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ABSTRACT

The steady-state expected production (throughput) of many closed
queueing network models of multiserver queues is a function of the number
of items and facilities in the system, the number of servers at each facility,
and the workload allocated to each facility. With appropriate scaling, the
expected production is given six representations, each with a corresponding
practical interpretation. These representations are discussed and proved
equivalent. The representations both provide insight and are useful in
proving some results relating production to server grouping and workload
allocation decisions.






1. INTRODUCTION

Systems in which parts or customers visit several different facilities
for processing can, in some cases, be adequafely modeled by a multiclass or
multiserver network of queues. Multiclass models can depict sequential, fixed
routing for some types of parts, while multiserver models are used when there
can be more than one server at some facilities. The multiclass models have
been used to evaluate the performance of both computer systems (see Kleinrock
[1976], Rose [1976], Baskett et al. [1975], Reiser and Kobayashi [1975, 1976],
and Bard [1979]) and flexible manufacturing systems (FMSs) (see Cavaillé
and Dubois [1982]). An FMS consists of a set of numerically controlled
machine tools, interconnected with automated material handling equipment,
capable of the simultaneous and efficient manufacture of a variety of part
types. Most real-time functions, such as actual machining operations,
automatic tool interchange, and part movement are under the control of one or
more computers (see Buzacott and Shanthikumar [1980] and Stecke [1977, 1983]).
Multisérver models are well-suited for representing those FMSs where function-
ally similar machine tools can be pooled into a machine group (multiserver
queue). These machine tools are then identically tooled so as to be able to
perform the same operations during real-time control, as discussed, e.g., by
Stecke and Solberg [198la, 1981b, 1982]. Pooling machines into groups allows
the machine redundancy required to automatically reroute in machine breakdown
situations.

Closed networks of arbitrarily connected multiserver queues are considered
in this paper. The results are therefore also applicable to the central-server
model. Manufacturing, rather than computer, performance terminology is used,
reflecting the motivating FMS application. The correspondence with queueing

terminology is direct and meaningful: expected production is throughput,




part is job or customer, part type is customer type, machine group is

multiserver queue, and machine is device or server.

Using the closed queueing network (CQN) model, the expected production
(throughput) of an FMS is defined in §2 as a function of several system
parameters. As a result of our particular scaling of one of the parameters—-
the workload assigned to each machine group--several alternative interpreta-—
tions of production, defined in §3, are proven equivalent in §4. Some of the
representations are new; the equivalence of all six is new. These alternative
representations help the user of queueing network models to better understand
and to interpret the mathematical representation of expected production
obtained from the CQN model. They also provide additional mathematical tools
that can be used to discover and prove properties of optimal solutions of
several associated performance optimization problems, as discussed in §5.
Finally, they can motivate further research into the modeling of FMSs and
their performance. A brief summary is provided in §6.

The current research was motivated by investigations of two particular
FMS production planning problems, called the grouping problem (how to best
partition m machines into g machine groups) and the loading problem (how to
best allocate operations and associated tooling among groups). For both
problems, the objective is to maximize expected production subject to FMS
technological and capacity constraints (see Stecke and Morin [1982], Stecke
and Solberg [1982], Stecke [1977, 1982, 1983]). The alternative representa-
tions are useful in providing insight into understanding the mathematical

definition of expected production from CQN models of FMSs.

2. THE CLOSED QUEUEING NETWORK MODEL
Consider a single-class, closed system containing n parts, each of the

same part type. The system consists of m machines (servers) that have been
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partitioned into g machine groups, with s; machines in group i. The average
processing time of an operation by a machine in group i is t) i=l,...,g.
The routing is arbitrary, and can be described by the visit frequencies,

or relative arrival rates, 4 where q; can be:

i) the probability that the next machine visited belongs to group ij;

ii) the average number of times per some time period that a machine in
group i is visited; or

iii) the mean number of operations per part at machine group i.
For example, to model realistic systems containing more than one part

type, the values of q; can be determined by

9 = Zaj Ty

‘ ]

| = the average number of operations per part at group i,

§ where

‘ aj = production ratio of part type j relative to all part
types currently being produced;

| a; >0, for all j, and ) a, = 1; and

| j

| rij = number of operations on part type j performed by group i.

NE
The routing might also be first-order Markovian (defined by transition

The q; can also be solutions to the traffic equations, 9 = Z Pigdse
J

probabilities, pij)’ multiple-class Markovian (defined by transition probabil-
ities for each part type k, pij(k)--see Reiser and Kobayashi [1975]), higher-
order Markovian (for example, second order is defined by pijk’ which is

the probability that a part previously at i, now at j, goes next to k--see
Kobayashi and Reiser [1975]), or fixed routes through the system (defined by
routing vectors for each part type, r(k) = (r(k,l), r(k,2),...), where r(k,3j)
is the index of the j'th machine group visited by a part of type k-—-see Kelly
[1979]). All of these routing mechanisms produce the same values for certain

output measures such as expected production, as does the qj+ For additional

routing details, see Stecke and Solberg [198la].
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The queue discipline can be FCFS, infinite server, LCFS preempt-resume,
processor sharing (see Baskett et al. [1975]), random selection, or an
arbitrary distribution defined at each node (Kelly [1979]). The service time
distribution is arbitrary, except for FCFS machine groups, which require
exponential service times.

The usual measure of the relative workload assigned to group i is wi,
the product of visit frequency and average processing time, or w, = 94ty
i=1,...,g (Buzen [1973], Reiser and Kobayashi [1975], Solberg [1977]). These
workloads are relative in that the qi's need not sum to one.

The state of the system is denoted by #i = (nl,nz,...,ng), where n, is
the number of parts at machine group i, both those waiting and those in process.

g

For all i, 0 is an integer between zero and n, and z n, =n. The steady-
i=1
state probability of being in state fi is denoted by p(d) = p(nl,nz,...,ng)

which has the product form solution:

" 1 8
p(ii) = ACR TR i £, (1)

where S5 = (51’52""’Sg)’ W= (Wl’WZ""’Wg)’ and the normalizing constant is:

G(g,n38,W) = ] ) 1 £ (). f () (2)
‘ nlzp nzzp oo ngzp 151522 & 8

n1 + n2 + 00 + ng =n
and
( n
. i
i > ni_i 8
n,!
i
fi(mg) = < oy
i , n, > 543 i=1,...,8. (3)
n,-s
s.!s i1
G
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Single-machine, multiple-machine, and infinite-machine groups correspond,
respectively, to s; = 1, 1 £ s; <{n, and si_z n.

The expected production, which is the expected number of parts produced
per unit time, is an important performance measure. For a system containing
n parts, it is a function of G(g,n;S,W), which in turn is a function of
assigned workload, LD and grouping, S In fact, for a particular scaling

of the q and tss which will be provided shortly, the production function,

Pr(g,n;S,W), is given by (Reiser and Kobayashi [1975]):

- G(grn—l 35S ,W)
- T6(g,m35,W) ®

Pr(g,n;s,W)

3. RESCALING THE WORKLOAD AND PRODUCTION FUNCTION
For our purposes, Wy is scaled to provide our workload measure:

g
L

qjtj)/(j .

g
X; = qyt/1C ]
i=1

sj)] . (5)
Notice that the numerator is the usual definition of workload assigned to
group i, and the denominator is the average workload per machine.
Our particular scaling is useful for several reasons:
i) TFor any given number of machines in the system, regardless of their

grouping, the total amount of work to be allocated among groups

always equals the total number of machines:

i 0~ 09
>
]

I o~ 0Q
n
]
2

ii) The workload is independent of any particular scaling of a4 and tys
iii) Alternative workloads can be compared with a balanced workload,
since a balanced workload, regardless of system size or
configuration, is

Xlls1 = XZ/SZ = .. = Xglsg = 1.
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iv) As shall be seen in the following section, this scaling provides a
normalized, dimensionless measure of production, whose values iie
between zero and one.

v) As also seen in the following section, workload definition (5)
allows some new, alternative, equivalent representations of
expected production, which are useful in proving properties of

the production function.

Note that equations (1), (2), (3), and (4) remain nearly the same when
Xi is substituted for W The only difference is that the functions fi(ni) are
replaced by hi(ni)’ by substituting Xi for w, to reflect the chosen scaling.

These hi(ni) are also valid factors of the product form solution, p(ii).

4. ALTERNATIVE REPRESENTATIONS OF THE PRODUCTION FUNCTION
Prior to presenting the different representations of the production

function, some preliminary definitions are required.

4.1 Preliminary Notation and Definitions

Def 1: Let Ii(ﬁ) denote the number of busy machines in group i when

the system is in state ii.
For example, for a system of seven groups with two machines in each group that
is in state i = (0,0,1,4,2,0,1),

I, () = T,(8) = I,(d) = 0,

=
w
~~
=1
N
]
(]
~
Pan
=1
Nt
[a—y
s8]
=)
[= 1

-
~
~~
=
-
1]
-
;]
~
=1
~
]
N

Def 2: Let U(i) denote the fraction of machines that are busy in a

particular state ii. That is,

8
LM/C] sy

1 i=1

g
UGE) = [ ]

1
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U(d) is the ratio of busy machines when the system is in state fi and

the total number of machines. Referring to the above example, U(fi)

6/14 = 3/7.

Def 3: Let PrI denote the expected ideal production rate of a manufac-
turing system, which is the expected number of parts per time

unit produced if all machines are always busy.
PrI is a measure of the maximum capacity of the system.
Def 4: PrA(ﬁ) is the expected actual production rate when the
system is in state i, which is the expected ideal

production rate weighted by the utilization of machines

in fi. That is,

PrA(ﬁ)=PrIU(ﬁ).

Def 5: Let PrA denote the expected production rate, which is the actual
steady-state expected number of parts produced per time unit.

That is,

Pry = ] p(f)Pr,(d),
neN
g,n
where

Ng,n = {A |i§1 n, =n and nilz 0 for i=1,....g}.

PrA is the usual production function obtained by substituting W, into equation

(4).

4.2 The Alternative Representations

The six different characterizations of the production function are

presented in the following theorem.

Theorem 1. The following alternative representations of the production

function, Pr(g,n;5,X), are equivalent.



g
~E I h,(ny)
neN i=1
g,n-1
A. H
2 g
I h,(n,)
neN i=1 i
g,n
m
B. (1/m) ) k Prob{k machines are busy};
k=1
C. ] p(A)U(A);
neN
fieN, 4

D. The steady-state probability that a randomly selected machine is busy;

E. The ratio of the actual steady-state expected number of parts per time
unit to the expected ideal number of parts per time unit which would

be obtained if all of the machines were always busy:
PrA/PrI;
g
L UL hy(ny)

F. neNg,n .

) ; (

I h,(n,)

dey 1=l it
g,n

The first representation, A, is that defined by equation (4), using

hij(nj) rather than f£j(nj). Because of our particular scaling of workload

as X, rather than w, this usual definition of expected production is scaled to

provide the remaining alternative definitions. 1In particular, representations
B and C are both measures of system utilization: the expected fraction of
machines busy. Representation D is a measure of single machine utilization.
It is the fraction of time busy, a dimensionless quantity normalized to lie
between zero and one. Representation E is an efficiency measure. Finally,
representation F provides a relationship similar to the-first; however, now

the sums are over identical state spaces.
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Notice that all representations are not defined on the same state space.
The first, third, and sixth definitions include similar sums over the same
. . nt+g-1 .
state space, each sum involving ( g-1 ) terms. The summation of the
second representation, which contains many fewer terms, is over all machines,
m. The fourth is a probability and the fifth provides a transformation from
the normalized production efficiency measure to the actual production rate, as

measured in completed parts per time unit.

4.3 Equivalence of the Six Alternative Definitions

Prior to proving the equivalence of the six representations in Theorenm 1,

a preliminary result is required. This result mathematically defines PrI,

the expected ideal production rate, which is obtained when all machines are
always busy, or the maximum system capacity.

g g
Lemma 2. Pr, = (.2 Si)/(-Z qiti) .
i=1 i=1

Proof: Since

q.t workload on machine group i, in time units per part,

i~i
we have:
g
2 qiti = total workload on all machine groups.
i=1
Then

g g

( 2 qiti)/( Xlsi) = average workload per machine, given that the machines
i=1 i=

are always busy, in time units per part.

Inverting, we have:
8 g

( )/ ( t.)
121Sl izlqi i

expected production rate of the system when all machines

are always busy, in parts per time unit.

]
o
lal
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We now prove Theorem 1. The representations are proven equivalent in
the following order: representation A is equivalent to E; E to C; C to B;

C to D; and finally C to F.

Proof of Theorem 1:

i) Representation A is equivalent to E:

g
) T hy(n,)
neN -1 i=1
g,n - (by Definition A)
2 I h,(n.)
feN  i=1 + %
g,n
g & g
DU 0 ) sJ/ZqJJ) M)
ﬁeN 11 =1 j=1 j=1
g,0° s & T " (by substitution)
L 1ol sg/ ] astp £i(np)]
aeN _i=1 j=1 =1
g,n
g g n-1 g
( Lsy/ Yasep 1 [T £5(ng)]
j=1 3=l feN ) i=l
= — 5 — £ 5 (by simplification)
( z 53 / EQJtJ) 2 [ I fi(ni)]
i=1 j=1 fneN i=1
g,n
g g
=er, /(] sg/ ) aitq) (by equations (3), (2), and (4))
i=1 i=1
= PrA/PrI (by Lemma 2)

which is definition E. Il

ii) Representation E is equivalent to C:

) p(A)U(i) (by Definition C)
AeN |
ne g,n

} p(A)U(A)Pr
AeN I
= n,g

Pr
I
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L p(a)Pr, (i)
ieN
= 8,1 (by Definition 4)

PrI

PrA/PrI (by Definition 5)
which is definition E. I

iii) Representation C is equivalent to B:

L p(A)U(d) (by Definition C)
neN
g,n

m

L1 p(E)(k/m) -
k=l fieN, N{d | U(d)=k/m}

m
) p(k machines are busy)(k/m)
k=1

which is definition B. |

iv) = Representation C is equivalent to D:

Prob{a randomly selected machine is busy} (by Definition D)

& Si
z X Prob{machine k in machine group i is selected}
i=1 k=1  Prob{machine k of group i is busy]

machine k of group i is selected}

& 8i 8
= ) ) (/) si) Prob{machine k in group i is busy}
i=1 k=1 i=1
& 8
= ) E{number of busy machines in group i}/( } sj)
i=1 i=1
g g
=()I1) p(8)T, (8)])/( ) sy) (by Definition 1)
i=1 fieN i=1

“g,n
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g g
(L p(d) § T4EN/C Y sp)

nENg,n i=1 i=1
L p(#)U(H) (by Definition 2)
nt:Ng’n

which is definition C. ||

V) Representation C is equivalent to F:

L p(R)U(H) (by Definition C)

g,n

neN

- 24
I 167 g,n38,%) T hy(ng)UCA)
ﬁsNg’n i=1

(by Definition of p(d), equation (1))

g
] UG) I hyng)

neN i=1
) - (by equation (2))
) I hy(ng)
neN _i=1
g,n

which is definition F. I

The proof of Theorem 1 is now complete. The alternative representations

are used in the following section to explore and demonstrate additional

properties of optimal workloads and the production function.

5. APPLICATIONS OF THE ALTERNATIVE REPRESENTATIONS

Some properties of the production function are developed in this section

by using the alternative definitions. §5.1 contains some preliminary results

for networks of multiserver queues that are based on the equivalent defini-

These results are used in §5.2 to prove some results for balanced

workloads and their optimality in closed networks of singleserver queues.
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5.1 Preliminary Results for Networks of Multiserver Queues

The following results are valid for systems consisting of groups of

machines with s; machines in each group i.

Corollary 3. For any grouping S, the expected number of busy machines is
given by:
g
Pr(g,n;S,X) | s,. )
. 1
i=1

Proof: The result follows from Representation B of Theorem 1. [

The next theorem defines the number of states utilizing k out of m

machines when n parts are in the system.

Theorem 4. For any S, the number of states, i, such that U(di) = k/m is

-1
(g)(g_k), for k = 0,1,2,...,m.

Proof:

Consider any state, 1, such that U(i) = k/m; that is, there are k out of
m machines busy and m~k machines idle.

The number of ways to select k machines out of m machines is (E).

This is the number of states utilizing k of m machines with k parts in the
system.

Furthermore, the number of ways to distribute n indistinguishahle parts
among k busy machines is

(n-1)(n-2)...(n-k+l) _ (n-1)! - n—l)
(k=1) (k=2)%..1 (n—k)!(k-1)! n-k’*

Therefore, the number of states utilizing k out of m machines with n parts

in the system is

my n-1
@G

As a direct consequence of applying Theorem 4 to representation C, we have:
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Corollary 5. If p(d) = p for all i such that U(d) = k/m, then

m
Pr(g,n;$,X) = ) p
k=1

(D OTOE,

Proof: The result follows directly from Theorem 4 and representation C. ||

Corollary 5 may also be seen to be true by noting that under the assump-
tions of Corollary 5,
pk(ﬁ)(ﬁ:i) = Prob{k machines are busy},
and applying representation B.
Corollary 5 is required in the proof of Theorem 9.

5.2 Results for Closed Networks of Singleserver Queues

The results in this section consider systems having only one machine in
each group. In this case, 8 T eee sg =1, and S = (1,...,1) = 1. m equal,

balanced workload on each machine implies X1 = X2 = see = Xg = 1, which is

represented by X = (Xl’ X2""’Xg) = 1.

Theorem 6. Pr(g,n;f,f) = n/(nt+g-1).
Proof: Pr(g,n;f,f) = G(g,n—l;f,f)/G(g,n;T,f) (by equation (4))

The result follows directly by substituting X = 1 into equations (3) and
(4) and simplifying. |]

The following corollary to Theorem 6 states that production for a balanced
workload monotonically increases in n, and approaches one in the limit as n
approaches infinity. Since Pr(g,n;S,X) is a probability, by representation D
of Theorem 1, then balancing the workload is optimal for the limiting case of

an infinite number of parts in the system.

Corollary 7. For g > 1, d[Pr(g,n;I,f)]/dn > 0 and %ig Pr(g,n;f,f) = 1. Hence

balancing is optimal for n = =,
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> > 2
Proof: d[Pr(g,n;1,1)]/dn = (g-1)/(gtn-1)",
which is positive for all g > 1. Also,

. . o1 n___ .
%;g Pr(g,n,f,f) = % m e T 1, by &'Hospital's Rule. |]

Theorem 6 and Corollary 7, in terms of a different workload scaling, can be
found in Buzacott and Shanthikumar [1980]. Additional information on the opti-
mality of balanced (unbalanced) workloads in certain networks of multiserver
queues can be found in Stecke and Morin [1982] (Stecke and Solberg [1982]).

The following theorem provides another result for balanced workloads.

Theorem 8. If S = T, then X =1 if and only if each state, n, is equally
probable.

Proof:
(Sufficient):

Assume that Xl = X2 = ,.e =X =1,

For all neN_ ,
g,n

g

p(R) = Gle,mI, ) 0 Xini , (equation (1))
i=1 .
where
g
<> ns
G(g,n31,X) = ) I ;1.
neN i=1

&,n

Then, evaluating at X = T,

-1
(1 1)
neN
g,n
-1

ntg-1 o
( o1 ) , for all neN 0’

p(i)

Therefore each state is equally likely.

(Necessary):

ntg-1

Assume that p(n) = 1/( ) ), for all ﬁeNg .
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Then

1 8 .
G(g,n;T,X) L S 1/(n+g l), for all neN .

i= g’n

This provides (ggﬁil) equations in g unknowns.
Choose the g states, ﬁl, where all n parts are at machine i; i=l,...,g.

Then we have the g equations:

+g-1
= G(g,n;f,x)/(“ 8-y = ¢, i=1,...,g.
Taking the single, positive, real root of Xz = C yields:
= [G(g,n; .1 X)/(n+g1 )]1/n = Constant =K, i=1l,...,g. 6)
\
Since
§ X, =g (by definition)
i=1 T
= Kg, (by equation (6))
then
X, =1, i=1,...,8. I

Corollary 5, Theorem 6, and Theorem 1 are now used to prove Theorem 9,
which claims that if all states, n, of a system of single machines are equally
probable in steady—-state, then the expected production achieved is the same
as that for a balanced workload. Note that Theorem 9 actually follows direct-
ly from Theorem 8. However, additional insight can be obtained from the

following direct proof of Theorem 9 that uses the alternative definitions.

Theorem 9. If p(d) = 1/(n+g 1) for every state n and S = T, then

Pr(g,n;1,X) = Pr(g,n;1,1).
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Proof:
Pr(g,n;T,X)
= ) p(AU(A) (by Representation C of Theorem 1)
neN
g,n
= ) (n+g 1) U( ) (by assumption)
neN
g,n
= 1 (n+g 1y (g)(n 1) k (by Corollary 5 and m=g)

k" 'n-k” g

-1 -1
R ey D)

gl " o k1T
_ (tg-l ntg-2
LRI GLAS
__n
ntg-1
= Pr(g,n;f,f) (by Theorem 6). ||

The following Lemma provides a result on the unweighted (by p(f)) sum of
the utilizations of all states, U(a).

Lemma 10. 2 U(n) = (n+m 2) , if § = 1.

neN
g,n

Proof:

Equating the numerators of representations A and F of Theorem 1 yields

g
) U@E) T h, (n ) = G(g,n-1;S,X), for all S and X.

neN i=1
3
> ni
If S =1, then hi(ni) = Xi , for all i. In particular, when X1 = L. =
=Xg = 1’
) U@) = G(g,n—l;T,T)
neN
gs
_ tg=2 . s
= ( )s (by substitution in equations (2)
g-1

and (3) and using Theorem 9) ||
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6. SUMMARY

As a result of a particular scaling of workload in a closed network of
multiserver queues, six equivalent representations of an also scaled production
function emerged. The new representations are useful to provide insight into
understanding the production function. Some of the equivalent definitions of
expected production were used to derive some additional relationships that are
potentially useful for future research. In addition, some properties of
balanced systems that may also prove useful in the study of both manufacturing

and computer system performance are presented.
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