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Optimization in Complex Management Systems

1. Introduction. Optimization models have provided

powerful tools of analysis in the fields comprehended by the
words "management science;" they have been used successfully

in wide classes of problems arising in industry, the physical
sciences, and in governmental activities. An IBM publication
recently listed twenty pages of applications, with an average
of forty-three citations per page, which varied from archaelogy,
anthropology, avionics, through medicine and nuclear physics

to water pollution control in public utilities.

Since fisheries management and other renewable resource
management problems have much in common with management prob-
lems found outside these fields, it is reasonable to infer that
optimization models will find increasing application in the
fields that interest this audience. 1Indeed, several interesting
‘studies in the field of environmental quality management have
been published within the last four years which make use of
optimization models. One of these, examined in detail below,
is a water pollution study which uses a linear programming
model to approximate a differential equation system describing the

water quality of streams in terms of dissolved oxygen profile.



It thus seems appropriate to examine what optimization
models are, to asséss the present "state of the arts" with re-
spect to them, and to consider the advantages and disadvantages
that we have learned they have -- oftentimes "the hard way."
This paper also presents a bibliography of items selected so as
to indicate beginning, intermediate, and advanced level works on
optimization as well as selected papers in applications. When
reference is made to an item in the bibliography, the name of
the author or authors will be indicated, followed by the number.
of the corresponding entry.

2. Optimization Models. An optimization model is one

in which there is a function of decision variables which is to
be optimized (i.e., either maximized or minimized). The deci-
sion variables may or may not be subject to constraints; if the
former, thé model is one of constrained optimization and we call
the latter an unconstrained optimization model. Most optimiza-
tion problems in the.management sciences have constraints in
them so that constrained optimization models have undergone ex-
tensive development in the last twenty years.¥

The funcﬁion to be optimized is called an objective
function. If the objective function is linear and each of ‘the
constraints is a linear equality or inequality, then the model

is one of linear optimization, most frequently referred to as

*The theoretical distinction between unconstrained and constrained
optimization is not sharp; many constrained problems are best
solved by transforming them into unconstrained problems in higher
dimensional spaces.
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linear programming (Dantzig [4], Gass [6], Hadley [7], Spivey

[15], Spivey and Thrall [18]). An example of such a model is:

Tnimi = + e e 4
(1) mlnlmlze pA Clxl | Ch¥n

subject to

allxl + eoe + alnxn = bl
(2) S E
aplx1 + oeee 4 apnxn = bp
(3) X.go (j=ll ***, n),

J

where the cj, aij' and bi are assumed to be known constants
and p and n arevany positive integers. The xj are the decision
~ variables and (2) and (3) express the constraints on the vari-
ables.

If at least one of the variables in £he objective func-
tion (1) is nonlihear or if at least one of the constraints (2)
or (3) has a décision variable that is nonlinear (for example,
if we should have xi) the model becomes one of nonlinear opti-
mization or of honlinear programming (Boot [2], Hadley [10],
Wilde and Beightler [23]). Moreover, if at least one of the
variables in (1), (2) or (3) is a function of time, the model
is then one of dynamic programming (see Wagner [22], Hadley [101]).

Sometimes an optimization model is developed in which
the values of some of the variables must be chosen in one time
period and then choices for still other variables are subse-
quently made which depend on the decisions made eérlier as well

as other factors. These are multistage decision models and are
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regarded by some writers as special cases of dynamig program-
ming (Dantzig [3], Spivey [161]).

It should surprise no one that our ability to solve
linear optimization problems is great. General theorems and
solution procedures are known and in the management sciences
linear optimization problems in which the number p of constraints
is as large as 1,000 to 2,000 and the number n of decision
variables is as large as 3,000 to 4,000 are fairly common and
are solved routinely on large scale computers. Problems have
been solved in which p and n are as large as 30,000 and 3,000,000
respectively. However, models of this kind can be solved only
if they possess special pr0perties which permit them to be
broken down or decomposed into a sequence of smaller problems
which can be solved.

Our ability to manipulate and solve nonlinéar optimiza-
tion problems is limited. Nonlinear problems which are most
readily solved are those for which linear approximations can
be effectively utilized. 1In constrast to linear optimization
problems, a nonlinear optimization problem may be regarded as
a "large" one‘computationally if there are twelve decision vari-
ables and ten constraints. Fairly simple nonlinear problems
have been developed for which an optimal‘solution is known to
exist but which cannot be solved at all given the present state
of our knowledge (dynamic programming problems oftentimes are
nonlinear and solution procedures are available only for cer-

tain special classes of problems).
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Sometimes an optimization problem will give rise to a
model like (l),_(2) and (3) above but which will have, in addi-
tion, a restriétion that one or more of the decision variables
be an integer. For example, we may have a model in which the
decision variables xj represent the decision to invest or not
to invest in a given water resources development project.

Thus xj takes on the integer values of 0 and 1 only -- we
either do not or we do undertake the project. A model giving
us fractional values for Xj is clearly inappropriate, nor do
we "get out of the box" by "rounding" such a solution to the
"nearest" inteéer, since such an integer is either 0 or 1! An
interesting eXample of such a decision model is found in Spruill
[19]. This class of problems is called -- quite naturally --
integer programming; it turns out that these problems are non-
linear too, so our ability to deal with models of this class
is limited. Research in integer programming is very active,
however, and there is a considerable literature (see Balinski
[11).

We indicated earlier that the aij’ the cj‘and bi a?e
assumed to be known constants in the linear optimization model
(1)-(3). Since»in most applications of optimization models we
do not realiy know the values of these "givens" exactly as the
theory requires, we are led to inquire into the effects upon an
optiﬁal solution and the optimal value of the objective func-
tion (1) caused by changes in these givens. In many models,

changing the givens corresponds to examining the effect of bad



data, since the a;ternate values of the givens can be regarded
as alternate data points.

It is perhaps the most significant feature of linear
optimization models that not only can one quickly assess the
nature of changes in givens, one can study the effects of con-
tinuous changes in them over ranges of values and one can cal-
culate alternate optimal solutions where they are indicated.
Letting the givens (the aij' bi’ and cj) vary is called par-
ametric programming because the givens then become parameters
(Dantzig [4], Spivey and Thrall [18]).

Parametric programming procedures can be used to deter-
mine the givens to which the model is sensitive and those to
which it is insensitive. When a model contains a large number
of variables, it is very useful to know that the model is rela-
tively insensitive to certain givens. Among other things this
‘indicates to the model builder the elements of the model that
he shoula gathei more data about and the elements that for the
time being can be ignored. Moreover, the sensitivity studiés
madé possible by parametric programming can be used as a basis
for model refinement and development. One tries to model the
sensitive elements more effectively and reduces or eliminates
altogether the role played by the elements to which the model
has "low sensitivity."

3. An Illustrative Example.* A major problem in water

*This is a simplified discussion of concepts appearing in Loucks,
ReVelle, and Lynn [14].
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pollution control is the release of organic wastes into streams.
These wastes, called bio-degradable wastes, serve as food for
many organisms in the streams, which in turn utilize dissolved
oxygen. As organisms multiply, the dissolved oxygen may be
depleted below -a minimum level necessary to support a reasonable
ecological balance in the streams.

‘If there exists only a single source of pollution on a
stream, the amount of waste that can be released without vio-
lating the stream quality standard (measured in terms of dis-
solved oxygen) can be determined by methods known to sanitary
engineers. The problem becomes more complex, however, when
there are two or more sources of pollution, since the wastes
can mix to pollute areas downstream from both points.

The capacity of a stream to assimilate bio-degradable
wastes (and to this extent purify itself) is determined by such
factors as stream flow, stream temperature, the waste concen-
tration measured in terms of its biochemical oxygen demand, the
dissolved oxygen concentration, and the physical and biological
properties of the stream that affect settling rates, as well as
other factors.

We develop a model that can be applied to a variety of
river basins with minimal alteration of the basic model. The
latter is thus developed in modular form such that any river
system can be examined by providing the appropriate number of
modules or sections with the corresponding features modelled

appropriately. The model we develop can be used to determine
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the least cost combination of waste water,tréatméﬁ£ faci1ities
required in order to meet any set of dissolved oxygen standards.
Furthermore, by means of parametric programming we can explore
the sensitivity of the system cost to various dissolved oxygen
control policies as well as the sensitivity of the model to

changes in a variety of other factors.

Let
x. = number of gallons of organic wastes entering
J the stream in section or module j, j=1, ***, n;
R. = total number of gallons of organic wastes gen-
J erated in section j,
Cj = cost of removing one gallon of waste in section j.

For each section j of the stream the waste removal cost

is given by Cj(Rj

the total waste removal cost over all n sections of the stream

- xj), so that the objective of minimizing

can be represented as

C.(R.~x.).

4 minimize z =
(4) e &3 ®y57%

o~

j
The water quality index wj in any section is a measure of oxy-

gen level, quantity of pollutants, etc., for the section, and

can be expressed as

(5) w. = wo + k.x.
] ] J 3]
where
w? = water quality index at beginning of section j,
kj = rate of index change in section j per gallon of

pollutant.



For any section j there is a maximum allowable value for the
water quality index set by governmental authorities, denoted by
max

Wj . Thus for any j we have

(6) w, S wia¥

To insure satisfactory assimilation of solid wastes we must have,

as a result of extensive studies by sanitary engineers,

(7) xj 2 .9Rj (3 =1, **+, n),

and various technological requirements place a lower bound on

each Xj of the following kind:

(8) xj 2 .le (3 =1, **+, n).

Thus for any n sections of a stream the linear program-
ming model has the objective function (4) and the constraints
(5), (6), (7) and (8).

For a Specific numerical example of this model, suppose
we have a stream with a tbtal of five sections and such that

pollution sources are indicated as follows:

wo=
1

0 (1)
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The quality indices at the beginning of sections (1), (2)
and (4) are zero, indicating no pollution at the beginning of
these sections; the indices at the beginning of séctions (3)
and (5) are equal to the sum of the indices of the sections
merging at these points respectively. Hence pollution can
enter sections 3 and 5 depending upon conditions occurring in
the tributary séctions. |

Suppose further that sanitary engineers have studied

the five sections of the stream and that the following data

are available:

Section j Rj‘(in gallons) Cj (in dollars) Ei Y;ii
1 | 10,000 $1.00 .1 900
-2 2,000 1.50 .2 800
3 4,000 4.00 .2 300
4 _ - 6,000 1.00 .2 200
5 3,000 8.00 .3 700

The optimization model is then:

(9) minimize z = 59,000 - 1.0x, - 1.5%, - 4.0x. - 1.0x

1 2 3 4

- 8.0x

5.
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subject to

A

9,000

flv

1,000

A

1,800

v

200

A

3,600
(10)

v

3 400

ita

1,000

fiv

600

A

Xg 2,700

Itv

Xg 300

A

c1x +.2x2+.2x 300

1 3

.lxl+.2x2+.2x3+.2x4+.3x5

X
]

A

700

v

0 for all j.

The problem (9) and (10) is a special case of the problem (1),
(2), (3) introduced above and is a linear programming model.

A few comments on how the constraints (10) were developed
from the information above may be helpful. From the constraints

(7) and (8) we have, when j = 1,

il
[

fia

.9R

1 .9(10,000)

9,000

and

v

.1IR .1(10,000)

1,000.

]
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For the third constraint from the last in (10), we utilize the
information provided in the diagram above as well as the numer-

‘ical data. From the former we see that wi = 0, w, = 0,
o

w3 = wl + Wor where from (5) we have
= 0 =
wy =Wy + .1xl = 'le’
— o e
w2 = w2 + .2xl = .2x2,
so that
o _
w3 = wl + w2 = .lxl + .2x2.

Finally, from the constraint (6) and information in the table

we have

0 « . Mmax _
w3 =,w3 = 300

and the constraint becomes

<
.lxl + .2x2 = 300

as desired. A similar argument will indicate the form of the
next to last inequality in (10).
Solving the problem (9) and (10) results in an optimal

solution in which

X = 1,000 Xy = 600
X, = 200 Xg = 1,200
Xy = 400 minimum cost = $45,900.
This means that we would obtain a minimum system cost of

$45,900 by having 1,000 gallons of organic waste entering sec-
tion 1, 200 entering in section 2, 400 gallons in section 3,

600 gallons in section 4 and 1,200 gallons in section 5.
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If we parameterized this model we could examine the ef-
fects of |

-- changing the Rj figures,

-~ changing the constants kj,

-~ changing the costs Cj,

-- changing the maximum allowable standards W?ax.
Thus a wide range of alternative engineering péssibilities
could be examined as well as a wide range of alternative con-

trol decisions by governmental authorities.

4. Handling Goals in Optimization Models. The objec-

tive function in an optimization model can represent the goals
in the problems and the numbers cj represents the weights that
are to be associated with the corresponding decision variables.

We can, through parametric programming, regard these
weights as variable, we can change them and study the effects
upon optimal solutions. We can also examine "trade-offs" be-
tween goals by this approach if we can suitably moael or specify
the goals. |

An example is provided by goal programming (Spivey and
Tamura [17]) in which one begins with a linear econometric model

in reduced form

(11) y* = Rx + s,
where

y* is an n by 1 vector of goal or target variables
prescribed by a policy maker,

X 1s an m by 1 vector of instrument variables,
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R is an n by m (real) matrix of impact multipliers,

s is an n by 1 vector of constant or additive terms.

The coefficients of system (11) can be, and oftentimes are,
estimated from data. An example of a system of constraints which
was developed from regression studies is given by Van Dyne [20].

A goal programming model can be developed with the tra-
ditional simultaneous equation system (l1l) as a base in the fol-
lowing way (this is taken from Spivey and Tamura [17]).

We reformulate (1ll1l) as

(12) y* - s = Rx - Izt + Iz~

x, zt, z— 2 0,

where R is given in (11), I is an n by n identity matrix, and
zt and z~ are n by 1 (unknown) deviation or discrepancy vec-
tors. The ith components zI of zt and z7 of z~ measure the
deviation upwards and downwards, respectively, of feasible Y
values from the corresponding goal values yz; in other words,

the ith constraint of (12) can be written
*.— = — + - 3 o= > 00
(13) Yy - 8 R;x = 27 + 27 (i =1, ; n),

where Ri denotes the ith row vector of the matrix R and S5 the
ith component of the vector s.

If the policy maker can find a feasible instrument vec-
tor x for which both ZI and zI in (13) are zero, then the goal

y; can be attained exactly. On the other hand, if there is no



- 15 =

feasible vector X for which z{ = Z; = 0 in (13) he cannot attain
the prespecified goal y;. He can, however, find a feasible x
that will allow him to come "as close as possible" to y*. ' The

model of goal programming then is

(14) minimize G = u zt + vlzg~
subject to
(15) y* - s = Rx - Izt + Iz”
x, z¥, z7 2 0,
where
I is an n by n identity matrix,
uT,vT are nonnegative vectors representing weighting

factors,

zt,2z~ are deviation vectors.

It turns out that there are exactly three possibilities in an

optimal solution to this problem:

(i) ZI = ZI = 0,
(ii) z{ >0, 2] = 0,
(iii) zz =0, zz > 0.

Case (i) means that a solution has been found which permits the
ith goal y; to be attained exactly, and cases (ii) and (iii)
indicate that a deviation, upwards and downwards respectively,
must be accepted by the decision maker using the model.
Moreover, if a policy maker desires to attain a given
goal y; more than others he can attach larger weights uy and v,

1

to the corresponding deviations ZI and z;, respectively. If he
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would accept,an overattainment of y., but cannot tolerate any

*
- 3
underattainment, he could set uj = 0, but would mak.eivj large
enough td prevent z; from assuming a positive value in an opti-
mal solution.

Not only can we discover how close we can approach the
prescribed goals y;, by using parametric programming on this
optimization model we can parameterize the weighting vectors
uT and VT to investigate how closely some goals YI can be
approached while holding other goal attainment levels fixed. We

can also parameterize the goal vecﬁor y* itself.

5. Some Extensions. In some problems it is not satis-

factory from an applied point of view to vary the given data
parametrically;»it may be more appealing to regard the given as
a random variable having a known probability distribution or
density function. When at least one of the aij’ the bi’ or the
Cj is a random variable, then the model (1), (2), and (3) be-
comes one of stochastic programming (Dantzig [4], Chap. 25;
Dantzig [3]; Spivey [16]).

This type of optimization model has disclosed analytical
complexities of two basic types: the choice and treatment of
optimization criterié and the time at which the random elements
are to be observed and a decision is to be made. For example,
if some bi iS‘é random variable, then the value of the objective
function becomes a random variable as well. It is then meaning-
less to speakvof ﬁinimizing or maximizing z. We must instead

adopt a criterion such as minimizing the expected value of z or
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minimizing the variance of z around some specified value. More-
over, if z is linear as in (1) but there are random elements in
the problem and we choose to minimize the expected value of z,
then it has been shown that the expected value of z need not be
linear in the decision variables X; (a simple example appears
in Dantzig [3]).

Althcugh‘stochastic programming models are natural and
appealing, there is littie as yet that is operational and most
- of the work going on in the field can be regarded as basic re-
search of the kind that precedes operational results by perhaps
several years at least.

Figure 1 presents a schematic representation of optimiza-
tion models of the kind we have been discussing and it can be re-
garded as a visual summary of the many remarks made above.

6. Problems in Using and Interpreting Optimization

Models. 1In order to develop an optimization model, one must
choose a mathematical representation for the objective function.
In order to do this in a given application it is necessary to
know or to be able to agree upon what it is that "one wants to
do." Specifically, one must know how the decision variables X,
are related (whether they are additive as in the linear case or
multiplicative as in the nonlinear case, etc.) and what numerical
weight each variable is to be assigned. It is often very diffi-
cult for practical persons to supply the analyst with sufficiently
meaningful information to enable the latter to develop a suitable

objective function. The practical man often does not wish to
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specify which variable is the "more important" -- which should
receive a large weight in the objective function. Many times

the difficulty of the analyst is the reverse of this: the prac-
tical man specifies so many different variables to optimize and
so'many conditions to be satisfied that it is impossible to find

a feasible solutién. Again the value of parametrics in linear
models manifests itself: the anélyst can vary weights parametrically
and engage in é dialog with the practical man which enables the
latter to investigate the implications of assigning different
weights in a model. 1In this way a model can be used as a learning
device by the decision maker.

On the other hand, one of the chief benefits of mathe-
matical models is that they force applied persons to think through
a problem carefully. The realization that some deéision makers
have great difficulty in clearly specifying objectives in a prob-
lem often has sidé benefits that are as great as those in the
usevof a model itself.

7. Data Problems in Optimization Models. Large optimi-

zation models generate a great demand for data; this is particu-
larly true of linear models. Although we can easily solve
models having 1,000 constraints and 3,000 variables, this does
not mean that problems of this size are easily dealt with. If
a problem has a constraint matrix of 1,000 by 3,000, then there
are 3,000,000 data entries in this matrix and so there must be
an effective information retrieval system which generates the

required inputvdata as well as efficient procedures for analyzing
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the output of these models. In many industrial applications it
has been found that the cost of information inputs for optimiza-
tion models exceeds by a factor of 20 the cost of solving the
model when the relevant data are available.

8. Conclusion. We conclude this paper by emphasizing
that the more éuccessful our models and analytical tools become,
the greater is the need for effective management of information
at various points in the model building process. Actually, the
models discussed in this paper, although powerful, are but one
~aspect of a collection of activities extending from formulation
to analysis and decision as is suggested by the diagram shown
in Figure 2. Sudcessful model building requires that all these

activities be carried out effectively.
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