Division of Research March 1981
Graduate School of Business Administration
The University of Michigan

A PRACTITIONER'S GUIDE TO DATA COMPRESSION
Working Paper No. 255
Dennis G. Severance

The University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the express permission
of the Division of Research.

A Practitioner's Guide to Data Compression

Dennis G. Severance
The University of Michigan

Ann Arbor, Michigan 48109

ABSTRACT

Data compression techniques can substantially reduce
both secondary storage cost and data maintenance and
retrieval time by decreasing the physical size of a database
by as much as ninety ‘percent.' This paper is written to
provide assistance to practitioners considering the use of
data compression on commercial databases. It distills a
large collection of literature on data compression developed
over the past thirty years and extracts from it facts and
guidelines to assist system designers 1in evaluating the
costs and benefits of compression and in selecting

techniques appropriate for their needs.

Key Words and Phrases: data compaction, file compression,
data encoding, null suppression, differential
encoding, comparison of alternatives

CR Categories: 3.7, 3.73, 4.33, 4.4, 5.6

OUTLINE

l. INTRODUCTION'l.l.ttitibihllllllll.l.l.l...l....‘

2. COMMON FORMS OF REDUNDANCY AND BENEFITS OF
COMPRESSIONI.‘...Q...Qll...‘...l..'.'.....l..'.

3. FUNDAMENTAL CONCEPTS, TERMINOLOGY AND THEORY
OF COMPRESSION'..............lll.l.............

4, COMPARISON OF COMMON COMPRESSION METHODS......

4,1 Encoding Methods for Character
Stringsl.l.....l...l...........'lI..'....'

4.2 Null Suppression for Character
Stringsi.l‘......ll.....‘.....l..'..ll...‘

4.3 Differential Coding Applied to Character
Strings.'......l..Q...............l'..'...

4.4 Compression Enhancement with Formatted
Data Recordsl.OOOQQC.....O.l....l.l.ll....

5. SUMMARY.oa.cl.nun.lo.n..--.n'-o.olonoout.-otllo

REFERENCES.c..a-o.o-oo-oo.oaocco-.uooonoooon.a.ono-

12

12

25

30

31

35

38

1.0 INTRODUCTION

Compression techniques are consistently found to reduce
secondary storage requirements in commercial databases by 38
to 70 percent [INFO75]1. It is surprising, therefore, that
these techniques are not more widely used. Three facts help

to explain this phenomenon:

1) Data compression adds a layer of complexity to
the design, implementation, and operation of an
information system and designers are reluctant
to accept additional complexity without clear
and substantial benefits.

2) Designers typically underestimate the amount of
data compression which is possible for a given
database, and the implications of this
compression are not fully appreciated.

3) Much of the published 1literature narrowly
addresses 1individual compression techniques,
surrounding them in a mathematical mystique.
Designers understandably avoid areas 1in which
they feel uncomfortable.

This paper distills a rich collection of literature on
data compression [ARON77, DAVI76, VILL71] and extracts from
it facts which will assist system designers in evaluating
the costs and benefits of compression and in selecting a
technique appropriate for their needs. Specifically, it
defines the nature of data redundancy; explains the
compression techniques designed to reduce 1it; considers

advantages and disadvantages of each technique; and provides

an index into literature relevant to a practitioner.

2. COMMON FORMS OF REDUNDANCY AND BENEFITS OF COMPRESSION

Data is stored in computer memories as patterns of
binary digits. Redundancy and the associated opportunity for
compression arise when portions of the stored patterns carry
little or no "information" and are so predictable that they
can be deleted or replaced by significantly shorter
patterns. 1In general, redundancy exists in databases in one
of three forms:

- Data values range over a domain much smaller

than can be represented with their storage

format.

- One or more data values occur with exceptionally
high frequency.

- Significant correlation exists between
successive data values.

Although some forms of redundancy such as parity bits and
check digits [BERL74, PETE72] are valuable 1in preserving
data integrity, most redundancy serves no useful purpose.
Depending upon the amount of unneeded redundancy,
compression can reduce the database‘storage requirements by
as much as 98 percent.

Several forms of inefficient redundancy are obvious.
Alphanumeric data stored in the form of popular 8-bit codes
can be compressed by 37 percent by recoding with a 5-bit
code [MART75]. Source programs stored in eighty-column card
format can be compressed by 50 to 78 percent by removing
blank characters (FAJM73, HAHN74, MULF71]. Successive

telemetry readings generally vary slowly, and representing

-2

them as a difference from previous readings can reduce
transmission requirements by as much as 98 percent [MYER66].

Subtle forms of redundancy also offer a potential for
substantial compression. The representation of commonly
occurring database characters with short, variable-length
codes can reduce space requirements by 47 percent [GILB58].
Coding of character combinations in textual data has reduced
file size by 75 percent [HEAPS72, RUBI76]. Since the average
"information" contained in a character of English text is
estimated to be only a single bit [BELL53], the potential
for compression of English words stored in the form of an
8-bit character code is nearly 98 percent!

Database compression yields several benefits.
Obviously, the amount and cost of secondary storage are
reduced. In addition, database access and transfer speeds
can be increased while main memory buffer requirements are
reduced. File scanning, merging, and sorting, as well as
database backup and recovery operations, can be performed
more rapidly, and the collection of applications which are
feasible in a constrained storage environment is enlarged.

There are, as well, disadvantages. Additional
processing time is required by compression and decompression
operations. The most effective compression methods often
produce variable-length records which are more difficult to
store and retrieve. Many compression techniques require bit
manipulation, which may be difficult or inefficient to

accomplish when higher-level programming languages are used.

Added time for analyses, design, programming and testing are
required during new system development. Finally, recurring
maintenance of encoding and decoding tables 1is often

required.

3. FUNDAMENTAI CONCEPTS, TERMINOLOGY, AND THEORY
OF COMPRESSION

It is important initially to distinguish three related

terms.

Data Encoding is a process which maps from a
collection of encoding units (i.e., one or more
symbols in one data representation) to a
collection of code values (i.e., onhe or more
symbols in a second data representation). The
relationship between encoding units and their
corresponding code values is referred to as a
code. If the code mapping is one-to-one then an
inverse mapping exists and decoding refers to
the reversing process.

Data Compaction is a form of data encoding which
reduces data size while preserving all
information considered relevant.

Data Compression is a reversible data compaction
process.

While these terms are closely related, they are distinct.
There are important nonreversible data encodings which yield
effective database access keys in situations where
compaction, if any, is incidental (e.g., entry/title keys
for bibliographic files [NEWM71, LYNC73] or phonetic name
keys for <customer files [DOLB74, WEID771). Encryption
[GUDE76, DIFF77] 1is a reversible data encoding technique

(designed to obscure the meaning of sensitive data) which

does not generally result in compaction. Abbreviation
[BOUR61] is a form of data compaction which 1is sometimes
nonreversible. In this paper we are concerned exclusively
with data compression techniques; that Iis, reversible
encodings designed to reduce data storage requirements.
Classical information theory [SHAN48, HUFF52, ASH65]
provides concepts and terminology fundamental to the
discussion of data compression techniques. It is here that

the binary digit or bit is defined as a basic measure of

information. Given a database with N encoding units, {ui},
the theory provides wuseful bounds on the amount of
compression possible. Specifically, let %i denote the length
in bits of the 1i-th encoding unit, while P, denotes its
occurrence probability. Since a string of n bits can take on

A

2" distinct values, a fixed-length code of length £ can

A

always be constructed for & equal to the smallest integer
greater than or equal to 1092N (denoted E = [Eogzﬁ]).
Specifically, one can assign the binary numbers 1 to N to
the encoding units and thereby form a code.

The compression ratio of a code is the relative amount

of storage saved by encoding. Assuming our database had M

total encoding unit occurrences, its original 1length would
N

be L=M } zip.. With the fixed-length code above the

compressed database would have length

N /\N
L=M 2§ X

p; = Mfzogzﬁl; and the compression ratio would be
i

1

-5-

N

i

Encoding and decoding with fixed-length codes is
straightforward [KNUT73, MAXW73]. Encoding is performéd as
data are first entered into a database by matching values to
be compressed against encoding units held in a main memory
encoding table. During this process the replacement code
value 1is either read directly from the code table after the
match or calculated as a by-product of the search process
(e.g., the resulting value of a "DO-loop" index or binary
search trace vector). Decoding can be easily accomplished
with an index operation into the original table, now using
the code value to calculate the encoding unit's displacement
in the table. While decoding requires approximately as much
time as is saved through transmission of compressed data, it
can often be avoided with fixed length codes by searching
for data using encoded values and by designing codes which
maintain order relationships for sorting operations.

For illustrative purposes, consider a database
consisting of one million occurrences of the ten most
popular words in the English language. Suppose that each is
terminated by a blank and stored in variable-length, 8-bit
character format. Table 1 exhibits an alternative
fixed-length 4-bit code and illustrates calculations which

show that the original database of 27,336,000 bits can be

compressed by 85.4 percent.
While compression by 85.4 percent is extradordinary,

further compression can be achieved in our example using a

-6-

ENCODING UNIT LENGTH PROBABILITY | CODE VALUE
i Q) @,
1 THE 32 270 0000
2 OF _ 24 .170 0001
3 AND_ 3 131 0010
4 T0_ 24 .099 0011
5 A 16 ,088 0100
6 IN 24 074 0101
7/ THAT _ 40 052 0110
8 N 24 | ,0U3 0111
9 IT_ 24 040 1000
10 ON_ 24 033 1001

N=10 M=1,000000 1= [log,l =14

N
ORIGINAL LENGTH = L = M ;;1 Iy Py = 27,336,000 BITS
1:

COMPRESSED LENGTH i p, - 4000000 BITS

Il

— >

|

=
[om—py
1] =
M

COMPRESSION RATIO (L—f)/L = 85.4 PERCENT

Il

TABLE 1. A SMALL EXAMPLE OF A FIXED-LENGTH CODE

variable length code. As with international Morse Code

[GILB69], the design objective is to assign short code
values to frequently occurring encoding units and longer
values to the infrequent ones. Many codes are possible and
information theory provides assistance both in calculating
the maximum compression which can be achieved and in
selecting an efficient code. The theory establishes that for
any code, the average code value length 1in a compressed
database cannot be 1less than I = ‘2 P; 1og2 (1/pi). I1is
referred to as the entropy of the da;;éase and takes on a

maximum value of log.N when the occurrence possibility for

2
all encoding units is equal to 1/N. (In this event a fixed
length code of 1length I is in fact optimal.) For our
examples I = 3.01 and therefore the best code we may devise
will have a compression ratio no greater than (8-3.01)/8, or
89 percent. A variable length code will therefore increase
compression here by at most 3.6 percent over the simple
4-bit code.

Whether or not it is useful in a real design situation,

the most efficient variable length code is easily found.

Specifically, Huffman codes [HUFF52, KNUT73, MART75] have

been shown to yield minimum redundancy. One can construct a
Huf fman Code for any problem by building a binary tree, as
follows [SCHW64]. Initially, encodind units are listed in
order of their probability of occurrence. The two units with
smallest probabilities are removed from the list; a @-branch

is assigned to one and a 1l-branch to the other. Their

probabilities are added and assigned to a new combined unit
which is merged back into the diminished list so that it is
again in order. The procedure is repeated until a single
unit remains as the root of the binary tree just
constructed. The code value for any original encoding unit
can now be read by traversing the path from this root to
that encoding unit.

When the procedure 1is applied to our example, the
binary tree shown in Figure 1 results. The Huffman code
defined by this tree is shown in Table 2. Its expected code
length of 3.05 is slightly greater than the 1limiting value
I = 3.(51.l Observe that for this code, as for Huffman codes
in general, no code value is the prefix of another, and thus
every encoding of a stream of encoding units 1is uniquely

decipherable; that 1is, given an encoded database, one can

always distinguish successive code values without resorting
to delimiters or 1length codes. Note, however, that with a
database so encoded, the loss of a single bit may affect the
decoding of all subsequent code values, unless decoding is
resynchronized in some way [WELL72].

On the basis of the concepts and definitions presented

here, the next section will categorize a wide variety of

alternative data compression techniques.

lGenerally, one can achieve this limit only by encoding
strings of encoding units with longer Huffman codes.

THE

OF
N
IT_

ON

Code Value 01111 descri;;;T:>=

the path from tree root to
original encoding unit ON_

Figure 1. A Huffman Code Binary

binary tree root

1 0
()
' 1
T0_ y A_
THAT _ IS

combined
probability
2{{//////’ 1 .

branch values

Tree For The Small Example

, ENCODING PROBABILITY| copE LENGTH
! INIT (") e | ()
1 THE .270 00 2
2 OF 170 010 3
3 AND_ -~ 131 100 3
3 T0 .099 101 3
5 A . 088 111 3
6 IN_ 074 0110 4
7 THAT _ ,052 1100 I
8 IS_ 043 1101 4
9 IT_ . 040 01110 5
10 ON_ 033 01111 5
N=10 M= 1,000,000
N
EXPECTED CODE LENGTH = .Ea.Pi li = 3,05 BITS
1:
A ‘N- : ~
COMPRESSED DATABASE LENGTH = L = M .Zi Pi li = 3,053,000 BITS
1:

ORIGINAL DATABASE LENGTH = L = 27,336,000 BITS

A

COMPRESSION RATIO = (L-L)/L = 88,8 PERCENT -

TABLE 2 A MINIMUM REDUNDACY HUFFMAN CODE FOR THE SMALL EXAMPLE

4.9 COMPARISON OF COMMON COMPRESSION METHODS

It 1is easiest to grasp and compare the variety of
compression methods which have been reported in published
literature by dividing them into two basic categories. In
the subsections which follow, we will first describe
compression techniques which view a database as a single
homogeneous sequence of characters and which reduce its size
by either string encoding, null suppression or value
differencing. We will then consider compression improvements
which are possible with these same techniques when a
database is analyzed more carefully as a collection of
formatted records whose data items are related via common

value domains.

4.1 Encoding Methods for Character Strings

Databases encoded as a stream of characters can be
subdivided into substrings of arbitrary length. In general,
encoding and decoding operations for short strings are
faster and require 1less main memory for tables and
algorithms, while codes for longer strings offer greater
compression ratios. Since techniques which encode single
characters are simplest, we analyze them first.

A fixed-length code of 6 bits is sufficient to
represent a collection of up to sixty-four alphabetic,

numeric, and special characters. Studying the popular 8-bit
EBCDIC code shown in Figure 2, observe that all code values

for wuppercase, alphanumeric data begin with the bit

-12-

Bit positions 0 and 1

r A - — — —‘\‘
T 00 o 10 SR P o
" Bit Bit Bit - |- Bit Wi
positions . positions positions 1 ; positions |
2and 3 " 2and 3 2and3 - | 2and3 i
(A AR A AR A BN R A Bl
- 00011011 1000110 11100 0110 111000110 111 |
[0000 Bl a]- ~ [{] Y t]o
0001 / aljls| | [a]o] [1] |
0010 blk| t B{K|S]|?2
0011 clllu clL|T|3
0100 dim| v DIM[U]| 4
0101 | eln| w E|N|V]|5
0110 flo| x Flojw|e
Bit positions | 0111 gl Py G|P|X|7
4.5.6and 71 4000 hiqgl 2 |[n]a]vy]s
1001 ilr 1|R|z|9
- 1010 ¢l
1011 8L #
1100 <{*l%|e
1101 (=1 |
1110 +if>= ‘
L mm]’—:? "

Figure 2 The Extended Binary Coded Decimal Interchange Code - EDCDIC °

combination "11." Removal of these bits from four successive
characters permits their storage in 24 bits or three
character ©positions. The shifting of bits required to
accomplish such compression and decompression 1is easily
programmed and inexpensively executed, and yields a storage
reduction of 25 percent. If data are strictly alphabetic,
then 5 bits are sufficient to represent a character; eight
characters can be stored in five character positions; and 37
percent compression is achieved [MART75]. Numeric data
affords an opportunity for 50 percent compression [CHEN75,
SMIT751, and some computer systems provide hardware
instructions to accomplish such encoding and decoding
rapidly [IBM71Db].

Maximum compression of character strings is achieved
with wvariable-length codes. Heaps [HEAP72] describes a
string compression method for characters in common English
text which assigns 3-bit codes to the most frequent seven
characters and 7-bit codes to the remainder. A prefix bit is
appended to each value to distinguish code types. Since the
seven most frequent characters account for 65 percent of all
occurrences [REZA61], the expected code length for a textual
databaée is 5.4 bits (= 4 X .65+ 8 X .35), 32.5 percent
less than an 8-bit code.

This compression can be improved by packing more of the
frequent characters into 4 bits in the following manner: let
the code values @ through 12 be the table displacements for

the thirteen most frequently occurring characters while the

-14-

code values 13, 14, and 15 designate three tables for
characters which are not members of the first thirteen. If
the first 4 bits have the value 13, 14, or 15, the next 4
bits give a character displacement in three corresponding
tables. Since the thirteen most frequently occurring
characters comprise about 80 percent of all occurrences in
English text, representing them with 4 bits reduces the
average code length to 4.8 bits per character, for a 40
percent reduction.

Huffman coding of single characters with the occurrence
frequencies of common English text produces the code shown
in Figure 3 [GILB59]. Its expected code length of 4.12 bits
yields a 48 percent compression. Martin [MART75] provides
the Huffman code for a commercial database whose character
frequency distribution 1is shown in Figure 4. Expected code
length here is 2.91 bits, for compression of nearly 64
percent.

Gottlieb [GOTT75] reports the use of Huffman coding on
a variety of large insurance files that already had some
numeric data in compact binary form. The minimum compression
that resulted was 50 ©percent. Ruth and Kreutzer [RUTH72]
applied the Huffman coding to a 35f0-million-character
Requisition Status File wused at Navy Inventory Control
Points and found 1its performance to be "unacceptable."
However, by extending the set of character encoding units to
include twelve commonly occurring character patterns, a 61l

percent compression was achieved. This was the best

-15-

LETTER

PROBABILITY

CODE VALUE

N<X<E<CHUnNJO UWVOZDZrXGQMHIOMTMMOO I

.1859
.0642
.0127
.0218
.0317
. 1031
.0208
.0152
.0467
.0575
.0008
.0049
.0321
.0198
.0574
.0632
.0152
.0008
.0484
.0574
.0796
.0228
.0083
.0175
.0013
0.0164
0.0005

OO OO OO O OO ODODODODOODODODODODOOODOOO

000

0100
011111
11111
01011

101

001100
011101
1110

1000
0111001110
01170010
01010
001101
1001

0110
011110
0111001101
1101

1100

0010
11110
0111000
001110
0111001100
001111
0111001111

Figure 3.

A Huffman Code For Characters In Common English Text

ENCODING UNTT PROBABILITY CODE VALUE
0 .555 0
1 .067 1000
2 .045 1100
8 .035 10010
3 .033 10100
A .032 10101
5 .030 10110
6 .027 11100
4 .027 11101
9 .022 11110
7 .019 100110
F .015 101110
B .012 111110
Blank .01 110110
D .010 110100
E .009 110101
A .007 1011110
P .006 1111110
N .005 1101110
U .004 10011110
C .004 10011100
H .004 10011101
R .003 10111110
M .003 11111110
L .003 11111111
S .0025 11011110
I .0020 100111110
T .0015 110111110
K .0015 110111111
Y .0013 1001111110
X .0012 1001111111
G .0010 1011111100
J .0010 1011111101
0 .0006 10111111100
Q .0003 10111111101
v .0003 10111111110
W .0003 101111111110
X .0001 1011111111110000
- 1011111111110001
? 1011111111110010
& 1011111111110011
/ 1011111111110100 -
+ 1011111111110101
< <.00001 1011111111110110
) ©1011111111110111
(1011111111111000
% 1011111111111001
= 1011111111111010
1011111111111011
? 1011111111111100
‘ 1011111111111101
@ 1011111111111110
* 1011111111111
Figure 4. Huffman Code For A Specific Commercial Database

performance of twelve alternative codes evaluated. McCarthy
[MCCA73] presents a systematic approach for selecting
multicharacter encoding units for a Huffman code, and
reports the compression achieved on a variety of files: 40
percent compression on an object-module file, 57 percent on
an English text file, 69 percent on a name-and-address file,
and 82 percent on a COBOL source file.

One sees from this data that the encoding of strings
with multiple characters results in greater compression. The
construction of codes for encoding units with N characters

is referred to generically as N-gram encoding. Snyderman and

Hunt [SNYD7#], in an early application of digram encoding

[BOOK76] (where ©N=2), take advantage of the fact that most
of the data stored with an 8-bit code uses no more than 88
of the 256 possible code values. Thus, 168 code values are
available to represent pairs of characters. The specific
digrams selected experimentally by those authors, together
with their code values (in a hexidecimal format), are shown
in Table 3. Also shown are eight "master" characters and
twenty-one "combining" characters from which the 168 (=8%21)
digrams are derived, as follows:

If the initial character in a string to
be compressed is not a master character
then it is passed unchanged; else if the
next string character is not a
"combining" character, then again the
first character is passed unchanged;
else both characters are passed with the
encoded value formed by adding the code
value component of the master character
to that of the combining character. The
process repeats with the remaining
string. It is uniquely reversible.

-18-

Master Combining
Characters Characters Noncombining Characters Combined Pairs
Base Hex Hex Hex Hex Hex Hex
Symbol Value | Symbol Code | Symbol Code Symbol Code Symbol Code} Symbol - Code Symbol Code
B 58 # g0 J 15 q 2B < 41 pb 58 Ab 6D
A 6D A 21 K 16 r 2C (42 BA 59 AA 6E
E 82 B p2 Q 17 s 2D + 43 pB 5A AB 6F
I 97 C n3 X 18 t 2E & 44 BC 5B AC 70
0 AC D pa Y 19 u 2F ! 45 pD 5C ¥ ¥
N Cl E @5 Z 1A v 30 $ 46 BE 5D AW 81
T D6 F p6 a 1B W 31 * 47 BF 5E Ep 82
U EB G f7 b 1C X 32) 48 [{¢] 5F EA 88
H 78 o 1D y 33 H 49 jpH 60 ¥ Vo
I f9 d 1E z 34 - 4A pI 61 EW 96 .
L PA e 1F] 35 / 4B pL 62 I 1Ip 97 .
M 7B f 20 1 36 R 4C M 63 ¥ !
N fc g 21 2 37 % 4D BN 64 Ob AC |
0 o | h 22 3 8 4E | B0 65 ¥ v
P OE i 23 4 . 39 > 4F BP 66 Np c1 .
R pF j 24 5 3A ? 50 PR 67 ¥ vl
S 10 k 25 6 3B : 51 BS 68 TP D6 |
T 11 1 26 7 3C # 52 BT 69 ¥ ¥
U 12 m 27 8 3D @ 53 pu 6A Up EB |
v 13 n 28 9 3E ' 54 BV 6B ¥ v
W 14 0 29 ¢ 3F = 55 pW 6C UW FF
D 2A . 40 . 56
< 57
An Example of Compression
Al B 0 Ul T B Pl A Cl K|I N G| P T El X
6F | BE] D6 |OE { 70 {16 | A3 | 07|69 | 05| 18] 11 51

Table 3 DIGRAM ENCODING

Inherently, compression with digram encoding is limited
to 5@ percent, which is achieved only when every character
is paired into a digram. Snyderman and Hunt achieved a 35
percent compression, reducing storage requirements of an
online file by 68 million characters. Schieber and Thomas
[SCHI71] wused a more systematic method to establish an
efficient set of digrams for a 21-million-character
database; they achieved a 43.5 percent space reduction.

While these compression ratios are not dramatically
better than the 25 percent offered by the simple
fixed-length 6-bit code, the method is about as simple to
implement. Digrams can be encoded and decoded rapidly via
indexing operations, and the required tables are small
enough to reside in main memory, 1in contrast to other
encoding methods which may require time-consuming accesses
to secondary storage. The method"'s use of character-length
code values also eliminates synchronization problems
associated with Huffman codes. Finally, 43 percent
compression compares favorably to both Huffman coding of
individual characters and compression ratios achieved with
more complicated trigram and tetragram encodings [ARON77,
SCHW63].

Our example of digram encoding maps two characters into

8 bits. A more general numerical code [HAGA72] maps N

characters into K bits. In a manner similar to digram
encoding, code values are formed by reversibly combining

numerical representations for two or more characters into a

-20-

single unique number. Consider, for example, the ten
characters A through J. By establishing the correspondence
(A=f, B=1,...,J=9) with the base-10 number system, the data
sequence "CAB" can be represented by the number 2@11@
(=2*1®2+ﬂ*101+1*+1ﬂg). Since the maximum code value in this
example is 9991%’ a machine with a 18-bit word (with value
range 21g=lﬂ24) could store any 3-character sequence in each
word. In the same way, if all alphabetics were possible,

1

then "CAB" would become 201. . (2*262+0%26 +1%26%), or 676

26 10°
In this case, a 15-bit word would be required to hold three
characters.

Numerical codes are generally designed to make maximum
use of a given computer's word size. Given a computer with a
K-bit word, code efficiency 1is affected by the encoding
base, B, and the number M of characters combined. Clearly,
as B increases, M decreases. For a machine with K=32, Hahn
[HAHN74] evaluates values of B between 14 and 73 and shows
that five to eight characters can combine in a single
number, giving 20 to 50 percent compression over an 8-bit
code. With B=37 (for alphanumeric data), compression is 20
percent and numerical coding 1is inappropriate, since the
simpler 6-bit code offers 25 percent compression.

Hahn improved numerical encoding by incorporating into
it a form of variable-length code. He maintains code values
in several encoding/decoding tables of size D-1, where D is
a value calculated to produce a good compression ratio for a

specific machine. The D-1 most frequent characters are

-21-

placed in the first table, the next D-1 most frequent are
placed in the second table, and so on. Encoding values are
M-digit, base-D numbers and representing from 1 to M
characters. M is now the maximum number of characters which
might be encoded in a single word. Any character being
encoded which is not one of the first D-1 symbols in the
table is represented by the "escape character," f, followed
by the character's position in the second table, or so on
until the character is located. Obviously, max imum
compression 1is achieved for the first D-1 characters. The
more skewed the character occurrence distribution, the
smaller the optimum value of D and the larger the average
number of characters which can be packed into a single word.
For English text on a 32—bit<machine, Hahn found that D=21,
‘M=7 was an optimum combination. He combines this code with a
null suppression technique (described later) to obtain an
average code value length of 4.7 bits per character. This 41
percent reduction again compares favorably with Huffman
coding of individual characters.

Heaps [THIE72, HEAP74] has experimented extensively

with a similar variable-length, fixed-increment code which

attempts to combine the ease of managing fixed-length codes
and the maximum compression achieved with variable-length
codes. His technique is particularly effective for words or

terms in textual data. Here the number of distinct terms 1is
typically quite 1large and their wusage frequency has a

Zipfian distribution [ZIPF49, LESK70, WEID77] which is quite

-22-

skewed. For this situation, fixed-length codes achieve
relatively poor compression and their large
encoding/decoding tables must be held 1in secondary memory
where access times are several orders of magnitude greater
than those in main memory.

Heaps suggests the following coding scheme to relieve
both problems [HEAPS78, TIEL72]. For a vocabulary of N
distinct terms, codes of lengths NIll leZ ; :é. < Nr areNufid

r

to index terms in tables of size 2 1 ;, 2 2 ; eee 4 2 .

The most frequent terms are assigned codes with length Nl’
Codes for less frequent terms are built by appending code
increments of length N2—Nl, ey Nr—Nr_l. The first bit in
any increment indicates code continuation; if it 1is zero,
another increment follows. Heaps experimented with different

values of Nl' N ceey Nr' and found that codes with lengths

o7
(3,6,9,12,...) and (4,8,12,16,...) perform effectively and
were easily adaptable to machines with 6-bit and 8-bit
characters, respectively. For large document databases,
average code length has been found to be about one-fourth
that of a fixed length code and within 8 percent of that of
a Huffman code.

Information theory shows that to achieve maximum
compression, an encoding unit with occurrence probability p
should have length logz(l/p). The procedure above attempts
to match variable 1lengths to a given set of frequencies.

Alternatively, if one is committed to the wuse of simple,

more manageable fixed length codes, then maximum compression

-23-

will be achieved only if the encoding units have equal
occurrence probabilities. Recognizing this fact, Schuegraf
and Heaps [SCHU74] propose a means of generating

equifrequent word fragments [CLAR72] to be used as encoding

units. A frequency count of all word ‘fragments between two
and eight characters in length is taken from the database to
be encoded. All fragments having a frequency less than a
selected threshold value are eliminated initially and left
unchanged by the encoding process, since these infrequent
fragments have least effect on total database compression
and a substantial effect on the size of the
encoding/decoding table required [HEAPS74]. Further
elimination of encoding units is accomplished by subtracting
the frequencies of longer fragments from the frequencies of
shorter fragments contained within them and removing all
which fall below the threshold. This favors the 1longer
fragments which contribute most to compression. The number
of fragments selected can be controlled with the threshold
frequency and adjusted to the amount of main memory
available for the encoding/decoding table. For any
threshold, the final set of fragments have approximately
equal frequencies, so that a fixed-length code 1is near
optimal for the selected set of encoding units. Successful
application of the procedure to the Library of Congress MARC

tapes [LIBR78] 1is reported in [SCHU73].

-24-

4.2 Null Suppression For Character Strings

For a variety of reasons, commercial databases often
contain 1large numbers of blanks, zeroes, and other filler
characters used for the padding of vacant or variable length
data fields. With modest processing costs these "null"
characters can be compressed to dramatically reduce storage
requirements.

A common method of null suppression is the run length

technique [LYNC73] 1illustrated by Figure 5. A special
character;is inserted to indicate the presence of a run of
nulls and the run 1is replaced by a count indicating its
length. Different types of runs can be distinguished with
differing special characters. The actual choice depends upon
the frequency of character occurrences in the existing code.
For example, the EBCDIC code in Figure 2 has a number of
characters which may be selected since they are wunused in
most applications. If no such unused character exists, an
infrequently used character can be selected and its
occurrence doubled in the encoded stream whenever it appears
as a datum. Overbeek and DeMaine [DEMA71, OVER72] report
such a use of null suppression to compress a variety of
alphanumeric data files by 24 to 61 percent. Hill [HILL75]
reports an even more dramatic compression of census files by
63 to 75 percent.

Martin [MART75] describes a run suppression technique
for EBCDIC data with no 1lowercase characters. Here the

second code bit is always "1" (see Figure 2) so that a

—-25-

DOERBBBBBBBBJOHNBBRRRRBR123L000000

i]
DOE#9JOHN#81231%6
- B
7 - 0

Figure 5. NULL SUPPRESSION - Run Length

setting of "@" can be used to designate the suppression of
nulls. The remaining 7 bits can then represent both the type
of null and the length of the run. If, as in Fiqure 6, for
example, only blanks and =zeroes are suppressed, then a
single bit can distinguish between them, while 6 bits remain
to designate run lengths as long as sixty-four characters.
Code values here can be one half the length of those in the
run length method above.

If only a single null type is suppressed, there 1is no
need to identify it explicitly. In message transmission, for
example, it 1is common to truncate 1leading and trailing
blanks from each fixed-length record. Counts of the number
of 1leading blanks and the number of significant characters
in the record are placed at the start of the record,
followed by the significant characters of the record
[HAHN74]. The technique is especially effective when applied
to files containing computer source programs, where leading
and trailing blanks are common. Fajman and Bargelt have used
the technique quite successfully in the WYLBUR text editor
system [FAJM73]. Data stored by WYLBUR 1is broken into
segments consisting of a count-byte split into a 4-bit count
of blanks and a 4-bit count of nonblanks, followed by as
many as fifteen nonblank characters. These segments can be
set up very rapidly through the wuse of a hardware
instruction to seek out runs of Dblanks and nonblanks.
Décoding is accomplished very simply by jumping from segment

to segment, inserting blanks where necessary. Compression of

-27-~

means suppression of zeroes
means suppression of blanks

0
1
X

0 X X

\

<

These six bits give length
of the run of nulls

0 means null suppression

Figure 6. NULL SUPPRESSION WITH EBCDIC

50 to 70 percent has been achieved for many types of text.
Since null suppression techniques are relatively simple
and inexpensive in comparison to the more efficient Huffman
code, one naturally wonders how much space is actually saved
by the Huffman code's additional complexity. For example,
Huffman coding compressed the database in Figure 4 by 64
percent; however, the high frequency (55.5 percent) of
zeroes suggests that as much as 50 percent compression might
be achieved wvia null suppression alone. Martin [MART75]
addressed this question by applying both methods to three
commercial databases obtaining the results shown in Table 4.
Here Huffman coding provided 12 to 28 percent additional
compression which may or may not be significant enough in a

particular application to justify its additional complexity.

e e +
Original File	Reduction Using	Reduction Using
Size	Suppression of [Huffman	
(Bytes)	Repeated	Code (%)
I | Characters (%) l |
e +
I I | I
: 300,000 : 54 } 82 |

|
| 3 million | 34 | 46 |
| | I |
| 19 million | 64 | 83 [
| | | |
o +

Table 4. Compression Results for Three Commercial Databases

-29-~

4,3 Differential Coding Applied to Character Strings

Differential coding involves the replacement of an
encoding unit with a code value which defines a relationship
to either a previous encoding unit or a selected pattern
value [GOTT75]. Ruth and Kreutzer [RUTH72] and Villers and
Ruth [VILL71] provide a ready index to 1literature on
telemetry compression, which 1is the single most important
application, of differential encoding. In telemetry
applications a sensing device records measurements at a
remote station for storage and analysis. Because successive
readings are of wuniform size and tend to vary relatively
slowly, they are efficiently represented by their difference
from the prior reading. Compression is applied prior to
transmission and can reduce the total amount of data
transmitted by more than 98 percent [MYER66].

Comparable relationships between successive data values
rarely occur in business applications. Knuth [KNUT73]
suggests a hypothetical application for which the prime
numbers less than one million are required. Rather than
storing the 78,498 different values directly, the successive
difference between these primes are encoded. Since it can be
shown that the difference between any two primes less than
1,357,201 does not exceed 63, these gaps can be encoded as
fixed-length 6-bit wvalues, reducing table size by 70
percent.

Date [DATE75] suggests another application in which

sorted key values are stored and read sequentially. To

-3¢~

achieve compression, the keys are read in sequence and all
leading characters of a key value common to the preceding
value are replaced by their count. For example, the series
of names JOHNSON, JONAH, JONES, JORGENSON would become (@)
JOHNSON, (2) NAH, (3) ES, (2) RGENSON. Decoding demands
sequential reading so that the preceding key value is once
more available. The count of the key wvalue to be
decompressed provides the number of leading characters to be

retained and the unencoded characters are then concatenated.

,4.4 Compression Enhancement with Formatted Database Records

For reasons of process efficiency, commercial databases
are typically composed of formatted data records [BENN67,
LIU68]. Each data record is subdivided into data items (or
fields) with specific boundaries, whose range of values and
occurrence distributions often are known. Viewed narrowly,
data item values are simply strings of characters and thus
the compression methods described in the previous section
can be applied directly. However, special opportunities for
increased compression are presented since particular data
items may take on a relatively narrow range of values over
an entire database, and data items often exhibit a recurring
intrarecord structure. The price paid to obtain this greater
compression is an additional amount of main memory required
for encoding and decoding tables now associated with
individual data items rather than the entire database.

The amount of compression achieved with the string

encoding methods of Section 4.1 1is increased with a

-31-

formatted database because record data 1items naturally
partition the database into character strings with like
value characteristics. Values for a particular data item,
for example, may be known a priori to be members of a
specific set of alphabetic strings such as surnames, titles,
cities, states, or possibly numeric quantities such as
rates, dates, telephone numbers, or inventory levels. The
specific value set and its occurrence distribution can be
readily computed with the aid of a simple file analysis
program [BRAY77, INFO75]. This knowledge substantially
reduces the total number of value possibilities for
character strings of a given length. As a result, the
average code value length required to encode these strings
can be significantly shorter. Martin [MART75] suggests, for
example, that an 8-bit code is sufficient to distinguish 256
surnames, which account for more than 90 percent of all last
names used 1in the United States. For all but the largest
organizations, 16 bits (65,536 code values) are ample to
distinguish such data as customers, suppliers, employees, or
inventory items.

Date fields are frequently present in commercial
databases and can be compressed substantially from the
common 6-digit (MMDDYY) representation by using differential
encoding. Selecting an appropriate date as a base point,
compressed dates can be represented as a distance in days
from that origin. January 1, 4713 B.C., for example, is the

Julian date base point generally used to record ‘astronomical

-32-

phenomena, and 22-bit code values can represent dates
through the year 6700 A.D. A shorter 16-bit code and a more
recent base point can represent dates ranging over a period
of 175 vyears, which 1is sufficient for most business
applications [ALSB75, MART75]. In records where a sequence
of related dates 1is stored, each can be represent as its
difference from the previous date with significantly fewer
bits [GOTT75].

The compression achieved with null suppression
techniques 1is also typically enhanced when compressing
formatted data records. In fact, null suppression is so
effective (sometimes achieving 60 to 70 percent compression)
that it tends to be the only compression technique routinely
supplied with commercial data management systems [CULL77,
IBM74a, SOFT75]. A number of methods for compressing null
data item values have been described by 0lle [OLLE68] and
analyzed by Maxwell [MAXW73]. As illustrated in Figure 7,
the most common is a bit vector appended to the front of
each record in which each bit is associated with a
corresponding field. A bit value of @ indicates presence of
the null value which is dropped f£from the record during
compression and reinserted during decompression. The same
idea has been applied to groupings of data items in some
data management systems (e.g. CICS [IBM74b], IMS [IBM7lal)
which associate bits with record segments. Segments are
collections of related data items which tend to occur either

together or not at all (e.g., several items of data would be

-33-

doW 3194 - NOISS3I™ddNS TINN *Z 8JdnbBT4

dViW LId
N
W | H# i T#
W3LT W3LI WILT W3LlI
v1lvd v1vda Y.1vd v1ivd TOTOTT
| |
|
TINN _ TINN
— s = N
9# q# t1# t1# C# T#
W3LI W31l W3lI W31l W3LI W3LI

v1ivd v1iva v1vd v1vd v1ivda v1ivd

required to described each customer claim that 1is filed
égainst a particular insurance ©policy). By suppressing
entire record segments rather than their individual data
items, both the amount of data compression and speed of

decompression improve slightly.

SUMMARY

One should not conclude from this paper that data
compression is desirable for all business applications. The
benefit associated with compression of a particular database
is affected by many variables: the size of the database, the
amount and type of redundancy it contains, the nature and
frequency of retrieval and update requests serviced, the
availability and cost of memory for both code tables and
data, the efficiency and complexity of the data compression
technique considered, and finally the availability and cost
of processor time for execution of these techniques. What is
clear nevertheless is that typical commercial databases can
in fact bé compacted by 30 to 90 percent, and that this
should be of more applied interest than current usage of
compression techniques would indicate.

In practice one finds that the most common motivation
for database compression is a storage constraint which
otherwise precludes implementation of a particular
application. Since a simple technique which affords the
compression "necessary" for the application 1is often more

highly prized than a more complex one which offers the

-35-

"best" compression, some rather pragmatic observations
summarize this survey.

Four relatively simple compression techniques
adequately address all problems of interest to most
practitioners. Null suppression 1is easily implemented and
often effective. Compression/decompression routines are
commercially available or easily developed. They execute
quickly, require neither code tables nor record formats, and
achieve compression of 50 to 70 percent on a wide variety of
data files. For files which do not compact wunder null
suppression, digram encoding offers similiar advantages,
requires a relatively small code table and reliably achieves
compression of 30 to 40 percent.

Fixed-length codes are also simple and have the
important advantage of providing fixed field and record
boundaries. This facilitates direct record access, selective
field compression/decompression, and data searching with
compressed keys without need for data decompression. Code
tables of even a few hundred entries may be held in main
memory and searched rapidly. For databases whose encoding
units have a uniform occurrence distribution, fixed-length
codes achieve near-optimal compression.

In principle, Huffman codes do achieve optimal
compression. However, their complexity and synchronization
problems tend to make them wunattractive in practice. In
situations where a skewed encoding unit occurrence

distribution makes a Huffman code substantially more

-36-

| efficient than a fixed-length <code, a variable-length
fixed-increment code is an effective compromise.
Specifically, these codes are relatively simple,
self-synchronizing, and easily adapted to a machine of
arbitary word length, while they provide a compression ratio

which approximates that of a Huffman code.

ACKNOWLEDGEMENTS

I am endebted to Dean Wilder, Pat Lung and Jim McKeen,
who have provided valuable assistance in the development and

revision of this paper.

-37-

[ALSB75]

[ARON77]

[ASH65]

[BART74]

[BELL53]

[BENN67]

[BERL74]

[BOOK76]

[BOURG61]

[BRAY77]

[CHEN75]

[CLAR72]

REFERENCES

Alsberg, P.A., "Space and time Savings Through
Large Data Base Compression and Dynamic
Restructuring," Proc. IEEE, 63,8 August 1975, pp.
1114-1122,

Aronson, J., Data Comparison - A Compression of
Methods, National Bureau of Standards, special
publication 506-12, June 1977, 39 pp.

Ash, Robert, 1Information Theory, Interscience,
1965.

Barton, I.J., Creasey, S.E., Lynch, M.F., and
Snell, M.J., "An Information-theoretic Approach to
Text Searching in Direct Access Systems," Comm.
ACM, 17,6 June 1974, pp. 345-350.

Bello, F., "The Information Theory," FORTUNE,
December 1953, pp. 136-158.

Benner, F.H., "On Designing Generalized File
Records for Management Information Systems," Proc.

Berlekamp, E.R. (ed.) Key Papers in the
Development of Coding Theory, TEEE Press,
Piscataway, N.J., 1974, 296 p.

Bookstein, A. and Fouty, G., "A Mathematical Model
For Estimating the Effectiveness of Bigram
Coding,"” Int. Proc. and Manag. 12, 1976, pp.
111-116.

Bourne, C.P. and Ford, D.F., "A Study of Methods
for Systematically Abbreviating English Words and
Names," Jour. ACM, 8,3, July 1961, pp. 538-552.

Bray, 0. and Severance, D.G. "Field Encoding
Analysis Routine: User's Manual and System
Documentation," MISRC Technical Reports 77-24,
77-21, GSBA, University of Minnesota, 1977.

Chen, T.C. and Ho, I.T., "Storage-Efficient
Representation of Decimal Data," Comm. ACM, 18,1,
January 1975, pp. 49-52.

Clare, A.G., Cook, G.M., and Lynch, M.F., "The
Identification of Variable-length, Equi-frequency
Character Strings 1in a Natural Language Data
Base," Computer J. 15, 1972.

-38-

[CULL77]

[DATE75]

[DAVI76]

[DEMA71]

[DIFF77]

[DOLB70]

[FAIM7 3]

[GILB59]

[GOTT75]

[GUDE76]

[HAGA72]

[HAHN74]

Cullinane Corporation IDMS Concepts and Facilities
Order No. D@@l, Wellesley Mass., 1977.

Date, C.J., An Introduction to Data Base Systems,
Addison Wesley, 1975, Chapter 2.4, pp. 34-35.

Davisson, L.D. and Gray, R.M. (eds.), Data
Compression (benchmark papers in Electrical
Engineering and Computer Science, Vol. 14),
Dowden, Hutchinson, Ross, Inc., Stroudsburg, PA.,
1976, 407 pp.

DeMaine, P.A.D., "The Integral Family of
Reversible Compressors,"” Journal of the IAG,
(IFIPS, Amsterdam), 3, 1971, pp. 207-219.

Diffie, W. and Helleiman, M.E., "Exhaustive
Cryptanalysis of the NBS Data Encrytion Standard,"

Computer, IEEE, June 1977, pp. 74.

Dolby, James L., "An Algorithm for Variable-Length
Proper Name Compression, Journal of Library
Automation, December 19780, pp. 257.

Fajman, Roger, and Borgelt, John, WYLBUR: An
Interactive Text Editor and Remote Job Entry
System, Comm. ACM, 16:5, May 1973, p. 314.

Gilbert, E.N., and E.F. Moore, "Variable-Length
Binary Encodings," Bell System Tech J., July 1959,
pp. 933.

Gottlieb, D.S.A., Hagerth, P.G., Lehot, H. and
H.S. Rubinowtiz, "A Classification of Compression
Methods and their Usefulness for a Large Data
Processing Center," Proceedings 1975 National
Computing Conference, AFIPS, 44, (1955) pp.

453-458.

Gudes, E., £Koch, H.S. and Stahl, F.A., "The
Application of Cryptography for Database
Security," Proceedings 1976 National Computer

Conference, 1976, pp. 97-107.

Hagamen, W.D., Linden, D.J., Long, H.S., and
Weber, J.C., "Encoding Verbal 1Information as
Unique Numbers," 1IBM Systems Journal 11,4, 1972,
p. 278.

Hahn, Bruce, "A New Technique for Compression and
Storage of Data," Comm. ACM, 17,8, August 1974, p.
434,

-39.-

[HEAP70]

[HEAP72]

[HEAP74]

[HILL75]

[HUFF52]

[IBM71a]

[IBM71Db]

[IBM74a]

[IBM74b]

[INFO75]

[KNUT73]

[LESK70]

[LIBR70]

Heaps, H.S. and Thiel, L.H., "Optimization
Procedures for Economic Information Retrieval,"
Information Storage and Retrieval, 6, 1978, pp.

137-153.

Heaps, H.S., "Storage Analysis of a Compression
Coding for Document Data Base," INFOR, Vol. 10,
No. 1, February 1972, p. 47-61.

Heaps, H.S., "Compression of Databases for
Information Retrieval and Management Information
Systems," Working Paper, Computer Science
Department, Sir George Williams University,
Montreal.

Hill, G.L., "Maximizing Computer Access to Public
Data Files," Proceeding 1975 Computer Science
Conference ACM-SIGCSE, 1975.

Huffman, D.A., "A Method for the Construction of
Minimum-Redundancy Codes," Proc. I.R.E., 46,9,
September 1952, pp. 1098-1101.

IBM Corporation, IMS/3640, System/Application
Design Guide, Program Number 5734-XX6, February
1971.

IBM Corporation, IBM System/370 Model 165
Functional Characteristics, Technical Newsletter,
No. GN22-04¢1, July 1971.

IBM Corporation, Utility Reducing Subroutines for
Suystem/360/379, Program Number 5798 AZW, 1974.

IBM Corporation, Customer Informaton Control
System/Virtual Storage (CICS/VS) Application
Programmer's Reference Manual, SH20-9003-0,
January 1974, Palo Alto, California, pp. 402-403.

Informatics, Inc., SHRINK User Reference Manhual,
PMI Document No. 8616, October 1975.

Knuth, Donald E., the Art of Computer Programming,
Vol. 3, Chapter 6.1, Addison Wesley, 1973, 401 p.

Lesk, M.E., "Compressed Text Storage," Computing
Science Technical Report #3, Bell Telephone
Laboratories, 1970.

Library of Congress, A MARC Format: Specifications
of Magnetic Tapes Containing Monographic Catalog
Records in MARC II Format, Information Systems
Office, Washington, D.C. 1974.

-40-

(LIU68]

[LYNC73]

[MART75]

[MAXW73]

[MCCA73]

[MULF71]

[MYER66]

[NEWM71]

[OLLE68]

[OVER72]

[PETE72]

[REZAG1]

Liu, H. "A File Management System for a Large
Corporate Information System Data Bank," Proc.

Lynch, M.F., "Compression of Bibliographic Files
Using an Adaption of Run-length Coding," Inf.
StOr. REtr., 9, 1972, ppo 2@7_2140

Martin, James, Computer Data-base Organization,
Chapter 32, Prentice-Hall, 1975, 713 p.

Maxwell, William L. and Severance, Dennis G.,
"Comparison of Alternatives for the Representation
of Data 1Items Values in an Information System,"
Data Base, 5,2, SMIS Special Report No. 2, Winter
1973.

McCarthy, J.P., "Automatic File Compression,"
International Computing Symposium 1973,
North-Holland Publishing Company, pp. 511-516.

Mulford, J.F. and R.K. Ridall, "Data Compression
Techniques for Economic Processing of Large
Commercial Files," ACM Proc. Symp. Information
Storage and Retrieval, 1971, pp. 207-215.

Myers, W., Townsend, M. and Townsend, T. "Data
Compression by Hardware or Software," Datamation,
April 1966, pp. 39-43.

Newman, William L. and Buchinski, Edwin Je,
"Entry/Title Compression Code Access to Machine
Readable Bibliographic Files," Journal of Library
Automation, June 1971, p. 2. ——

Olle, T.W., "Data Structures and Storage
Structures for Generalized File Processing,"
Proceedings of the FILE 68 International Seminar
on File Organization, Copenhagen, 1968, PP.
285-294,

Overbeek, R.A. and DeMaine, P.A.D., The Integral
Family of Reversible Compressors, The SOLID System
Report 2, Com. Sci. Dept, Pennsylvania State
University, 1972, 121 p.

Peterson, W.W. and Weldon, E.J., Error Correcting
Codes, MIT Press, 1972, 285 p.

Reza, F.M., An Introduction to Information Theory,
Chapter 4, McGraw-Hill, New York, 1961.

-47-

[RUBI76]

[RUTH72]

[SCHI71]

[SCHU73]

[SCHU74]

[SCHW63]

[SCHW64]

[SHAN48]

[{SMIT75]

[SNYD74]

[SOFT75]

[(THIE72]

[VILL71]

Rubin, Frank, "Experiments in Text File
Compression," Comm. ACM, 19, 11, November 1976.

Ruth, Stephen S. and Kreutzer, Paul J., "Data
Compression for Large Business File," Datamation,
September 1972, p. 62.

Schieber, William S. and Thomas, George W., "An
Algorithm for the Compaction of Alphanumeric
Data," Journal of Library Automation, 4,4,
December 1971, pp. 198-206.

Schuegraf, E.J. and Heaps, H.S., "Selection of
Equifrequent Word Fragments for 1Information
Retrieval," Inform. Stor. Retr., Vol. 9, Pergamon
Press 1973, pp. 697-711.

Schuegraf, E.J. and Heaps, H.S., "A Comparison of
Algorithms for Data Base Compression by the Use of
Fragments as Lanquage Elements," 1Infor. Stor.
Retr., 10, 1974, pp. 309-319.

Schwartz, E.S., "Dictionary for Minimum Redundancy
Encoding," Jour. ACM, 16,4, October 1963, pp.
413-439.

Schwartz, Eugene S. and Kallick, Bruce,
"Generating A Canonical Prefix Encoding," Comm.
ACM 7,3, March 1964, p. 166.

Shannon, C.E., "A Mathematical Theory of
Communication," Bell Syst. Tech. J., 1948, 27.

Smith, A.J., "Comments on a paper by T.C. Chen and
I.T. Ho," Comm. ACM 18,8, August 1975, pp. 463.

Snyderman, M. and Hunt, B., "the Myriad Virtues of
Text Compaction," Datamation, December 1970, p.
36.

Software AG ADABAS Reference Manual, Software AG
of North america, Reston, VA. 1975.

Thiel, L.H. and Heaps, H.S., "Program Design For
Retrospective Searches on Large Data Base,"
Informo Stor. Retr.’ 8' 1972, pp. l—2g.

Villers, J.J. and Ruth, S.R., Bibliography of Data
Compaction and Data Compression Literature with

Abstracts, 1971, Government Clearing House Study

AD 723525.

-42.

[WAGN73]

[WEID77]

[WELL72]

[ZIPF49]

Wagner, Robert A., "Common Phrases and
Minimum-Space Text Storage," Comm. ACM, 16, 3,
March 1973, pp. 148-152,

Weiderhold, Gio, Database Design, McGraw-Hill, New
York, N.Y. (1977) 658 p.

Wells, M., "File Compression Using Variable-Length
Encodings," Computer Journal, 15, 4, November
1972, pp. 308-313. \

Zipf, K.G., Human Behavior and the Principle of
Least Effort, An Introduction to Human Ecology,

Addison-Wesley, Reding, MA, 1949.

-43-

