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FOREWORD

In this paper Mr. Birdsall has undertaken the study of a
problem the solution of which promises to extend the usefulness of the
theory of signal detectability as a tool in psychophysical investiga-
tions. The problem is that of the behavior of a receiver which has a
noisy memory: it "knows" the signal it is looking for only approxi-
mately, not precisely.

Up to the present time, mathematical studies of the detecta-
bility of signals have assumed perfect memories for the receivers.
These studies consider cases wherein the receiver "acts" as if it could
reproduce a template of a signal specified exactly at the transmitter.
This template agrees with the transmitted signal in every detail. The
waveform recorded on the template, its amplitude, starting time, and
phase all agree precisely with the signal. The receiver can then com-
pute a cross-correlation between the template and the input waveform,
vhich may consist of either noise alone or signal plus noise. This
cross-correlation constitutes the datum necessary for making the optimum
decision regarding that waveform: either it contains a signal or it
does not.

It should be obvious to all familiar with statistics that, if
the template were an inexact copy, or if it had noise added to it, a
lower correlation would result on the average, and performance of the
receiver would suffer. In this case both variables have an error compo-
nent, while in the cases previously studied, one of the variables, the

template recording, is noiseless.
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One might say that Mr. Birdsall is investigating the case of
the noisy template. If one knows that the receiver template is noisy,
how should the inputs be processed? Should one compute cross-correlations,
or should a different analysis be made? It turns out that if the tem-
plate is not very noisy, the receiver should compute the cross-correlation,
while if it is very noisy it should integrate the energy at the input.

While the study has implications in many fields, it is only
the applications to psychophysics that are discussed here. It is obvious
that human beings do not have perfect memories. They all have noisy tem-
plates. Mr. Birdsall's paper is directed toward the understanding of
receivers with noisy templates, and since the human observer falls within
that class it is hoped that the results obtained will help account for
the form human data assume.

One important conclusion evolving from this study is that
memory noise cannot be treated as noise added to the input. It has a
nonlinear effect which must be taken into account in the interpretation
of psychophysical data.

It is true that the scope of the specific example treated in
the paper is limited. Even so, the resulting curves will aid in inter-
preting data and in achieving a better understanding of the problems

encountered in psychophysical experiments.
Wilson P. Tanner, Jr.

Ann Arbor, Michigan
October 15, 1959
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ABSTRACT

This report treats the optimization problem of detect-
ing the presence of a signal in a background of white Gaussian
noise, under the restriction that the signal is specified
exactly but the receiver memory contains only a noisy version
of the signal. The optimum receiver is specified. The per-
formances of both the optimum receiver and the crosscorrelation
receiver with a noisy memory are calculated and compared for
& special case.
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DETECTION OF A SIGNAL SPECIFIED EXACTLY

WITH A NOISY STORED REFERENCE SIGNAL

1. INTRODUCTION

This analysis deals with the detection of a signal specified
exactly (SSE) but not known exactly by the receiver. From the presenta-
tion standpoint the problem is identical to the elementary signal known
exactly (SKE), but from the receiver standpoint the expected signal is
distributed. The specific case analyzed is that wherein the receiver
has a stored signal s(t) which differs from the true signal S(t) by
band-limited white Gaussian noise. The reception is similarly corrupt-
ed by band-limited white Gaussian noise, which is independent of the
internal storage noise. The analysis of the optimum receiver is made
in Section 2. Evaluation of the receiver is made in Section 3 for the
special case of 2WT = 1, and in Section 4 the cross-correlation receiver
is evaluated and compared to the ideal for this special case. Section

T is a discussion of the implications of the results.

2. ANALYSIS

1,2
This analysis is based on the theory of signal detectability - ’

The observation is of finite time duration, T sec, and all signals and

l. W. W. Peterson and T. G. Birdsall, "The Theory of Signal Detectability,
Part I. The General Theory, Part II. Applications with Gaussian
Noise," Electronic Defense Group Technical Report No. 13, The
University of Michigan Research Institute, Ann Arbor, Michigan, June 1953,

2. '"The Theory of Signal Detectability," W. W. Peterson, T. G. Birdsall,
and W. C. Fox, Transactions of the IRE, PGIT-4, Sept. 1954, pp. 171-212.



noise waveforms have a finite series-bandlimit , W cps, on that time
interval. The external noise is white and Gaussian with noise power
per cycle No, and the internal storage noise is also white and Gaussian
with noise power per cycle kNO = no'

The first step in the analysis is to derive the likelihood
ratio. The receiver (or observer) must base its response on the total
input, which is both the observation x(t) and the stored signal s(t).

The receiver has error-free storage of the parameters No’ W,
T, and N and on each observation can perform error-free operations on
the specific x(t) received and s(t) stored. The receiver does not have
access to the true signal S(t) other than through the above listed
items.

The probability density function of this input is found as

follows. The noise density function for the observation isl

WT T
£ [x(8)] = (W) [exp-ﬁl;- f x?(t)a{I, (1)
o

and in similar fashion, the density function for the observation when

signal is present is
/v e 2
ru[x(®)] = <5’?1'“?7> exs|- i ’0( { x4 - s} at] -« (@

The density functions for the storage signal s(t) are the same for both

hypotheses,
T

£(s(t)) = (J\N W>WT exp [ N%\ j‘{ s(t) - S(t)}2 dt] . (3)
(o] (e} o

1. See Peterson, Birdsall, and Fox, Eq (48); or Technical Report No.
13, Eq (3.2b).



Now from the receivers standpoint Eq. (3) specifies the distribution
of the true signal S(t) about the stored signal s(t). If S(t) were

known, the likelihood ratio would be the ratio of Eq. (2) to Eq. (1).
In the case of a distributed signal this ratio must be averaged with

respect to the distribution of the signall

1 T oo 2 T
1x(t)) = f exp [— 5 / S (t)dt} exp [ﬁ—f x(t)s(t)dt] apr(s) (u)
S o o

where, of course, for a fixed stored signal s(t)

ap(s) = fls(t)las . (5)
It is shown in the appendix that the evaluation of Eq. (4),

simplified, implies that the likelihood ratio is strictly monotone

increasing with the quadratic form
T .
tix(t)] -smi-[) () + 2 x(t)s(t) - 3 s°(e)at . (6)
Thus the receiver which computes the above quadratic will be an ideal
receiver under the conditions of the problem. Several equivalent forms
are given in Egs. (7) and (8).

T
10x(t)] -smi-fT [x(t) + % s(t)]zdt - _1_% f [s(t)1° at (7)

0 A 0

T
2[x(t)] -smi-f \}x(t) + Mﬂ—} [x(t) - —sgl‘l—} at  (8)

o 1+ -1 V14N +1

The receivers (all optimum) based on Eqs. (6), (7), and (8) are given

in Figs. 1, 2, and 3.

1. See Peterson, Birdsall, and Fox, Eq (56); or Technical Report No.
13, Eq (3.7b).
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%. EVALUATION OF IDEAL, 2WT = 1

The evaluation of the ideal should be carried out with an
ROC curve analysis, i.e., a comparison of the distributions of either
the likelihood ratio or any monotone function of the likelihood rétio,
under the two conditions of noise alone and signal plus noise.

To date, the author has been unable to obtain these distri-
butions in closed form. In all of the detection literature the per-
formance of dptimum receivers has been obtained in closed form for only
a handful of cases. In the others, approximations or analogs have
been used to obtain numerical results. Such techniques could also be
applied to this optimum receiver. A less direct approach was taken for
this problem; namely, the performance in a two-alternative-choice~in-time
has been determined and is given in this section. It should be mention-
ed that although such an evaluation is not as complete as an ROC
analysis, it usually agrees with the results of an ROC analysis in the
medium probebility range (1% to 50% false alarm range).

The evaluation assumes that the stored signal is the same for
two observation intervals, xl(t) and xe(t), one which is due to noise
alone and one which is due to signal plus noise. The receiver opera-
tion is to compare the outputs corresponding to the observations and
indicate the interval with the larger output. The evaluation determines
the signal strength necessary to obtain performance equivalent to that
which would have been obtained had the signal been known exactly.

Equation (7) is the easiest relation to evaluate in this
situation. Because it is assumed that the stored signal s(t) is the

same for both observations, one concludes that



T
1x, (8)) > z(xe(t))@f [x,(6) + Fs(0)]? > [ [o(8) + § s(8)]Par.
(9)

It was assumed that 2WT = 1, and hence each function of time can be
represented by a single sample, and that the integrals will be equal
to l/2W times the integrand at the sampled points. Hence, if the

samples are denoted by dropping the "t",

[} [xl(t)] > ll:xg(t):' & (xl + ;‘\- 5)2 > (x5 + -i‘: 8)2 (10)
C:j(xl + % s)2 - (x2 + % s)2 >0 (11)
¢:>(xl - xe)(xl + X, + % s) >0 (12)
(xl - x2) >0 and (xl + X5 + % s) >0 (13)
Cij or
(xl - X,) <0 and (xl + X, + % s) <0 .

Now if xl(t) is due to signal plus noise and xe(t) due to noise alone,
the probability that the above inequalities hold is the probability of
a "correct decision", i.e., in this case, that the output of observation
number one is greaﬁer than that of observation number two. It is
obvious that the situation is completely symmetric and that the
probability of a correct decision is the same as if the hypothesis hed
been reversed.

The variables (xl - x2) and (xl + X, + % s) are independent

Gaussian variables. The means and variances are as follows:



Combining

Normalize so that og(xi) = 1.
Then “(s) = A
and w(xy) = s (14)
u(xy) = 0
u(s) = s.
Hence u(xl -x,) = 8-0 =8
olx) -xy) =/T+1 =2 (15)
so that
s
Pr(x; - x, >0) ®<JQ )

and

S
Pr(x, - x, <0) = ¢)<..__> ,
. 1 e J2
where @ is the normal, or Gaussian, distribution function.

Similarly,

ix, +x, + % g) = S+0+

c(xl+x +§-s) =Vl+l+—lf—)~ . /22)

2

so that

oo /M2
o S o’ (18)
Pr(xl+x2+§s‘>0) =¢><S‘)‘gi>

and (19)

2 A+2
Pr(xl +x2 + X g<0) = @(-S -5-):>

-

Eqs. (16) and (19) as indicated in Eq. (13),

Pr(correct) =q>< %)cb @%—f) +<1><- —%)qa(s ﬁ%> . (20)

o



Had there been no storage corruption, the situation would have been
lebeled "SKE", and the corresponding performance would have been obtain-
ed from Eq. (20) by letting A - O.
SKE  Pr(correct) = CI><—S-> (21)
J2
Figure 4 presents Eq. (20) for no internal noise (A = 0), for as much
internal as external noise (A = 1), and the limiting performance as

the internal noise increases (A = ).
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FIG. 4. IDEAL RECEIVER PERFORMANCE, TWO
ALTERNATIVES FORCED CHOICE, 2WT = 1

To complete this analysis, the efficiency of this receiver
should be computed.l The computations were carried out for efficiencies
above 0.10 for constant values of A, and are shown in Fig. 5. Lines
of constant performence are indicated on this figure to show the

regions that would be encountered in normal psychophysical experimenta-

tion.

1. W. P. Tanner, Jr., and T. G. Birdsall, "Definitions of d' and 7
as Psychophysical Measures," Electronic Defense Group Technical
Report No. 80, The University of Michigan Research Institute,
Ann Arbor, Michigan, March, 1958, and JASA, ¥ol. 30. No. 10,
October 1958, pp. 922-928. 9
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4. EVALUATION OF CROSS=-CORRELATION, 2WT = 1

This is an extremely simple case, since the cross-correlation

simply supplies the sign for comparison. Specifically,

T T
/;xl(t)s(t)dt > j; xz(t)s(t)dt@xls > X8 (22)
5 >0 and Xy > x2
<:?:é;> or (23)
| s <0 and X) < X,
when Xy is due to signal plus noise, the probability that X, > X, is
the same as the probability that X] = X, > 0, nanmely,
Pr(xl > x2) =P <§—-> (24)
Jo

Under any conditions the probability that the stored sample is positive
is 4
S
m(s>0) = (L) (25)
NIN

Prob(correct) = & (J%)qj(ﬁ>+® (— J-%><I>< j—_;> (26)

By comparing Eq. (20), for the ideal, with Eq. (26) one sees

Hence,

that where the terma,/ 2: :;:2 appeared for the ideal, the term -;':appears
for the crosscorrelator. For small values of A (A< 0.1), these are
roughly the same; for large values of A, the term for the ideal

. 1 .
rapidly approaches J; , while the crosscorrelator term decends toward

zero. The curves of Figs. 4 and 5 apply with the following corrections.

11
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TABLE I

A for crosscorrelator 0 .ho .67 1.00 2.00

A for ideal 0O .50 1.00 2.00 ©

A complete curve of this relation is given in Fig. 6. This shows the
serious loss of efficiency when the cross-correlator memory is noisy,
since 2 db more storage noise than external noise has the same effect
as 8.5 db on the ideal (noisy-storage) receiver. Figure 7 is included

for comparison with Fig. 4.
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FIG. 7. CROSSCORREIATOR PERFORMANCE, TWO
ALTERNATIVES FORCED CHOICE, 2WT = 1
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5. COMPARISON COMPUTATIONS

Two further computations may be made for the sake of
comparison. Had the signal actually been distributed on transmission
with the same distribution as that in storage, the ideal receiver.of
Section 2 would be the true likelihood receiver for this new case,
and the only differences would be where the signal variance increases,
sample variances also increase; namely, for a signal in the first
interval,

A

o (X

2) = 1 oe(xl) = 14\ (27)

Equation (20) becomes
2 2

A +ua+l \ -3 -S| AT+UA+l

Pr(correct) = & T = +@ Zo | A AR

a2 ) W «]x2+2x+u ] T \Ved AN A2eonsd

e
The radical RN rises from 1.0 at A = 0, to 1.15 between A = 2
A +N+S

and A = 3, then decreases slowly to 1.00 as A - ». Hence a good lower

(28)

approximation is

S S S S
Pr(correct) =®<«/ﬁ—2>¢)<:f—>:> +®<— J—:_:é')@ <- \[—)\ > (29)

On close inspection, one observes that Eq. (29) is the exact
equation for the cross-correlator for this case. Hence, when the signal
has the same variance as the stored signal and 2WT = 1, the ideal
receiver does only slightly better than the cross=-correlator. Thus
it can be concluded that the improvement of the ideal over the cross-
correlator is much more important when the signal is actually stable
but memory is poor, than when the signal is distributed and the lack of

specificity is not due to poor memory.
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A Tinal calculation is for a receiver which has noise-free
storage but LNO Joules per cycle added to the input. The detection

index for such a receiver is

2 2E l 2E
(@) = = T (30)
NO+AN0 1+A No
so that the efficiency is
1
n = 1+ A * (31)

This receiver does not behave at all like those in the poor memory
situation, and hence it can be concluded that, at least for this and
similar cases, noisy memory does not act like "additional noise that

can be reflected (invariantly) into the input."

6. SUMMARY OF EQUATIONS FOR 2WT = 1

In this section the final performance equations are repeated,
together with definitions of parameters. Since one man's normalization
is another man's poison, two alternative notations are used.

First Normalization:
E - signal energy at receiver input and at receiver memory
input.
N0 - noise power per cycle of white noise added to signals at
receiver input.
A - ratio of memory-noise power per cycle to No'

Signal Specified Exactly, Ideal Receiver (SSE, Ideal):

o oA DA /) o

X 2

t
® is the normal or Gaussian distribution function q)(x) =[¢z—l_ve 2 dat,
-0
15



Signal Specified Exactly, Cross-Correlation Receiver (SSE, x=-cor):
E E 2E
P(c) = @<JN:>@<\/%> +@<—«/ N——>cp<-«/ﬁ-—x> (26.1)
o o o (o

Signal Known and Specified Statistically, Ideal Receiver (SKS, Ideal):

3 /2 oF / A2 ihnsl
7 =Cp<«/:ﬁg ﬁ)é% xgizx:u
/2
E_ /2 \gz(. /2B /A+inth
+Cp(\7/§: */;)q)(\/l;‘ Nerontl | (25.1)

Signal Known and Specified Statistically, Cross-Correlation Receiver

(SKS, x=cor):

Second Normelization:
E - signal energy at receiver input.
No - noise power per cycle at receiver input.
e - signal energy at undistorted memory.

ng - noise power per cycle of memory noise.

(SSE, Ideal):

© ~of/B)s (ETE) o /EVETE) o

e} o}

(SSE, x=-cor):

Ple) =& (f-ﬁ—%%) + @ <«/;§-> ® ( @) : (26.2)

(o} o

16



(sKs, Ideal):

E2n2+hEeN n +1Le2N2
plc) =& 2ek ® J?g 00
Eno+2eNo n 2 2+2EeN n +Lte2 2

ool oo no+hEeN n0+he2N§
* Q- /Engreeny \/— 2 2 (28.2)
Not+ce E“nS+2EelN n +he2N
(SKS, x-cor):

p(c) =®<«/E§ef2eN >cI> 2e>+q> < «éfi-%ﬁ;)@(-«/f‘“’) (29.2)

(¢} (o}

In all cases, with no internal noise, both receivers are ideal and

(SKE, Ideal):

p(c) =¢</§_> : (32)

0

7. CONCLUSIONS

Several receivers have been discussed and evaluated. The one
of primary concern in this report is the receiver that is the optimum
receiver when restricted to receivers with noisy memory and detecting a
signal specified exactly in white Guassian noise. The second receiver
is the crosscorrelator, which would be the optimum receiver if the
memory were perfect. The evaluations of Sections 3 and 4 are for the
noisy-memory, signal-specified-exactly situation, for which the receiver
under study is optimum and the crosscorrelator is not. In Section 5

the signal was actually distributed and both receivers evaluated;

17



neither is the optimum receiver for the condition. In Section 5 a
receiver with additional noise at the input but no memory noise was
treated. It can be concluded that the performance of the "noisy-
memory, signal-specified-exactly" optimum receiver detecting a signal
under the conditions for which it is optimum is not equivalent to the
performance in any of the other receiver-signal combinations.

Two normalizations have been presented in Section 6, and the
interpretation inherent with these normalizations deserves discussion.
The first normalization, used in the analysis, considered the internal
noise proportional to the external noise. Of course, this is possible
for any fixed situation. However, when the efficiency n is plotted
against the input signal quality §§ the rise in efficiency embodies the
fact that the memory-signal qualit; is correspondingly increasing. The
result is that for very small signals the efficiency is very low and rises
rapidly as the signal level increases. In contrast, if the model being
studied has & fixed-quality memory signal %?-the increase of efficiency
with signal level is quite different. Figu;; 8 shows this effect. The
efficiency is constant for low level signals and then rises to 1 when
the external quality becomes much larger than the internal quality.

In any -application of a noisy-memory model the experimenter
has one more variable to contend with. On the one hand, it is conceiv-
able that this type of model could unify previously conflicting data.
On the other hand, one would not expect the relation of internal
quality to external quality of signal to be the proportional relation
of Fig. 5 or completely independent as in Fig. 8.

The basic analysis of this problem has been only partially

completed in this report. The determination of the ideal receiver is

18
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completed in Section 2. However, the numerical evaluation has been
completed only for the special case of 2WT = 1 and a symmetric forced
choice in time where no memory degradation took place between presenta-
tions. Although the author feels this special case indicates the effect
of "noisy-memory", a more complete evaluation might shed more light on

this model.

20



APPENDIX

EVALUATION OF EQUATION (4)

Insertion of Eq. (3) and (5) into Eq. (4) yields

T
1(x) = <§-§m>wf e[ [ 5°(e)2x(0)s(6) - £{s(t)-5(0)} %t | as,
(¢ S ]

0]

In evaluating this » & simplified notation is used to recognize the
completion of the square in the exponent integrals; specifically, the
time argument was omitted.

The negative of the integrand of the inner integral is

2 2
z L (5-8)2 = Popxg . 50288, 82
S -2xS+->:(s-S) = S-2xS+>\ ot
2
2 1l S 5
= S<l+>\>-28<x+k>+ n
8 2 2
I Y (x+-f:) s
= 1 +=- - + 5
A 1
1+ L+3x
A
5 \2
- (1.1 S_x+-): _>\x2+2sx-s2
= x .1 I+
A
Hence
T




T

3 9015 02229 2562
Now this should be examined in careful detail. The integral with respect
to S is a Lebesgue integral in the 2WT dimensional function space. For
each x(t) and s(t) the expression

T 2
f [S(t) - M(t2+s(t):| at

o

represents the square of the distance from S(t) to the fixed point

AX+s . Hence the integral

1 +A
fexp-}_-j}_Ts_)\.mse at | ds
S NO>\'O A+l

is proportional to the probability of the region of integration because the
integrand is proportional to the normal probability-density function in 2WT
dimensional space. The region of integration is the whole space and hence has

probability one, independent of the center h§+i of the distribution. This in-
+

tegral has some (non-zero) value ky which is not a function of S(t), s(t), or
x(t), although it is a function of A\ and N,. This value need not be deter-
mined since the desired result is to show that the likelihood ratio can be
written as

T

2 2
AX +2sX-8 at.

N011+x5

£ Y
=
g
f
-
i—-’
5
o

Thus £(x) is strictly monotone increasing with the exponent

T
£(x) —smi-f <x2+2§% - 2>dt.

(o)

>"lm
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