually relates to some ''fixed func-
tional form" q(6{¥), which has all of the properties of a probability
density function. (It is a nonnegative function of 6 and its integral
over 6 for each value of y is unity.) We shall interpret the function
q as a real single-valued function of 6 and suppress its probability
density function character. The parameter of this function y is going

to play a central role in the design of the receiving equipment. In

order to keep these quantities before us they are summarized in Table I.

Ho: f[X(T, T,)10)] the conditional objective
density of the observation
f[61X(0,0)] the a priori density of 8
f[61X(0, T)] the a posteriori density of 6
q (6 ly) a nonnegative function of 4,
with parameter y, such that
fa(6ly)de =1
- Table L

A Definition of Reproducing

If £ 6 1X(0, le) Faql6 Iy(Tl)]”"‘, then there exists a value ¥(T,) which is

dependent on y(Tl), X(Tl’ Tz) and H0 such that

11



t[61X(0, T,)] =aq[6ly(Ty)]

This means that when we know what the parameter value y is at
 time T1 , and know the definition of the problem as given in Table I,
then, if q is reproducing, we can determine from the prior conditions
and from observation a new value y(Tz) from which we can read off
the a posteriori density function of 6. Furthermore, it will be shown
following that we can determine the unconditional density function of
the observation by knowing the prior and post values of the parameter vy.
Let us assume a situation such that the a priori density function and
the conditional observation statistics match up to make a repfoducing
situation. We then wish to develop the technique for determining the
updating of the parameter y and for determining the unconditional obser-

vation statistics. The joint probability density of the observation and

the parameter 6 can be written in two forms.

f[X(Ty, Ty), 01 X(0, T,)] = £[61X(0, T)] {[X(T;, T)l0]  (10)
f[X(T, T,)0 1X(0, T,)] = f[X(T}, Ty 1X(©, T))] 161X, T)] (11

The unconditional probability of the observation can be determined by
integrating over the entire 6 region, thatis, by equating the right-hand

side of Egs. 10 and 11 and integrating over the entire 6 region.
Jl8'1X(0, T))] £[X(Ty, Ty)16']d6" = {[X(Ty, T,) X(O, T)]  (12)
Now assume that the situation yields a reproducing density function for

12



some particular form q. Substitute q for the 6 probability density functions

and equate the right-hand sides of Eqs. 11 and 12.

q[@ly(Tl)] f[X(Tl, Tz)lel = f[X(Tl, T,)1X(0, Tl)] q[@ly(Tz)] (13)

Divide by the unconditional probability density of the observation, making
use of Eq. 12 to obtain

a[ 61 A(T,)] = (14)
? Jalo" AT )] [ X(T;, Ty)l 6] db"

This is half of the answer sought, and this equation will be used to
determine the equations for updating the y parameter.

Divide both sides of Eq. 13 by the q function evaluated at time

T2 to obtain
al6 I¥(T] |
f[X(Tl, T,) 1X(0, Tl)] =37 T,)] f[X(Tl, Ty)16] (15)

The value of the y parameter at the beginning of the observation T1

and at the end of the observation T2 determines the unconditional probabil~
ity density of the observation on the interval T1 to T2 . Equation 15

has hidden in it some implicit cancellation. The left-hand side is not

a function of the uncertain parameter §. Thus the right-hand side cannot
truly be a function of § since the left-hand side is not. In actual prac-
tice one finds that indeed the cancellation always occurs and that know-
ledge of the Yy parameter at time T1 and time T2 is all that is necessary,
and one need not estimate or assume any specific value of 6 in order to
utilize Eq. 15.

13



A specific situation is given in Appendix A and the reader may refer
to this example to obtain a more concrete idea for how reproducing may
come about, how the y parameter may be updated, and finally how the
updating may be utilized to determine the probability density function

for the observation.

4. 2. Two Hypotheses and Their Likelihood Ratio

The manipulation in this section is basically formal and follows
directly from that of the previous section; however, to proceed
additional notation must be introduced. One of the two hypotheses,
conventionally labelled SN and N in detection theory, will condition
all probabilities. Two conditional objective density functions for the
observation are used. Under the noise alone condition N, the 'uncer-
tain' parameter is called 7; under the SN condition, the "uncertain"

parameter is denoted by y.

f{X(Ty, Ty)In, N £[X(Ty, T,y)ly, SN] (16)
It will be assumed that the observation statistics and the a priori
distribution of the uncertain parameters are matched so as to produce
reproducing density functions. The functional form of these reproducing
density functions are labelled g(n) for the N condition and h(y) for the
SN condition.

£[n1X(0, T), N] = g[nla(T)] (17)
f[w1X(0, T), SN] = h[y 8 (T)] (18)

We shall omit the equations similar to Eq. 14 which are used to obtain

parameter updating equations and shall pass on to the expressions

derived from Eq. 15 for the unconditional probability density functions for the
14



observation. These are Eq. 19 for the N condition

glnle(T,)]

f{X(Ty, T,)1X(0, T), N] = [T T, f[X(Ty, T,)In, N] (19)

and Eq. 20 for the signal and noise condition

hly 15 (T,)]
f[X(Tl, T,) 1X(0, T,), SN] = m} f[X(Tl, Ty) 1y, SN] (20)

The likelihood ratio for the observation is the ratio of Eq. 20 to Eq. 19

and is

h[y 18Ty)) slnlacry] |
" B[YTBT,)] elnla(Ty)] KTy, Ty ly,al - (@21)

1[X(Ty, Ty) IX(0, T,)]

Once the initial values for the a priori distribution of the "uncertain"
parameters are specified [a(0), B3(0)] , the observation is then processed
to obtain the terminal value a(T) and B(T). The total observation must
also be processed to determine the likelihood ratio of this observation for
any specific choice of the uncertain parameters n and y. The formal
expressions for the ratios of the reproducing density functions at these
chosen values of n and iy are then evaluated, and the product as indi-
cated in Eq. 21 iAs the likelihood ratio of the observation. It should be
emphasized that the choice of the values n and ¢ used to evaluate

Eq. 21 does not affect the value obtained from the right-hand side.

In Appendix B a specific case of doubly composite likelihood ratio
test is developed based upon these equations. The reader may use Appen-
dix B to follow in more detail what is happening in this type of development.
The specific cases in both appendixes are of no particular interest by them-
selves, but are used merely as examples of the type of development we are

considering.
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4, 3. Receiver Models and Adaptation

In Sec. 3 it was pointed out that the likelihood ratio for a complete
observation can be broken into the product of the individual conditional
likelihood ratios such as those developed in Eq. 21. The use of such
expressions for sequentially conditional likelihood ratios may be used to
develop both adaptive and nonadaptive receiver designs. Receiver design
and realization are part of the art and not of the formal mathematical
development of decision theory. In this section the author would like
to sketch how such an equation might be used in receiver design. If
the total likelihood ratio for an observation is to be realized by a non-
adaptive form of receiver, we can base the design on Eq. 21 by letting

the time T1 equal 0. A resulting form of Eq. 21 is then shown below

me[X(0, T)1X(0, 0)] = ma[X(0, T) 1y, n] - {¢nh[y IB(T)] - 2nh[w18(0)] }

+ {eng[n 1(T)] - tng[nla(0)]} | (22)

Using this type of equation the receiver designer may choose (without loss)
any two particular values ¥ and . For example, these may be chosen so
that the first term in the expression is particularly simple, Figure 1

shows one block diagram based on Eq. 22. Box 1 in the diagram represents
the hardware or computation necessary to evaluate the logarithm of the
likelihood ratio of the total observation based on some preselected values
for Yy and 1. Boxes 2 and 3 develop the sufficient statistics necessary for
the probability updating, the vector value parametersa(T) and B(T). As

indicated in Eq. 22 these parameter values need not be used to evaluate

16



probability density functions directly but may be used to evaluate the

difference in the logarithm of these density functions at the specific

# fnf (X0, T) ¢, n)
x(t) —9—] #2 B {4y | Loh@) ] .0 204 (X(0, T))
#3 a(T) #5 £ ng(n)

Fig. 2. Block diagram based on Eq. 22.

preselected values y and . The three outputs from boxes 1, 4, and 5 are
then combined to yield the logarithm of the likelihood ratio of the total
observation based on the a priori state. Such a receiver design does not
yield estimates or probability distributions of the "uncertain'' parameters,
nor does it appear to be particularly adaptive. It does perform an
optimum job of detecting the presence or absence of the signal, optimum
with respect to the designated a priori distributions of the uncertain
parameters.

The sequentially developed likelihood ratio formula of Eq. 21 can be
utilized in a more adaptive appearing form. To emphasize the sequential

development let us rewrite the total likelihood ratio as shown below.
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n

me[X(©O, T )IX(, 0)] =k21 mA[X(T, 4, T)IXO, T, )] (23)

T8 -

#2 #7 ": Y*(t)
i nf(X(T;, T,)l YX(T,) , 1X(T,))

X(t)+—- Delay #9 #10

f
Lypx(t)

43 a(t) a5 f--

Fig. 3. Block diagram based on Eq. 23.

The design here (Fig. 3) is as follows: the observation is absorbed in
increments and temporarily stored in a delay circuit. Boxes 2 and 3

are the same as in Fig. 2 and calculate the sufficient statistics o and S.
These statistics are then utilized in box 7 to determine a value y* such
that the two h(y) functions evaluated at B(Tl) and B(Tz) are identical.
Similarly box 8 is uéed to determine a value of 1 so that the two g(n)
functions of Eq. 21 are equal. If the incremental likelihood ratio is
evaluated in box 9 for the now-incoming delayed signal for these particular
values of Y* and n*, it will be equal to the desired incremental likelihood
ratio. Box 10 is simply an adder which adds up the incremental log-likeli-

hood ratio values.

18



The particular values y* and n* chosen on each interval may
be viewed as some sort of estimator since they are used in much the
~same way as the estimators might be used in a matched-filter type of
receiver. However, the memory built into the receiver for all past
observation exists in boxes 2 and 3 which calculate the sufficient statis-
tics a(T) and B(T) and the rationale for the ""estimates'' is based
upon an evaluation of Eq. 21. This means that one cannot replace these
estimators by estimators based on another statistical principle and
expect improvement; indeed, one cannot improve upon performance of
a likelihood-ratio receiver when one wishes to maximize performance
under conditions of the given a priori statistics.

Many other forms of sequential, adaptive receivers can be deter-
mined by manipulating Eqs. 23 and 21. Specific detection cases may
suggest very apt forms for such receivers. However, we shall leave
this and turn to some criticisms which might be made about this type
of development.

One of the major criticisms is that the development demands that
the a priori distribution of the uncertain parameters be known before the
designer can begin work. Some workers take the viewpoint that a priori
distributions do not even exist, others, that the a priori distributions
are not known. This author takes the viewpoint that the a priori distri-
butions are a personal description of the variation of the uncertain
parameters with which one wishes to maximize performance. However,

the distributions may very well be completely unspecified to the designer

19



of the hardware which is designed a long time prior to the actual use of the
equipment. Thus it appears while in theory we can design optimum
receivers, we must do so with lightning speed in order to have them.
available and correctly parameterized for use in the field.

It will be the purpose of the next section on families of reproducing
densities to establish that this demand for knowledge of the actual distrib-
~ution of the uncertain parameters is in part an unnecessary requirement.
The principal item of interest in this present paper is to point out that the
major part of the equipment may be designed based on knowledge which is
not as stringeﬁt as that of the complete distribution of uncertainty; indeed,
the equipment may be designed in part on mathematical tractability, and
with some flexibility in minor computational parts of the hardware the same
equipment may function for a whole family of a priori distributions of
uncertain parameters. The primary description that the receiver designer
needs to know is the objective conditional probability density functions of

the observation.
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9. Families of Reproducing Density Functions

The purpose of the work in this section is to show that the major
receiver design may be based on knowledge of the conditional objective
observation statistics and mathematical tractability, when the uncertain
variable and the conditional observation statistics match sufficiently

well to yield a reproducing density function.

5.1. Single Hypothesis Situation.

We shall assume that the conditional observation statistics do match
with the "uncertain' parameter 6 to yield one form of reproducing density.

Let us use the subscript 1 to denote this particular density function.
t,[61X(0, T)] =q[6 Iy(T)] (24)

However, we shall consider that this description of the distribution of
uncertain parameter may not be the description that the user will wish

to employ. We shall denote the user's description with a subscript 2.

If the desired density f 2(9) is absolutely continuous with respect to q(9)
(i.e., does not give positive probability to some set that the q(9) measure

gives zero probability), then f. (9) is related to f1(9) by a Radon-Nikodym

2
derivative (a likelihood ratio, a real function modifier).

£,[ 01X(0, 0)] =r(6)a[81y(0)] (25)

The following shows that the distribution of 6 after observation, and
based upon the f2(9) prior distribution, can be obtained from the
updated version of the f1(9~) probability, and memory of this Radon-
Nikodym derivative r(9). The result will be

21



£ [0 |X(0, T) - r(e) Q[ 6 'V(T)] (26)
2l : [r(6"af 6'1¥(T)]de6"

The probabilities and likelihood ratio will be developed for the
total observation from zero to T, and not for the incremental observa-
tions as was done in Sec. 4. The work in Sec. 4 was developed in the
incremental form to emphasize the possibility of the adaptive receiver
design. Although the same could be done here, our objective is to show
the universality of design of the receiver, more or less independent of the
a priori distribution. For this reason we shall use equations derived in
‘Sec. 4 with the initial time of the observation T1 set to zero and with the
terminal time of the observation T2 written as T. The only additional
change is that we must denote in each density function whether we are

assuming the f1(9) or the f2(9) a priori density function for the uncer-

tain parameter 6. Equations 10 - 12 with these changes are

£, [X(0, T), 91X(0, 0)] = [ 01X(©, 0] £[X(0, T)16] (27)
£, [X(0, T), 61X(0, 0)] =1£,[X(0, T)IX(0, 0)] £, [91X(0, T)] (28)

£, [X(0, T)1X(0, 0)] f [6'1X(0,0)] £[X(0, T)16']d6" (29)

The f1(9) density is reproducing and has the form q(4). The

derivation of Sec. 4 yielded Eq. 14, which after modification, appears as

Eq. 30 below.

a[617(0)] £[X(0, T)16]

q[ 61y (T)] =
[a[6'17(0)] £[X(0, T)I6']d6"

(30)
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With the same reasoning one could derive a similar equation for the f2(9)
a priori density function.
f2[0 IX(0, 0)] £[X(0, T) l6]

t,[81X(0, T)] = - (1)
ffz[ 9'I1X(0, 0)] £f[X(0,T)6']do"

Substituting the r q product for f2 in the right-hand side of Eq. 31; that is,

using Eq. 25 in Eq. 31 yields

£,[81X(0, T)] = r(6) a[ 6 1v(0)] £[X(0, T)16] 32)
fr@8")a[0'ly(0)] £f[X(, T)I6']de"

Equation 30 is used to change the q f product in the numerator yielding

[a[6'1y(0)] £[X(0, T)I6'] do"

)] — (33)
[r(6" a[6'ly(0)] £[X(0, T)I6'] do’

f,L 01X(0, T)] = r(6) q[617(T

Since the ratio of the two integrals in Eq. 33 is not a function of 6, and
because the left-hand side is a true density function, the ratio of integrals
must constitute the normalizing constant for the density function, It may

therefore be replaced by the reciprocal of the integral of the rq product.

S q[o'1¥(D)]do"

The above constitutes the derivation of the important fact that any
probability density function for the uncertain variable which is absolutely
continuous with respect to a known reproducing density function is similarly
reproducing. That is, the sufficient statistics y are sufficient for both
probability density functions. The only additional item that need be retained

in the memory of the receiver is the Radon-Nikodym derivative r(9) which
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relates the densities; the only additional computation that is necessary is
the integration providing the normalizing constant of Eq. 26.

The remaining step is to determine the unconditional probability
density of the total observation using f2 a priori density for 6. This is
obtained as follows: Equate the right-hand sides of Eqs. 27 and 28.

The equation resulting from the f2 density is divided by the equation
resulting from using the fl density yielding Eq. 34 below

£,[X(0, T)IX(0, 0)] £,[61X(0, )]  1,[01X(0,0)] £[X(0, T)I6]
£, [X(0, T)IX(, 0] 1;[0TX©, T)] ~ £, [6TX(0, 0)] f[X(0, T)T7]

(34)

Then Eqs. 25 and 26 are used to simplify some of the ratios yielding
£,[X(0, T)IX(0, 0)] = £,[X(0, T)IX(0,0)] [ r(6')q[6'l¥(T)] dg" (35)

This is the desired result, showing that the unconditional probability of
observation based on the f2 a priori density can be found from the uncon-
ditional probability density of the observation based on the f1 density, the
stored Radon-Nikodym derivative, and the updated value of the y
parameter [y(T)]. If one desires to go one step further and follow the
derivation of Sec. 4, Eq. 15 may be used to develop a similar equation

for the f, density.

2

1,[X(0, DI X0, 0] = 3O [ x(6) a[6"1y(m)] a0 1[X(0, T)10]

(36)

5. 2. Two Hypothesis Situations and Likelihood Ratio

Similar to the previous development, for the hypothesis noise alone

there is an uncertain parameter n and for the signal and noise hypothesis
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there is an uncertain parameter y. It is further assumed that there are

natural reproducing density functions (not necessarily those the operator

will wish to use) which have reproducing densities when used with the

given objective conditional observation statistics. As before, these are

f[X(Tl, Tzln, N] 1 X(Tl,, T2) |y, SN] (16)
fl[nl X(0, T), N] = g[nla(T)] (17
fz[le(O,T),SN] = h[ Y 1B(T)] (18)

The situation to be solved is one in which the a priori densities of the
uncertain parameters are not those given by Eqs. 17 and 18 but can be

expressed in terms of these by use of the Radon-Nikodym derivatives.

t5[11X(0, 0)] = ry(n) g[n12(0)] (37)

£,[¥1X(0, 0] =r,) h[y1B(0)] (38)

It follows directly from Eq. 35 that the likelihood ratio for the total
observation based on the a priori state and the desired descriptions of
the uncertainties fé and f 4 can be written as the product of the likelihood
ratio of the total observation based on the ""natural" a priori density
functions g and h and the modifier, which requires the memory of the
Radon-Nikodym derivatives and the updated parameter values oT) and
B(T) at the end of the observation.

Jr, ") B[y 1B(T)]dy

Jro@" g[n' la(T)]dn’
(39)

2[X(0, T)IX(0, 0), f5, £, ] = £[X(0, T)IX(0, 0), g, h]
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5.3. Receiver Model.

The receiver suggested by Eq. 39, a three-part processor, is

sketched in Fig. 4.

Lxly,n)
Primary a(t) Secondary Lnt Gated Decision
Processor B(t) Processor Comparator
ra(¥) r,y(n) ™ w

Fig. 4. Three-part processor.

The primary processor is basically the receiver discussed in Sec. 4.
It computes the likelihood ratio of the total observation dependent on the
a priori state, and utilizes natural reproducing density functions for con-
venience. Its design principles may be specified completely by knowing
the conditional objective statistics of the observation. The output of the
primary processor consists of the finite fixed number of lines carrying
the information contained in the continually updated parameters a and 3
and of one quantity Whiéh is either equal to or sufficient for the calcul-
ation of the likelihood ratio of the obser&ation conditional to a specific
choice of the uncertain parameters.

The secondary processor has two types of input. The first type
is that due to the observatibn, the output of the primary processor.

The second type is the a priori distribution of the uncertain parameters,
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with respect to which the operator wishes to maximize performance.
The design of the secondary processor can be completed without knowl-
edge of what these are, so long as provision can be made for sufficiently
accurate descriptions. The exact form of entry of this knowledge of
the distributions desired is necessarily a matter to be considered in
each specific application. The important feature is that both the
primary processor and the secondary processor can be designed with-
out knowledge of the exact distributions for the uncertain parameters.
The output of the secondary processor (the logarithm of the likelihood
ratio, or any sufficient statistic monotone with the likelihood ratio) is
fed into the comparator. In the comparator the threshold level is
determined with respect to the user's objectives based on his values
and costs, his desired constant false-alarm rate, or any of his other
specific objectives. The ultimate output is the ""present' or "absent"

decision.
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6. Summary Discussion

This paper has considered the problem of forced choice optimum
detection receiver designs. The receiver design principle is the likeli-
hood ratio computation for the observation. Such a principle demands
that the operator or designer specify the best possible description of the
objective observation statistics, that the a priori distribution of all
random variables or uncertain parameters be specified, and that suffi-
cient information be available to compute the correct threshold to yield
the desired operating point of the receiver. Likelihood ratio design
requires a complete specification of the decision problem. This means
that the analyst seriously contemplating the actual construction of
equipment must separate those quantities which have to be specified in
advance before the hardware can be designed, and those quantities for
which provision need be made but which need not be specified until the
moment of operation of the equipment. In classical detection theory a
keypoint is that the quantities necessary to compute the threshold level
(the values, the costs, the a priori probabilities of the hypotheses to
be tested) need not be specified until the moment of operation. These
quantities are taken care of by providing a variable threshold which
need not be set until the moment of decision. The result of this present
work is that the a priori distribution of uncertain constant parameters
need not be specified until the moment of operation of the receiver. The

primary processor may be designed on the basis of the conditional
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objective statistics of observation for those situations in which a
reproducing density can be found (a natural conjugate a priori density)
and the primary processor is designed as if these natural a priori
densities are the true densities. This partitioning of information is
necessary for the further development and application of the theory

of signal detectability.
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Appendix A

An Example of a Reproducing Density Considering One Hypothesis Only

The purpose of this appendix is to display one example of the
general treatment of Sec. 4.1. The method exemplified demonstrates
that retention of the sufficient statistics for updating the uncertain
parameter is also sufficient for calculation of the probability density of
the total observation. The example chosen is a point process of positive

real numbers.
X(0,T) = {xl,xz,...,xT L x; > 0, integer T (A.1)

The objective statistics of observation which have been chosen are simple
exponentials with the individual observables statistically independent. The
uncertain parameter of observation is the reciprocal of the mean value of

the observation.

T -0%;
f(X((0,T)I6] = 11  be 6>0 (A. 2)

i=1
We digress momentarily to consider a specific function with three

parameters. This set of three parameters is denoted as simply vy.

Y
2
Y = (7’1, 72: ')’3): 71> 0, 7’2> 0, 73=')’1 / F(’)’z) (A. 3)

This parameter is used in a function of § which is defined for all positive

6 and whose integral over 6 is unity. Let

) ve-1  -v40
q(0 ly) = y39 e >0 (A. 4)

30



If the prior density function for the parameter 6 in Eq. A.2 is of the
form of Eq. A.4, we have a situation which will yield a reproducing
density function. We will now proceed to verify this.

Let the prior density function for the parameter § be given by
f[61X(0, 0)] =q(61v(0)) (A. 5)

where the condition X(0, 0) indicates the a priori or initial state. The
joint probability density function for the observation and the parameter

6 based on this initial state of knowledge can be developed by taking

the product of the a priori density on 6 times the objective probability
density of observation conditional to 6. When this is done and manipulated

slightly, we have

b

£[X(0, T), 61X(0,0)] f[91X(0, 0)] £[X(0, T)l 0]

Yo(0)-1 -y.(0)§ .. -0Zx.
y2(0)92 e 1 gTg T

[v50+T]-1 -8[7,(0)+=x,]
e

1l

v3(0)

(A.6)

It is obviously convenient to single out the last two bracketed terms and
denote them by symbols which we will temporarily call yl(T) and y 2(T).

Specifically, let

T ¥ o(T)
v¢(T) =74(0) + zltxi; vo(T) =750 + T; vg(T) © /T [yy(T)]
(A.7)
Equation A.6 may thus be more compactly written as
Y o(T)-1 -6y,(T)
f[X(0, T), 61X(0,0)] =74(0)6 e (A. 8)
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The probability density of the observation alone is obtained from
Eq. A. 8 by integrating over the entire range of the parameter §. When

this is done, we obtain
f[X(0, T)IX(0,0)] = ¥5(0)/v4(T) (4. 9)

because the parameter 73 is the '"'normalizer' of the q function.

We are now in the position to determine the a posteriori density
function for the parameter 6 based on the a priori information and the
observation X(0, T). This is the joint density divided by the probability

density of the condition and is

£[01X(0, T)] = £[X(0, T), 6 IX(0, 0)] / {[X(0, T) IX(0, 0)]
Yz(T)'l '973(T)
= 'y3(T)9 e (A.10)
We recognize immediately that this probability density function has the

form of the q function and therefore we may write

f{01X(0, T)] = q[617(T)] (A. 11)

Thus we have reached the conclusion that the form q yields a reproducing
density function with respect to the specific objective probability function
of observation.

Although we have already obtained an expression for the probability
density function of the observation in terms of the y parameter, we shall
proceed to show that Eq. 15 yields the same answer. That is, we wish to

evaluate the quantity



q[61r(0)]
m £[X(0, T) 16] (A.12)

We formally use the defintion of the q function, Eq. A.4, and the "updating"
expressions of Eq. A.7 and the given objective observation statistics,

Eq. A.2. Inserting these in the expression A. 12 we obtain

v3(0) 6 e T -0Zx; 740
9 = (A.13)
yo(T)-1 -6y (T) ) 73(T)
Y3(T) ]

Comparing this answer to Eq. A. 9 we conclude that indeed the specific
expression does yield the unconditional probability of a specific obser-

vation.
a[617(0)] -
W f[X(O, T) | 0] f[X(O, T) 1X(0, 0)] (A. 14)

We have thus verified that for a specific case, the detailed

manipulations correspond to the general results derived in Sec. 4. 1.
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Appendix B
An Example for Section 4. 2.

In this appendix we shall consider a specific case of reproducing
density functions under two hypotheses and the resultant likelihood ratio.
As in Appendix A it will be assumed that the observation is a point process

of nonnegative numbers indexed by integer time values.

X(0, T) = {xl, Xgp oo ,xT}, X; > 0, integer T (B.1)

The probability density function or the observations under noise alone,

if the noise parameter 77 were known, is the same as in Appendix A.

(X0, T 7N = § ne L >0 (B. 2)
i=1

where 7 is positive. Following directly from the work in Appendix A

we know that the density function of the form

az(O)'l -al(O)T’ Qz
t[n1X(0, 0)] = 5(0) 7 e ; 03 = a, “/T(ay)
(B. 3)
with the parameter updating
Olz(T)/
al(T) = al(o) + le’ az(T) = 01.2(0) + T; a3(T) = Oll(T) r pz(T)] (B. 4)

gives rise to a reproducing density function. The unconditional probability

density of the observation under noise alone is therefore
f[X(0, T) IN] = B4(0)/ B4(T) (B.5)
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For this example the objective observation statistics under the
conditional signal and noise with an uncertain parameter v is
T [2. ¥ er VEX[T ,
£[X(0, T) by, SN] = 'Hl [1P X, € 1] =y e 1 X, (B. 6)
1=
Let us see if the same general form of parameter uncertainty is repro-
ducing for this type of observation statistic. That is, let us try the

functional form

Pl B¥ &
h@lB) =B 2 e 18>0 8,50 8= T (8) (B

and assume that the prior density function of ¥ is from this class.

fly1X(0, 0)] = h[yI8(0)] (B.8)

Direct application of the basic equation, Eq. 14, yields

Jhuy'18(0)] £[X(0, T) '] dy’

(B.9)
B,(0)-1 -B (O)y
o 2T+B,(0)-1 -¢[B,(0)+Zx.]
85(0) [I1x, | [ v 2T T gy
from which it follows directly that
Bo(T)
By(T) = 1(0) + Zx; BZ(T) = 32(0) + 2T; B4(T) = £4(T) /T [BZ(T)]

(B. 10)

From Eq. 20 for this particular situation we have
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£[X(0, T) ISN] = —h[L‘ﬂﬁ%@y]J £[X(0, T)! v, SN]

hl ¢ [B(T
By0)-1 -B,O¥ o1 -YIx,
B0y 2 e Uy T k]
) Bg(D)-1 -3, (MY |
B4(T) ¥ e
Bs0 o |
= (B. 11)

Unlike the noise alone case considered, the sufficient statistics
for this distribution consist not only of the three parameters of the 3 vector,
but contain a fourth item, the product of the point observations taken up to
time T. Although this is implicit in Eq. 20 it was not explicit in the form
for the noise density function (Eq. B.5), and was brought out here for the
sake of contrast.

This completes the work on this example to show that the form
chosen for the prior density function in each case does indeed reproduce
and that the memory requirement is finite. Equations B. 11 and B. 5 can

now be used to determine the likelihood ratio of the observation.

a,(T)  B,L(0)
) 3 T x. (B.12)

L[X(0,T)]| =
(XOD] =5 ma 1%

This is indeed the form of Eq. 21; one notes that the product of the

individual observations is the likelihood ratio conditional to the value

=1 n=1.
v=1n1 oy VEX,
117 e Ix.

i
- (B.13)
-NZ X,
77T e i

L[X0, )y, n] =
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SO
L[X0, T)i1,1] = I'Ixi
Finally, we use the specific form of the updating of the a and 8

parameter vectors to write out the equation for the likelihood ratio in

terms of the initial constants and the actual observation

=

mf[X(0,T)] = = fnx,

—

+ [T+ az(O)]ﬁn[;al(O) + Exi] -[2T + 62(0)] ﬁn[Bl(O) + Exi]

r[2T + B,y(0)] rfe,(0)]
M ¥ § A (V) 1 A ()

+ By(0) £n B, (0) - a,(0) tn @ (0) (B.14)

Equation B. 14 has been written in four lines to emphasize four
different types of functions in the likelihood ratio equation. The first
term, the sum of the logarithms of the observations, comes directly from
the likelihood ratio conditional to ¢ =1, n =1. The second line is a type of
logarithm of the sﬁm (compared to the first line which is the sum of the
logarithms). The third line is deterministic, that is, a function of the
observation times T. The fourth line is a constant bias due to the initial
conditions.

Basically this problem is a test between two functional forms for
the observation statistics; the test of whether the observation has xz

with four degrees of freedom or x2 with two degrees of freedom statistics.
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