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ABSTRACT

The problem of unknown a priori probability P(SN) is treated
by considering a zero-sum two-person geme, where the payoff to
the receiver player depends on correctly detecting signals in
noise, his opponent choosing the average "on the air" time, and
solutions for both players are determined. Completely unknown,
known within a range and randomly distributed a priori probability
cases are solved. Particular emphasis is placed on the solutions
for the receiver. 1In all instances these specify that the receiver
should be of the same type as that specified by EDG Technical Report
No. 13 The Theory of Signal Detectability which assumes the a priori
probability of a signal's presence is known. The correct operating
points of that receiver are specified.
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APPLICATION OF GAME THEORY TO SIGNAL DETECTABILITY

1. INTRODUCTION

1.1 Remarks
This report is supplementary to Electronic Defense Group Technical

Report No. 13, The Theory of Signal Detectability, Part I, in which the general

theory of signal detectability 1s treated. In establishing a definition of
optimum in that report, it was assumed whenever necessary that the a priori
probability that a signal be transmitted, P(SN), is known, If this assumption
does not hold, certain applications cannot be made directly. Several alternative
assumptions can be introduced to replace exact knowledge of P(SN). Each of these
is based on the idea of weighting the errors and correct responses of the receiver
and maximizing in some manner the average or total expected return from these

responses,

1.2 Purpose of a Game-Type Solution

The amount of basic theory drawn from the theory of games for this
report is very small. Primarily, only the definition of a solution of a two-
person zero-sum game is used, It is this definition and its practical value that

will be discussed briefly here,
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A two person game consists of the set of rules as to how each player
may move, and the rule for paying off at the end of each play of the.game. We
shall consider games in which each player picks an overall strategy, and the
reward to each of the players is given by a payoff function defined for each
possible pair of strategies. The game is zero sum when the payoff to one player
is the negative of the payoff to the other.

Consider the situation in which a‘particular player's objective can be
reduced to the desire to maximize a real function of two variables by controlling
the value of only one of these variasbles. This real function can be considered
as his "payoff."

The value of the second variable is unknown to him and may be controlled
by someone else. It is convenient to assume the latter, and therefore the person
in question is confronted with a hypothetical or real opponent, who controls one
of the variables of the payoff,

For example, let us assume that player A wishes to maximize the value
of the payoff V(a,p), and his opponent P wishes to minimize it. For each
possible value of p, A can pick his variable "a" so that V is maximized. In
general, this value of a is a function of p, that is, a = a(p). After this
maximization the payoff is solely a function of p, denoted by either V(a(p),p) or
max V(a,p). Player P can then decide which p to pick such that V(a(p),p) is a
minimum., Player P does this, and fixes his variable at the value p* accordingly.
One can evaluate the payoff V(a(p*),p*); if player A chooses the variable a =
a(p*) this will be the payoff, and if player A uses any other value of a, the
value of the payoff will not exceed V(a(p*),p*) since by definition a(p*) ylelds
a meximm, This can be condensed into the equation

V(a,p*) < V(a(p*), p*) = min max V(a,p) (1.1)
P a
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If the above procedure is reversed with player P picking the p(a) such
that p(a) minimizes V(a,p) for each fixed a, and then player A maximizes over
these values choosing a value a*, the result will be

max min V(a,p) = V(a*, p(a*)) < V(a*,p) (1.2)
a p

For the problem considered in this paper; a* = a(p*) and p* = p(a*), the result is
V(a,p¥) < V(a¥,p¥) < V(a*,p) (1.3)

This is interpreted as follows: calling (a*,p*) the solution, if A plays at the
solution and P does not, the value of the payoff is greater than at the solution,
and therefore P should have played at p* in order to minimize the value V;
conversely, if P plays at the solution and A does not, the payoff will be smaller,
and thus A should have played at a*, The solution is an equilibrium point; that
is, if both players play at the solution, neither will choose to change. It is
called an equilibrium point in order to contrast it with the jockeying for advant-
age that often occurs: first player A chooses a playing point, then player P
chooses his playing point with this in mind, then A changes his playing point to
take advantage of P's choice, ad infinitum,

Viewed by player A, playing at the solution guarantees him at least a
minimum payoff, and he may have even a larger payoff if player P does not choose
the solution value. It may well be the case that not only is P st some non-
solution value, but that if A knew this and acted accordingly he could realize
a tremendously larger payoff. However, gambling on this latter without real
knowledge of P's choice may have the effect of pulling the floor out from under
A; that is, he no longer can count on a guaranteed minimum and is liable to much

lower payoff value.
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The application in Section 2 is to let a player P, either real or
hypothetical, choose the a priori probability of there being a signal present.
The natural bounds on p are 0 < p £ 1 but any smaller bounds can also be chosen

(see Section 3).

1.3 The Problem

Assume an operator in the field has available a very versatile search
receiver, and he is faced with the task of maximizing the return from his opera-
tion of that receiver to detect signals of known character in the presence of
noise, It will be shown that this operator will require the same type of equip-
ment as an operator who knows the a priori probability in the same situation.

Values are attached to each possible action of the receiver operator,
and he wishes to obtain the largest average (or total) value. If the following
symbols are used to describe events:

SN - There is signal and noise present at the receiver input

N - There is only noise present at the receiver input .
A - The receiver operator says there is a signal present (-4

CA - The receiver operator says there is only noise present
then SN-A will represent the event of correét detection, and SN.CA, a miss;

NeA, a false alarm; and N<CA, a correct guess that no signal was present., These
are the four events that can occur, and to each is attached a value to the
receiver player as follows:

Value of correctly detecting a signal's presence

VoN.a

Value of correctly detecting that no signal was present

VN-ca
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Value of the error of missing a signal 1

i}

-Ksn-ca

Value of the error of falsely saying a signal was present

“Ky.a

The average or expected value obtained by the receiver operator. will
then be the sum of these values, weighted by the probability of the respective

events. This average is called simply the payoff value V, and

V = Vgg.s P(SN-A) + Vi oy P(N-CA) = Kgy,ca P(SN-CA) - K., P(N-A) (L.6)

2. THE GAME SOLUTION

2.1 The Game Defined

The receiver operator will consider himself as a player in a zero-sum,
two-person game, His opponent is equipped with a band-limited transmitter, and
he uses the receiver as a detection device. This is enough to allow him to use

the general theory presented in Technical Report EDG-13, The Theory of Signal

Detectability. Each move of the game cohsists of a transmission or no transmis-

sion for time T by the transmitter of one of a set of possible signals, and the
decision by the receiver player in sufficiently small delay time after this so
that the values specified.are independent of the delay. The game consists of a
large number of these moves, For example, T might be a second if listening for
Morse code, or a millisecond if looking for radar pulses, and one play of the game

would last for a watch, or for the duration of an attack by guided equipment.

1 The peculiar form -K as the value of an error is to emphasize that it is really
a loss., For example, if the values are in dollars and cents, and if the cost
to the receiver operator is $100 for each miss, then

Kew.ca = $100 or -Kgy.op = -$100




ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

The strategies are as dissimilar as the equipment. The player with the
transmitter may choose his average transmitting time, which in the receiver's
language is P(SN), the a priori probability that a sighal is transmitted. The
player with the receiver chooses the subset A of the receiver inputs that he
will call signal plus noise, that is, he chooses the "criterion" A. The entire
play is submerged in noise that is known equally well to both players by its p
probability density fuﬁction fN(X).:L Because the transmitter player chooses his
a priori probability only, the signal-plus-noise density funection fSN(X)l is made
known to both players. In order that the game be realistic, the trivial assump-
tion is made that the receiver operator gains less for either error than he gains
from a correct answer. This can be expressed as -K < V for eithef K and either
V, or 0O<K + V.,

The expected payoff to the receiver player is the average value V, and

to his opponent is -V,
V = Vgy.p P(SN+A) + Vy op P(N°CA) =Kgqy,p P(SNeCA) - Ko, P(N-A) (1.6)

Eq (1.6) can be greatly simplified by the use of conditional probabilities and

the fact that SN and N, A and CA are complimentary; that is

P(N) = 1 -P(SN) and P(A) = 1 - P(CA) (2.1)
Simply substituting so that the terms are in the same order as in (1.6) we have
Vo= Voy.p B(SN) Pey(a) + vy o0 [1- R(SW)] [ 2 - By(8)] Ky [2 - pgy(a)]

Ky.p [1 - P(SN)] Py(A) (2.2)

1 The existance of the density function is a basic assumption.
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It is convenient to split V into two payoff functions:

VO(A) = V when P(SN) =0 vl(A) =V when P(SN) = 1
V,(A) = VN.CA [1 -PN(A)] -KN.A PN(A) (2.3)
Vi(A) = Vgy.a Pey (A) Key.ca [1 -PSN(A)] (2.4)

Under the restriction that each value -K is less than each value V, neither of
these payoffs can dominate the other for all A. This is evident if we consider

first A = @, the empty setl:

Vi(#) = -Kgp.oa Vo(B) = Vg, o thus V(6) >V, (f)
and second, consider A as all receiver inputs, A = R:
Vl(R) = Venaa VO(R) = K. thus VO(R)< Vl(R) .

The payoff can then be written

V = P(SN) V (&) + [1 -P(SN)] v, (A) (2.5)

2.2 A Numerical Illustration

2.2.1 The Payoff. The ideas of payoff functions and min-max solutions
may be made much clearer by treating a particular numerical example before
considering general solutions. Therefore for the sake of example let us pick

values for the payoff,

To choose the empty set @ as a criterion means that the receiver operator will
never say there is a signal present, i.e., will always say there is noise
alone present. The reverse extreme is to choose the whole space R as a
criterion.
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Voyea = 7 Kopeon = 8
Ky = 0 Neea T 2

From (2.3) and (2.4) V, and V; are computed

v, (4)

2 [1 - PN(A)] - 6B (8) = 2 - 8py(a) (2.3n)

v, (8) TPy (A) - 8 [1 - pSN(A)] = 15 P (A) - 8 (2.hn)

The first forms above emphasize

22v0(A)2-6 72V0(A)2-8

We know from the general theory that for each value of PN(A), all possible values
of the probability of detection, PSN(A), lie in an interval, the bounds depending
on the types of signals and the noise. Therefore, further assume, again for the
sake of example only, that the signals and noise are such the points in the cross-
hatched area of Fig. 1 represents all of the possible combinations of the prob-

ability of detection PSN(A) and probability of false alarm PN(A).
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For the moment consider only those criteria A with a given false alarm
probability, say 40 per cent. From Fig. 1 the limits on probability of detection
are seen to renge roughly from 11 per cent to T6 per cent. VO(A) depends only on
the probability of false alarm and is this case V,(A) = -1.20 for all the
criteria with 40 per cent false alarm. However, Vl(A) ranges from -6.35 to 3.k40.

Two criteria of interest are those that take on these values:

Pox{Aa)
Poy(4p)

By restricting our attention to these special criteria A, and Aﬂ , we can plot

[}

.40 and

A1,  P(4)

.76, PN(AB) = Jo .

the payoff V as a function of the probability of false alarm and the a priori

probsbility P(SN). Egq (2.5)shows that V is a linearly combination of V,(A) and
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Vl(A).< Plotting V,(A) against PN(A) yields a straight line from V. at

N-CA
Py(A) = 0 to —Ky.p at Py(A) = 1. Plotting Vy(4y) and V;(Ag) against Py(a)
yields 2 curves, Vl(ﬁz) below Vl(AB)’ both from Koy .cp Vhen PN(A) =0 to Van.a
when PN(A) = 1. If these two plots are made on parallel planes and corresponding
parts (same PN(A)) connected by straight lines, the resulting surface will enclose
a volume representing all possible values of the payoff V.

Because the receiver operator can always operate on the upper surface
of this payoff volume by using A!3 type criteria, he will certainly do so in order
to maximize the payoff. This upper surface will be referred to as the receiver's
upper payoff surface, and for the numerical case in question is shown in Fig. 2.
Figure 2a is a general view of the upper payoff surface. Four curves of special
interest are indicated on the orthogonal projections. In Figures 2c and 24 it is
apparent that there is a horizontal line on the the surface parallel to the P(SN)

axis; this is marked (1) in Figures 2b, 2c, and 2d. The curve marked (2) has

constant P(SN) and is a maximum when it crosses curve (1). Iater, Fig. 3

on page 12 will show the maximum value of V for each fixed value of P(SN); the
maximum values occur along the dotted curve marked (3) in Figure 2b. Figure 3
is actually this curve as it would appear in projection 2¢. The final curve
consists of the horizontal line (1) and the 2 pleces of curves marked (4); along
this curve is the minimum value of V for each fixed value of Py(A), the analog
of curve (3).

2.2.,2 Solution of the Numerical Case. We have argued in 2,2,1 that

the receiver operator would use criteria on the upper curve of Fig. 1. The

10
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question of which point on this upper curve to use would be answered by equation

(1.6) of The Theory of Signal Detectability if P(SN) were known: use that point
1

with slope ;
P _ 1-p(sN) VN-CA*Ky.A _ 8 1-p(sW)

P(SN)  Vgy, * Kegugp 0 FCON)

Using this equation, Fig. 1, and the equations for V, and Vl -(2.3n)
and (2.3n) — V can be computed as a function of P(SN) only. This is shown in
Fig. 3. The minimum is at approximately P(SN) = .28, V = .40, The receiver
solution can then be obtained by determining B, B = %3 f%gz = 1.4, and from Fig. 1
the point on the upper bound with slope 1.4 is PN(A) = .20 and PSN(A) = 56,

This graphical method of solution is straight forward, but is useful
only for particular solutions. Section 2.3 and 2,6 derive general solutions that

are easily applied.

Vsn-a /
6 4
] //
% 4 //
od
£ 3 //////
Vn-ca //
I //
0 2 . 6 8 1.0
P(SN)
FIG 3

THE MAXIMUM VALUE OF THE PAYOFF V
FOR KNOWN A PRIORI PROBABILITY P(SN)

1 This equation is introduced in EDG TR-13 in section 1.4, Theorems 1 and 7 prove
that it applies to the upper curve, and Theorem 8 proves that B is the slope of
the tangeng .

12
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2.3 The General Receiver Solution

2,3,1 Derivation and Proof of Solution. The solution of the game is

defined by the min-max relation: if P(SN) = p* and criterion A¥* are solutions,

then V(A*,p*) = min max V = max min V.
: P(SN) A A P(sN)

If we choose to minimize over P(SN) = p first, we observe from (2.5) that for
any fixed A the payoff is linear in p and therefore 0V/d p is a constant., Since
the transmitter wishes to minimize V by choosing the proper p for each A, he will
choose p either O or 1 except for those A such that V is independent of P(SN),

i.,e., unless JZ! =0 .
op Ip

If p* = 0 were the solution, Eq (1.3) would be
VO(A) < VO(A*) < V(A*, p) for all p

vwhere A¥* is the corresponding solution for the receiver. The left hand in-
equality implies that A* = @, the empty set . If p = 1 is used for the right hand

inequality, this becomes

v, (9) < v,(9)

which is simply . Vyeoa S Ksyeon

contrary to that assumption that V + K2 0. A similar contradiction arises if

p* = 1 is tried as a solution. Therefore, a solution can be obtained only if

5—% = 0. By inspection of (2.5) this is simply the equality of V, and V;. The
above argument can be summarized formally.

Theorem 1. A necessary condition that A be an optimum criterion in this game is

Von.n Pon(A) - Koo [1 - Pey(A)] = Vyeea [1 - Py(8)] - Ky, Py(a). (2.68)

13
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An equivalent formulation is

Pon(®) [Vowa* Foweca] * P [Vyuoa * Kyal= Vica * Ko  (260)

Theorem 1 gives only a necessary condition for a solution; there may be
many criteria for which Eq (2.6) holds. The optimum criterion satisfies this
condition with the maximum velue of V, that is,‘with the largest common value Vb =
Vl' The problem is to determine the criterion A such that (2.6) holds and that A
maximizes PSN(A) [ Voga * KSN-GA] - KSN‘CA' The assumption that [VSN°A +
KéN-CA] > 0 simplifies this to the requirement that A maximize PSN(A). Thus the
optimum criterion satisfies (2.6) and has maximum PSN(A) with respect to all other
others that satisfy (2.6).

Because all of the bracketed quantities in (2.6b) are positive, it is

convenient to introduce two parameters, &y and ¢, where

e = [ V.o * KN.A]//[VSN-A * KSN-CA] (2.7)
Gy = [VN-CA + KSN-CA]/[VSN-A + KSN~CA]
and (2.6b) becomes
PSN(A) + oy PN(A) = 0y (2.6¢)

The general theory of signal detectability specifies that the optimum
receiver for the three general definitions of "optimum" considered in Technical
Report EDG-13 can be achieved by a receiver that has as its output the likelihood
ratio of its input, and that if the noise is analytic the only way to achieve the
optimum is for the output to be the likelihood ratio of the input, or some strict-
1y monotone function of the likelihood ratio. For each input x(t) the likelihood

ratio is defined as the ratio of the probability density functions

14
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1x) = foy(x) /£ (x) (2.8)

and the operator will say that there is signal plus noise present whenever the
output ié above a predetermined operating level ﬁ.

Because the definition of ﬁoptimum" is slightly different in this game
case from those considered previously the theory cannot immediately be applied to
show that such a receiver is the optimum for the game. However, such a receiver
is worthy of special consideration as a trial solution, and criteria associated
with it are given the special notation A(B), where B is the operating level. In
a case where the.noise is analytic, the set of points with likelihood ratio
exactly equal to the boundary value B is a set of probability zero, and therefore
of no consequence. A more general consideration than analytic noise may require
consideration of the boundary. For this reason any criterion A which is like
the set A(P) but includes either all, part or none of the boundary, is called an
Al(B). Obviously every A(B) is an A;(B) but not conversely.

The solution to the game is found by proving the following statement.
Theorem 2 If there is a value of p such that some criterion A is both an A ()
and satisfies (2.6), then A is a receiver solution.

This is seen if any other criterion B that satisfies the necessary

condition (2.6) is compared with A. Split both A and B into their

common part and the remainders:t
B = (BNA)U (B -4)

A = (BNA)U(A -B)
For the common part and for A-B, since both are subsets of A,

L (x)2 B; in B - A, £(x) < B. From (2.6c) then we have

@y = Pgy(BNA) + Pgy(B - A) + a) By(BNA) + o Pu(B - A)

1l ¢ND is the common part of criteria C and D. CUD is the criterion
consisting of both C and D.

15



ENGINEERING RESEARCH INSTITUTE < UNIVERSITY OF MICHIGAN —
a, = Pgy(BNA) + PSN(A - B) + o, PN(BnA) + o PN(A - B).
Equating and canceling the effect of the common part,

PSN(B -A) + a, PN(B -A) = PSN(A -B) + PN(A - B) (2.9)

In integral form this is

ﬂfSN(x) + ql fN(x)} dx = /[fSN(x) +ay fN(x)] ax ,

B-A A-B

and factoring out fN(x) in the integrand

/fN(x) [l(x) +al] dx = /:E“N(x) [l(x) +Otl] ax .

B -A A -B
Now on the left, £(x) + alS B + s and on the right £(x) + alZﬁ +0p.

for 4(x) +a

Therefore substitute p + C on both sides (and then cancel

1 1l
this constant factor); the left side dominates the right.

/fN(x) dx Z/fN(x) dx
B-A A -B

These integrals are the false alarm probabilities on the difference sets
B -Aand A -B.

PN(B -A) > PN(A - B). (2.10)

This result and equation (2.9) yield

PSN(B - A) < PSN(A - B)

and the proof is completed by adding PSN(BnA) to both sides to obtain

the inequality
PSN(B) < PSN(A) (2.11)

16
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Thus the receiver solution is the Al(B) that satisfies (2.6), and no other
criterion satisfying (2.6) has a larger value of PSN(A), and therefore no other
criterion satisfying Theorem 1 has a larger payoff V.

Since Al(ﬁ) also lead to the upper payoff surface, the argument‘of
Section 2.2 is now completely Jjustified.

2.3.,2 Existence, If it could be shown that for all possible pairs of

positive numbers (@q, @) the hypothesis of Theorem 2 is met then the solution
would be complete. We can restrict our attention to

0< Q, S1+oy (2.12)
by definition of @; and Q5.

Consider: L(B) = Pgu(A(B)) + o PN(A(s)) (2.13)

If B, <Bp then L(Bl) > L(BQ). This is true because all of the points with

0(x) 2 B, have L(x) > Bl, and additional points do not decrease L., If there is
no f such that L(B) = ael, (this is Eq (2.6c)), there will be some value of B,
call it B*, such that L(g*) > @, and for all larger values L(B) < Qy. This
situation is sketched in Fig. L.

The drop in L(B) is due to those points with likelihood ratio equal
to B*, Since for any P > p*, the criterion A(B) is so small that L(B) < a, we
use an Al(ﬁ) such that L(B*) = o, , that is, since L(B*) > a, , we remove just
enough points of likelihood ratio B* from A(B*). We can certainly do this
whenever probability density functions exist .2 Thus, if there is no B such that

an A(B) satisfies (2.6c), there is a p such that a slight modification does.

1 This trouble cannot arise if the noise is analytic. See EDG Technical Report

No. 13, Appendix B.
2 See EDG Technical Report No. 13, Part I, Lemma 4, p. 4O,

17
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L(B)
)

| + q,

L(B%)
Q.

FIG 4
EXAMPLE OF DISCONTINUOUS L(B)

2.3.3 Summary. The receiver solution specifies that the receiver

should have as its output the function £(x), the likelihood ratio of its input x.

If we compare this game with the first type of optimum in The Theory of Signal

Detectability which arose from the same payoff but for known a priori prob-

ability P(SN), we have a good example of how game-theory and probability can
complement each other in the treatment of a problem.

When P(SN) is known, the payoff is maximized by using the bias level

-+ K
g = 1= P(SN) weoa " WA 1 - p(sm) o (2.14)
P(SN) Vem.a * Xsy.ca P(SN)

Obviously, knowledge of P(SN) is paramount., Lacking that knowledge, a best "safe"
value of B is yielded by the game: P such that '

where @, and @, are defined by Eq (2.7) .

1
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It is "safe" beéause the payoff is made independent of the value of P(SN), and
it is the best because it yields the maximum payoff over all other safe values.
For any different criterion the opponent can lower the payoff below this "best
safe” value. However, if P(SN) is known, playing the game solution will not be
better than the solution given by (2.14) and will be worse unless the f's luckily
coincide,

Thus, the receiver is always designed to transform each input x = x(t)
into the output £(x). Then either probability or game solutions determine the
level B depending on knowledge or lack of knowledge of P(SN).

2.3.4 Use of Receiver Operating Characteristics Curves to Obtain

Particular Solutions. For those who are not familiar with the notion of a

receiver operating characteristic the following may help to explain it énd its
usefulness. The ROC curve is a graph of PSN(A) vs PN(A) for all Al(B) criteria.
It is often drawn together with the graph of its slope. A typical Rob curve is
(1) in Fig. 5a; the diagonal marked (2) represents the effect of ignoring the
receiver and guessing; the curve (3) is simply the first curve rotated about
the (.5, .5) point and is useful in theory because the area between (1) and (3)
inclusive contains all of the possible combination of PSN(A), PN(A) for any
paiticular situation (i. e., fixed types of signals and noise and their energies,
fixed observation time, etc.) and therefore any receiver of any type is represent-
ed by a curve in this area.

Equation (2.6c) can be plotted on the R.0.C.; it is a straight line
from (0, &,) with slope -<@;. Thus all of the points on this straight line and
between or on curves (1) and (3) represent passible receivers that satisfy the

necessary condition ‘
Poy(A) +a, P(A) = a, . (2.6¢c)
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Obviously the intersection with curve (1) yields a maximum value of PSN(A)

among these, For example, if the ROC is as in Fig. 5, and if Qy'= .9, a, = D,
the solution is obtained in Fig. 5b. From that graph we read PN(A) = 33,
PSN(A) = .Th, and A = A(.55), i.e., the optimum receiver which generates likeli-

hood ratio should be set at an output bias level of .55.

2.4 The General Transmitter Solution

2.4,1 A Point Solution. A solution can be obtained for the trans-

mitter if we maximize first over A and then minimize with respect to P(SN). The
maximization restricts the receiver so that PSN(A) and PN(A) lie along the
receiver operating characteristic with the operating level a function of P(SN),
Eq (2.14). Further, if PN(A) is considered as the independent variable, the
slope of the curve at any point is the value of the operating level associated
with that point., Call the solution for the receiver operating level BS. The
existence of a min-max solution requires that this ﬁs maximize V for P at his
solution, and therefore the derivative of V with respect to the receiver will be

zero at the solution. Recalling

Vo= P(SN)V + (L-R(SN)V, , (2.5)
Yo = VN.ca '[VN-CA * KN.A]PN(A) ’ (2.3)
Vp = [ Vg KSN-A] Pgy(A) = Kgyep (2.4)

we form

a%:;ﬁ)_ = P(SN) [ Vgy., * Kgyop| B - (- B(SM) [ Vyop +Kga] (215

and letting 0V __-o0,8 = and
Sea 0 PP
V + Ky. a
P(SN) = N-CA = N-A . = (2.16)
[ Vewen * Kowea] Bs *[Vieca * Ko Bgtay
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Note that if (2.16) is solved for Bg that

_ 1-PB(SN)
Ps __(_L)_PSN' 1
checking the fact that (2.16) yields an equilibrium point, for if the transmitter

P chooses P(SN) = %1 and tells the receiver, the receiver will not
BS + al
change from the point at which he is already operating (based on no knowledge of

P(SN)).

2.4.2 Uniqueness of the Receiver Solution. In section 2.2 a solution

to a game with payoff V(p) was defined as an equilibrium point (a*, p*) such
that Eq (1.3) held.

V(a, p*) < V(a*, p*) < V(a¥, p) (1.3)
This implies that the solution shall consist of a single criterion A and a
constant value of P(SN), and such solutions were obtained. Actually this is only
one manner of playing the game. It is the simplest manner of play, and V¥ =
V(A(BS), EZ:E;BE) is the unique value of the game, since the receiver can

actually attain a payoff V¥ by using A(BS) while the transmitter can act to hold

o
the value down to this level by letting P(SN) = 5 ﬂ; . There may however be
s
equally advantageous manners of playing of a more complex type; namely, where the
players choose probability distributions for their respective variables instead

of simple solutions. The modified form of Eq (1.3) is then

V(F, 6*) < V(Fxa*) < V(F*, G) (2.17)

wh
- V(r, c) = f f V(a, p) dF(a) dc(p)

and F¥*, G* are optimum distributions. This is nothing more than averaging over

the various combinations that occur. It is assumed that the two variables are
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independent, that is, although whether the receiver operator decides to say
"yes, there is signal plus noise" or not is dependent on whether a signal was
actually present or not, the criterion for deciding is independent of the
instantaneous (unknown to the receiver) a priori probability of these being a
signal present.

One optimum distribution G* for the transmitter is that already

a
obtained: to let P(SN) be exactly —L__ . Eq (2.17) then becomes

/v<a, o >dF(a) < v s//i(a,p) dF*(a) dG(p) (2.18)
Bgt0y

Letting G(p) = G*(p) and restricting our attention to AI(B) type criterion, the

right hand inequality becomes a necessary condition for any candidate for an

optimal distribution H*(B) for the receiver

(o
1
V*S/ VIA(B), du*(g) . (2.19)
BS+ al
(o]
If the value P(SN) = ; 1 15 used in Eq (2.15)for the derivative of V with
sty
respect to the false alarm rate the result simplifies to
o
V(A (B), —=—
i ﬁswzl> [VN-CA * KN-A] [VSN~A * KSN°CA]
= (8 - 8g) (2.20)
6PN(A) [VSN.A + Ksm-c.b.] [65 + VN.CA + KN°A]
Because
Q] o
oV (A ov| A —
1(B),ES"al l(ﬁ): Bgtoy a PN(Al(B))
aB 0P (A1 (B)) apg
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vwhere the second factor is always negative v will have the same sign
? aPN(Ai

as (BS-B), and V has a unique maximum of B = BS.‘ This means, of course, that

(o]
v > V(A (@B), o for B # B
(2.21)
- o
V% =V (Al(ﬁ), 5s*°‘1> for B = Bg

The only way that (2.19) can be satisfied is for H*(B) to be a step function at
g = BS , that is, for the receiver to use the ceriterion Al(Bs) and not vary from
that in any manner.

2.4.3 Distribution Solutions, Non-Uniqueness of Transmitter Solution.,

Let us now allow the transmitter player to use a distribution for the a priori
probability. Because both the value of the game V* and the receivers unique
solution are known, the defining equation of a solution, Eq (2.17) is greatly
simplified. The right hand inequality is automatically satisfied by the receiver

solution and the left hand inequality becomes

Jf va @), ») acx(p)an(p) < v« (2.22)

where G*(p) is an optimum solution for the transmitter and H(B) is any distribution
for the receiver (not necessarily optimum). This can be simplified to requiring
that
J v (ay(e), ») aex(p) < V* for a1l p (2.23)
because if (2.23) holds so does (2.22); and if (2.23) does not hold, say for
B = p*, then H(B) can be a step function at p = f* and (2.22) would not hold.

Because for fixed f the value V is a linear combination of V, and V;,

V(A1(B), p) = pVi(4;(B)) + (1 - p) V,(4,(8))

2k
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Eq (2.23) became

[ deG*(P)} + 1(8)) [ fpdG* ]< V¥ for all B (2.24)

In the previous section it was shown that

ay
V(A l(6), b <y for all B (2.21)
That 1is,
o Qq
Vi(a (B)) —— + Vi (Ay(B)) [1-—= | < V¥ forallp
Psty Bty

Thus any distribution G*(p) with the correct mean value

Al

fpdG*(p) Ty (2.25)

will satisfy the necessary and sufficient condition (2.23) and therefore (2.22)

and is therefore an optimum solution equivalent to

P(SN) = 59-’%-1- (2.26)

2.5 The General Solutions Applied to the Numerical Illustration

Let us assume that the nature of the signal and noise are such that the
receiver operating characteristic is Fig. 6, e.g., d = 1. This particular operat-

ing characteristic occurs repeatedly in detectability. For payoff values, let

Vonen = #7 Key.ca = -$8
Ky.a = -$6 Vn.ea = %2

per unit time T. These are the values used in constructing the model, Fig. 2.
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If the receiver were dead, the best possible thing for the operator to
do is given by the usual game solution for independent processes found by the

intersection of (2.6c) and the diagonal, and P(SN) = al/(l tog):

P(SN) = 348 P(A) = U35 V= -2.478
and the best the receiver operator can do against a smart transmitter is to say
there is signal plus noise 43,5 per cent of the time and to lose $2.48 per unit
time,
However, with a receiver operating, the transmitter still uses a random
process, but the receiver player is no longer independent of the tramsmitter. To

obtain the receiver solution, compute

2+ 8 a2 2+ 8
ap = 3" 2/3 o = 54 =125 o) = 8/15

Plotting (2.6c) on the ROC we can obtain the solutions from the inter-

(0]
section of (2.6¢) and the curve d = 1, and P(SN) = E-f%i;— . Using the inter-
S 1
section of (2.6c) and d = 1 yields
PSN(A) = .56 PN(A) = .20

and the slope of the curve gives the associated Bg = 1.40. From these and

P(SN) = o /Bg + o

P(SN) = — 23D 27586 , Vo= o
1.4+ .5%3

Thus operating the receiver has forced a reduction of P(SN) from 35
per cent to 28 per cent and increased the payoff from a cost of $2.48 per unit
time to a gain of $.40 per unit time. This change has been accomplished with very

poor reception.

27
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In a similar fashion, if the reception is characterized by d = 4, the

intersection of d = 4 and (2.6c) yields

]
(S}

PSN(A) = .64 PN(A) = .056 )

and therefore ‘
P(sN) = ,1818 vV = 1.55

2.6 Limiting Cases as Detection Improves

It might appear from the example that as detection improves (due to a
decrease of noise or increased signal energy, observation time or other reason)
that false alarm probebility and a priori probability both go to zero. Actually,
this is always the case when Van.A > VN.CAe

The solution to the receiver is obtained by the intersection of V,(A,(B))

T 3 s .
and Vl(Al(ﬁ)). Now V_ is & linear function of PN(A) decreasing from VN-CA to
-KN A independent of the perfection of the detection. Cn the other hand, vy
increases monotonicly from -KSN-CA to VSN~A and as detection improves the rise
becomes sharper.

If VSN.A >'VN°CA’ the intersection will occur at a value slightly less
than that of the smaller, Vy ., and therefore for a very small value of Py(A),

1
and thus large values of B. The level P normally isunbounded, and therefore as
B becomes larger and larger, the a priori probability P(SN) will approach zero.

If V VN-CA’ the intersection will occur when v, is slightly

SN.A
smaller than VSN-A‘ Using the linearity of VO the PN(A) at the solution is yion

slightly greater than

\ \

SN.A ~ 'N.CA

Vyoca * Kyea

PN(A) =

1
See examples in Technical Report, EDG No. 13, Part II. All those considered
require -0 for PN(A)—* 0 for any degree of detection.
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For any fixed felse alarm rate, as detection improves, the operating level B

1 and therefore P(SN) approaches one.

normally approaches zero
Obviously VSN*A = VN-CA must be treated separately énd more carefully

because slightly to either side P(SN) goes to zero or to one. One special case

of interest is that of Fig. 4.l of EDG Technical Report No. 13 in which the

ROC curves are symmetric., A straight line PSN(A) + PN(A) = 1 intersects all of

the ROC curves at B = 1 while a straight line PSN(A) +Qy PN(A) = 1 intersects

either increasingly larger or decreasingly smaller values of B depending on

whether ¢ is greater than or less than one.

The limiting cases are summarized in Table I.

*
CASE B, |P(sN) P (A) P, (A) V
\Y + K
N-cA” "sn-A
Vsn-a>Vy.car <@ 0 V. +K 0 Vn-ca
SN-A” "sN-A
Vv =V a,=1| ? ?
sn-a " Vnecar @2 .
! 0 Vsn-a® Vn.ca
£né NORMAL © 0
Ksn-ca<Kn-a
/nd NORMAL DL
- 2
Ksn-ca*Kn-a
£nd NORMAL | o5 | |
Ken.ca”®n.a
Vv, -V
Vena< Vy.aa s @>1 | O | | ! ShA__NCA .
sN-A< YN-car P2 Vena + Koneca SN-A

TABLE |. LIMITING VALUES AS DETECTION IMPROVES.

lSee examples in Tech. Report. EDG No. 13, Part II, Fig. 4.5 wh?re p—Bg >0
as PN(A)—* 1 for any realizable detection, but ﬁs—*o as detection improves.
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3. SOLUTIONS WHEN INFORMATION IS AVAIIABLE

There méy be instances in which the receiver operator has some
information about the a priori probability but not complete knowledge of the

value of P(SN).

3.1 A Priori Probability Restricted to a Known Interval

In Section 2 it was assumed that P(SN) could take on all values betwéen
zero and one. This may very well not be the case; in fact, the range of P(SN)

may be very narrow. Therefore let us assume that

0<p < P(SN)<p_ <1 (%3.1)

and a game-type solution is desired.

The solution to this is readily obtained. When P, = 0 and P = 1 we
used the fact thet neither V(p,) nor V(pl) dominated the other for all criteria,
and therefore the solution was interior, i.e., was given by a criterion A that
was neither the empty set nor the set of all inputs, and by a priori probability
that was neither p, = O nor Py = 1. Now if the game solution for the transmitter

for the cése when P(SN) was allowed to range from zero to one is within the limits

of intereét o
P,< E;j::;; <P (3.2)

then the solutions are precisely the same to both receiver and transmitter, as

in Section 2. This is apparent when we observe that at the solution in Section 2

the min-mex relation held for all a priori probebilities and all criteria, and

therefore it still holds for restricted values as long as the solution is among

these restricted values. This applies to both types of transmitter solution.
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If the game solution for P(SN) falls outside of the range of interest,
that solution can still be used to obtain a solution within the range of interest.
First, we observe that at all times the receiver player will aée a likelihood
ratio type receiver, because the solution must be stable, and whatever the solu-
tion value p of the a priori probability the receiver solution will satisfy (2.1Y)
that is, be a likelihood ratio type receiver with B = ;§E<Jl. Second, we observe
that there was a unique value of B such that Vo = Vi namely, the game solution
value given in Section 2,3 and correspondingly a unique value for the solution
for the a priori probability. Thus for only this value of P(SN) does the
corresponding B yield V0 = Vy. Because the payoff surface is continuous, in any
restricted range of a priori probability not containing this unique solution

either V, dominates V, throughout, or Vl dominates V0 together.
a1

ﬁs"'al
vhether Vo dominates Vl or vice versa, we can try at any point, for example,

Consider an interval such as 0 < p< p;< « To determine

p =0, If p =0, the corresponding optimum criterion is the empty set ¢, and we

have previously seen that for the empty set V0 dominates Vl. Thus for any
o) p
1 - 1l - )

V(A) = p V() + (1-p)V(a) (2.5)

and using the dominance Vo(Al ®)) - Vl(Al(B))>'O we can rewrite V as

V(A (B)) =V (A () - p [vo(Al(e) - vl(Al(s)] (3.3)
Q
for all B associated with p<.___;£_.. Therefore if the range of a priori prob-
ﬂs + al
ability is restricted to
!
< p<
PoS PSP < v, (3.4)
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by using the min-max principle we can consider A as fixed end minimize first

with respect to p, which in all cases will result in the choice

P = p | (3.5)
and then maximizing over A yields correspondingly
1l - Pl
p = al (3.6)
151
Cbnversely if
A <P<D (3.7)
BS + al PO—- = Fl .7
the dual argument yields
P =D (3.8)
o
and correspondingly
l-p
Po

Summarizing the arguments, since either order of maximization and minimization
leads to the same result, we observe that maximizing first with respect to A
would cause the receiver to be of the likelihood ratio type operating on a

1

minimization over p is carried out first, for all those criteria on the range

portion of the ROC where V, dominated V, throughout (or vice versa)., If the

of the ROC indicated above the same extreme value P, (or po) is chosen and

therefore is independent of the choice of A in the subsequent maximization.

3.2 A Priori Probability a Random Variable With Known Mean

It was shown in Section 2.4,% that any distribution of a priori prob-
ability with the proper mean was a transmitter solution, and correspondingly the
receiver has no choice but to use Al(ﬁs), the unique solution, as criteria.

(0

- - 1
It may occur that the mean is known to be p. If p is a g then knowing this
1

2
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is of no value to the receiver. This is why the game solution (to the trans-
mitter) is called "equilibrium". Suppose that p is not this equilibrium value.

The receiver wishes to maximize V (H(B), G(p)), the‘average payoff.

(g, ¢) = ffV(Al(a),p) a6(p)aH(e)

for a fixed B, as in Section 2.k4.3

Joia,)m) acte) = vy(a6) [pa6(e) + Vo(y(6)) - Vo(ay(8)) [ pac(p)

=p v (4(8)) + (1-D) V,(p))
Because this is maximized as in Eq (2.1k4) by
p = =P o (3.10)

the average payoff V(H,G) will be maximized by the trivial distribution H that
has a jump at B - i,e., the receiver should use an Al(l‘£?£‘21> criterion.
Although this is what would be expected, it is importantpin that it points up the
fact that the recelver operator is unable to make use of any information about
the transmitters distribution other than its mean, in order to maximize the

average payoff V(H,G).

L, SUMMARY OF SOLUTIONS

The optimum receiver for the cases considered is, as in EDG Technical
Report No. 1%, that receiver that has as its output the likelihood ratio function
of its input.

1) If the a priori probability may range from zero to one, the operat-

ing level Bg of such a receiver (that is, the bias level such that if the output

%5
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exceeds the bias, it is profitable to say there was a signal present) is

ad justed so that

Poy(A1(Bg)) + 0yPy(A (Bg)) = @ (2.6¢)

where ay and @, are constants depending on*the various values placed on the

possible responses, Eq (2.7). The solution for a priori probability is

)
Bg +ag (2.15)

P(SN) =

The receiver operating characteristic, a plot of Pgy(A) vs Py(A), is a convenient
device for solving for both Bg and P(SN).

2) If the a priori probability is restricted to range from P, to P
inclusive, the transmitter solution is given by (2.15) if that value is between
P, and Pys oOT is as close that value as possible, and the receiver solution is
accordingly

_ 1 - P(sN)
g = SR 4 (2.1%)

3) If the a priori probability is a random variable with known mean

value, then the receiver solution is

p = Lz2 @ (3.10)

D

As a consequence of the min-max principle, the optimum value of S is

%

o=
Bg + 0

Any distribution of a priori probability with this mean value is an optimum

distribution from the anti-detection viewpoint. This allows the transmitter

considerable freedom to achieve other purposes.

bl



LIST OF SYMBOLS

A The event "The operator says there is signal plus noise present,"”
or a criterion, i.e., the set of receiver inputs for which the
operator says there is a signal present.’

A(B) The criterion of all receiver inputs with likelihood ratio not
less than B.

Ay(B) Any criterion differing from A(B) only on receiver inputs with
likelihood ratio equal to B.

ANB The common part of criteria A and B.

A-B All receiver inputs in A but not in B.

CA The event "The operator says there is noise alone."

fN(x) The probability density for points x in R if there is noise alone.

féN(x) The probability density for points x in R if there is signal plus
noise,

F(a), F*(a) A probability distribution function associated with the receiver's
strategy.

G(p), G*(p) A probability distribution function associated with the transmitter's
strategy.

H(B), H*(B) A probability distribution function associated with a likelihood
ratio receivers strategy.

KN-CA Value of the error of falsely saying a signal was present.

K Value of the error of missing a signal.

SN.CA £ (%)

£(x) The likelihood ratio for the receiver input x. f(x) = SN .

! fN(X)

L(g) L(g) = Pou(A(B)) + 0y PN(A(ﬁ))

N The event "there is noise alone."

P(SN), p A priori probability of a signal being transmitted.

Po’ Py Bounds on p.

P The average value of p.

Py(A) The probability that the operastor will say there is signal plus

noise if there is noise alone, i.e., the false alarm probability.

25



PSN(A)

SN
T

v, V(a,p)
v (4)
v1(a)
V(F,G)

V*

The probability that the operator will say there 1s signal

plus noise if there is signal plus noise, i.e., the probability

of detection.

The space of all receiver inputs; as a criterion R indicates the

receiver always indicates a signal is present.

The event "There is signal plus noise."

The unit of time of transmission; the duration of the observation.

The payoff function for fixed strategies.

The payoff when p = 0.

1}

The payoff when p = 1.

The payoff function for distributed strategies.
The value of the payoff function at the solution.
Value of correctly detecting a signal's presence.

Value of correctly detecting that no signal was present.

A receiver input x(t).

<1 [VN-CA + KN'A]///[VSN-A + KSN.CA]
2 ~ [VN.CA ¥ KSN-CAl/q&SN.A y KSN.CA]

The optimum operating level of a likelihood ratio receiver.

1}

o

The empty set; as a criterion @ indicates the receiver never
indicetes a signal is present.

Note: An * usually indicates optimum or solution functions or values.
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