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ABSTRACT

Analytic queueing network models are being used to analyze various
optimization problems such as server allocation, design and capacity issues,
optimal routing, and workload allocation. The mathematical properties of the
relevant performance measures, such as throughput, are important for optimiza-
tion purposes and for insight into system performance.

We show that for closed queueing networks of m arbitrarily-connected
singleserver queues with n customers, throughput, as a function of a scaled,
constrained workload, is not concave. In fact, the function appears to be
strictly quasiconcave. There is a constraint on the total workload that must
be allocated among the servers in the network. However, for closed networks
of two singleserver queues, we prove that our scaled throughput is concave
when there are two customers in the network and strictly quasiconcave when
there are more than two customers. The mathematical properties of both the
scaled throughput and reciprocal throughput are demonstrated graphically for

closed networks of two and three singleserver queues.



1. INTRODUCTION

Closed queueing network models have recently been used to analyze design
issues and planning problems of both computer systems and flexible manufactur-
ing systems. Throughput, a main performance measure of interest, can be
defined as a complex, nonlinear function of several system parameters. The
mathematical and qualitative properties of this function are of interest for
optimization and performance evaluation purposes. For example, in the problem
of maximizing throughput subject to a set of contraints, it is necessary to
know if a local maximum is a global maximum. In addition, studying the quali-
tative properties of throughput is also useful for the analytic insight that is
provided.

Various versions of this problem have been reported in the computer
science literature. For example, Trivedi and Kinicki [1978], Trivedi and
Wagner [1979], Trivedi, Wagner, and Sigmon [1980], Trivedi and Sigmon [1981],
and Kobayashi and Gerla [1983] maximize throughput in central server, single
class, closed queueing networks (CQN) with a single server at each node sub-
ject to various budgetary limitations (cost constraints). The various studies
optimize different parameters (decision variables) such as service rate (of a
CPU, say), capacity of servers (I/0 devices), device speeds, routing, and main
memory size, often subject to a budget constraint. These parameters relate
éost considerations to performance. All of these studies prove the convexity
of reciprocal throughput in order to insure that the maximum throughput (min-
imum average delay or response time) is global, and not just a local optimum.
To prove convexity, these studies use the results of Price [1974], who proved
convexity for a particular scaled version of reciprocal throughput.

However, the reciprocal of a convex function is not necessarily concave
(Martos [1975]). 1In fact, the reciprocal of a convex function can be either

quasiconcave or quasiconvex. There could be some benefits and additional
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insights from investigating the mathematical properties of throughput directly.
For example, Suri [1983] analyzes the sensitivity (and bounds on sensitivity)
of throughput to variations in workload, as well as other properties of
throughput.

There have not been many studies that analyze throughput directly. Kenevan
and von Mayrhauser [1984] show that throughput is a log convex function of the
number of items in a closed, single class, network of an arbitrary number of
single and instant servers. They also prove that reciprocal throughput is a
convex function of the relative utilizations of the servers. This is a gener-
alization of Price's [1974] proof.

The following studies provide results concerning optimal solutions (work-
load allocations and server configurations) to problems of maximizing through-
put in both singleserver and multiserver CQNs.

Kobayashi and Gerla [1983] determine the optimal routing to maximize
throughput in central-server, singleserver, single class CQNs. Stecke and
Morin [1985] and Yao [1984] show that balancing workloads, for various
scalings, maximizes throughput in singleserver, arbitrarily-connected CQNs.
Shanthikumar and Stecke [1986] prove that balancing the workloads in
singleserver CQNs minimizes in-process inventory under various strategies to
release items to the network.

For multiserver CQNs, Stecke and Solberg [1985] and Yao [1984] prove that
balancing workloads per queue maximizes throughput when each queue has the same
number of servers. However, Stecke and Solberg [1985] also show that when the
number of servers in each queue is not the same in multiserver CQNs, the
throughput is maximized by a unique unbalanced workload per server. In fact
in this situation, the throughput function appears not only to not be concave,
but not symmetric as well. Unbalanced optimal workload allocation ratios can

be found at which the workload per server should be maintained to maximize
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throughput for these networks of unbalanced multiserver queues. These
allocation ratios can serve as input to more detailed workload allocation
problems that are solved using more detailed (mathematical programming) models.
See, for example, Berrada and Stecke [1985] and Stecke [1983, 1985a, 1985b].

We consider here a particular product form, non-central server CQN of
arbitrarily-connected singleserver queues, of which the central server model
is a special case. Rather than the budgetary constraints of the previous
studies, we impose a constraint on tﬁe total workload in the system. The
motivation for our particular CQN model is provided in the studies of optimal
workload allocation and server (machine) allocation in flexible manufacturing
systems (FMSs). 1In particular, we show, contrary to previous conjectures
(Secco-Suardo [1978], Solberg [1979]), that throughput (or production rate) is
not concave as a function of workload.

In this paper, we show that throughput, as a function of the ratio of the
"workload" (service demand) at a server to the sum of workloads is quasicon-
cave and not concave. Since Price [1974] and Kenevan and von Mayrhauser [1984]
do not consider throughput to be a function of the same quantity (a ratio of
server to total workload) and do not constrain the total workload to be
allocated, their results do not necsssarily apply. However, there is evidence
that the reciprocal throughput function studied here is convex, despite the
particular scaling of workload and throughput.

The plan of the paper is the following. In §2, the CQN model is defined.
We prove the nonconcavity results by induction in §3. First, the concavity of
throughput is proven for a closed network of two singleserver queues with two
customers. Then the nonconcavity is established numerically for a network of
two singleserver stations with n (greater than two) customers. Next, strict
quasiconcavity of throughput is established for a CQN with two singleservers.

A concave function is also quasiconcave; however, we also show in §3 that this
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scaled throughput function is not concave for m queues and n customers. For
definitions of generalized concavity, see Bazaraa and Shetty [1979] or Martos
[1975]. 1In §4, some evidence that our scaled version of reciprocal throughput
is convex is provided. If this is true, we can prove that throughput is

strictly quasiconcave. §5 concludes with a brief summary.

2. THE CLOSED QUEUEING NETWORK MODEL

The product form CQN that is considered here consists of m arbitrarily-
connected singleservers, of which the central server model is a special case.
There are always n items being processed in the system. The average processing
time of an item at station i is ti’ i=1,sse,me The routing of items among
the stations is arbitrary. The routing can be described by visit frequencies,
or relative arrival rates, 4 where q; can be the probability that the next
server visited is i, In addition, the q; can be provided by the traffic equa-
tions, q = 2 pji qj. Details of other routing possibilities can be found
in Stecke ané Schmeiser [1982].

The queueing discipline can be either FCFS, infinite server, LCFS preempt-
resume, processor sharing (see Baskett et al. [1975]), random selection, or one
developed by Kelly [1979] that allows an arbitrary distribution to be defined
at each server. The service time distribution is arbitrary, except for FCFS
servers, which require exponential service times.

The usual measure of relative workload assigned to server i is Wy (Buzen
[1973], Reiser and Kobayashi [1975], Solberg [1977]) which is defined as the
product of visit frequency and average processing time, or w, = qiti' These

workloads are relative since the qi's need not sum to one.

m
For our purposes w, was scaled, where Z qjtj/m is the average workload
j=1
per server, to provide:
m
X, = qiti/[(.z q;t;)/ul . (1)

j=1
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This particular constraint on workload was chosen for many reasons associated
with determining qualitative properties of optimal allocations of servers and
workloads in flexible manufacturing systems—-see Stecke [1985b], Stecke and
Schmeiser [1982], Stecke and Morin [1985], and Stecke and Solberg [1985] for
details on these studies,
The state of the system is given by 0 = (nl,...,nm), where ny is the

number of items at server i, both those waiting and in process. For all i, we
m

have ny; € {0,1,...,n} and .21 n, = The steady-state probability of
1=

being in state ¥ is p(¥) = p(nj,s..,np), which has the product form solution:

3 = 1 anxnz Xﬁm
P G(m,n;X) "1 "2 *°* “m >
where:
R T B
G(m,n3X) = ) XXy e X, i=1,...,m. (2)
njing-te. e np=n

ni_>_0
Throughput can be defined as a function of G(m,n;X), which in turn is a
function of assigned workload, Xj. In fact, for a particular scaling of qi,

the throughput, or production rate, Pr(m,n;X), is given by (Reiser and

Kobayashi [1975]):

n, n n
‘ xllxzz...x n
n +cu|+n =n—1 m
1 >m0
oy = G(myn-13X) _ n, 2
Pr(m,n;X) = G(m,n;X) n, n n : (3)
1,2 m
Y X, X, "0euX
172 m

n +...+nm=n
n1 20
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The throughput for two singleservers and any number of items is:

n, n
X11X22
n1+n2=n~1
Pr(2,n;X) =
) xnlxn2
M h
n-1 n n-1-n
Yy X ta=x ) !
n, =0 1 1
=l —, since X,+X, = m = 2
2 X 1(2—X ) 1 (with our Scaling)
n.=0 1 1
1
x‘ll—(z—xl)n
= —7 ° by dividing both numerator and (4)
X1 —(2—X1) denominator by (2—X1)—X1=2(1-X1).

Throughput, as given in equation (3), is difficult to characterize
analytically. However, it can be evaluated numerically using Buzen's efficient

algorithm [1973].

3. (NON)CONCAVITY OF THROUGHPUT
In this section, first the concavity of throughput is proven for a closed
network of two singleserver stations with two items. Then, strict quasicon-
cavity, but nonconcavity, of throughput is established for a network of m (> 2)
singleserver queues with n (> 3) items.

For a network of two singleservers with two items, from equation (4):

x%xg X K,
Pr(2,2;X) = T3 = 3 5 .
X]KD XA XA

Substituting X2 =2 - Xl’ simplifying, and then dropping the subscript, we

obtain:

2

Pr(2,2;X) = ————,
4-2%+X2
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Theorem 1l: Pr(2,2;X) is a concave function.
Proof. Taking the first derivative of Pr(2,2;X) yields:

d Pr(2,2;X) _  -2(2%-2) _ _ —h(X-1) _  —4(X-1)
dX [4-X(2-X)1%  [4-X(2-X)]%  (X%-2x+4)2

Setting Pr'(2,2;X)=0 yields X=1. Now

a%pr(2,2;%) _ =4 (x2-2%44)-4 (4-5X) (X-1)

dx? (x2-2x+4)3

2

_ hxP48X-16+16(X2-2x+1) _ 4(3%%-6X) _ 12X(X-2)

(x2-2%+4)3 xZaxss)d  (xPoaxea)d

Setting Pr''(2,2;X) = 0, the points of inflection are at X = 0 and 2.

Note that

for every X ¢ [0,1), Pr'(2,2;X) > 0, which implies that Pr(2,2;X) is increasing

on [0,1); for every Xe (1,2], Pr'(2,2;X) < 0, which implies that Pr(2,2;X)

is decreasing on (1,2].

Theorem 2: Pr(2,n;X) is not concave for n > 3.

Proof.
X0 xD XT-(2x, )"
Pr(2,n;X) = —E;%“_éif I = n+11 ( 1r)1+1 *
XX, X )T -2x)

Again the subscript is suppressed for convenience. Taking the derivative

with respect to X yields:

d Pr(2,n;X) _ [Xn+1

~2-x)" L x0 L(2-0) P = [xP-(2-%) M ] (01 ) [XP(2-X)P ]

+
dX [x" 1_(2_X)n+1]2
which upon rearranging yields:

20 (2%) 2Pkt (%) (x-1)

[Xn+l_(2_x)n+1]2

Evaluating at X=1, Pr'(2,n;X) = 0/0.
Upon two applications of 1'Hospital's rule we obtain:

Pr'(2,n;1) = 4n(n-1)(-2)+4n(n~1)+4n(n-1) ) 0

2 —__—2-= O L]
2(n+1)” 4 8(n+1)



Therefore, X=1 is a critical point.
-~

Taking the second derivative with respect to X and rearranging we obtain:

re2n0 | 20020 200 207 (P (Bnt2) x (b ) ket )
dX2 [Xn+l_(2_x)n+1]3
in_l(z—x)n—z(X3+(8n—4)X2+(—4n2—24n+4)X+4n2+20n)] (5)
[Xn+1_(2_x)n+1]3

The throughput function is now demonstrated graphically to be:

i) convex for X, ¢ [0,X'], X' < 1;

1

ii) concave for X1 e [X',X"], X" > 1; and

iii) convex for X1 e [X",2].

Then there are three points of inflection: at X', 1, and X". Moreover, X' and
X" are symmetric about the point X=1.

The points of inflection of Pr(2,n;X) can be found by setting the numera-
tor of the second derivative of the nonlinear equation (5) equal to zero and
solving for the roots. Two different IMSL (International Mathematical and
Statistical Library [1979]) routines, called ZREALI (see Muller [1956] and
Leavenworth [1960]) and ZREAL2, were used to find the roots. Both were used
as a check on accuracy and to help note any numerical or roundoff problems.
Fach routine finds N real zeros of a function F(Y). The routines were set up
to search for 5; each always found only three roots, including and symmetric

about X=1.

There are two convergence criteria necessary. Xi is a root if:
i) lF(Yi)I < EPS, and

+1 _m

11) =1 ¢ o7NSIC,



In the program, EPS (epsilon) was set equal to 1.E-8 and NSIG=5.

remained the same for both ESP=1.E-5 and 1.E-8, which implies that sufficient
accuracy was attained.
Table I and graphically in Figure I.

that Pr(2,n;X) is not concave on [0,2].

However, both Table I and Figure 1 indicate that throughput is strictly

TABLE I

Both routines found the same roots, as seen both in

The graph and points of inflection show

Points of Inflection and Approximation for

n=2,3, 4, 5, 10, and 99

2n-3
ZREAL1 ZREAL2 Sl
n=2 X=0, 1, X=0, I,
and 2 and 2
42265 042265 3 = .4286
n=3 1.0 1.0 7
1.57735 1.57735
«55452 +55452 3 = ,5555
n =4 1.0 1.0 9
1.44548 1.44548
«62943 «62943 1 = .6366
n=>5 1.0 1.0 11
1.37057 1.37057
«71563 71563 1l = 7333
n=7 1.0 1.0 15
1.28437 1.28437
78377 78377 17 - 8095
n =10 1.0 1.0 21
1.21623 1.21623
.89339 .89339 47 = ,9215
n = 25 1.0 1.0 51
1.10661 1.10661
+9649 +964903 195 = ,9799
n =99 1.0 1.0 199
1.0351 1.035097

quasiconcave with a global maximum at X=1.

Theorem 3:

interval Xi e [0,2], i =1, 2.

Proof. For each n > 2, there are three critical points, one at Xi = 1 that

For n > 2, Pr(2,n;X) is a strictly quasiconcave function on the

The roots
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gives the maximum Pr(2,n;X), and the remaining two symmetric about the line

X, = 1. The function is increasing for X1 € [0,1) and decreasing for
Xl € (1,2}. Therefore, throughput is quasiconcave for Xl e [0,2] with
the unique global maximum at X1 = X2 = 1.|

The last column of Table 1, labeled (2n-3)/(2n+l1), shows the results of
the attempt to provide a simple function that would closely approximate the
values of the roots of Pr(2,n;X), or the points of inflection.

We now show that throughput is not concave.

Theorem 4: Pr(m,n;X) is not concave for any m > 2 and n > 3.

Proof. Consider the throughput function for any m or n:

n

) xllxzz...xmm
nl+...+nm=n—1

Pr(m,n;X) = = = .

n
) X11X22...Xmm
n,+.eetn =n
1 m

Evaluating Pr(m,n;X) along any hyperplane such that Xi=0 for m-2 of the i, say,

for i = 1,2,...,m-2, we have:

n n
Z m-1_"m
no =n-1 m-l m
Pr(m,n;X) = - -
2 m—-1_m
n 4n=n WL M



n-1 n -1 n-1-n -1
L X" (X))
n =0
- m—1
n n n-n
m-1 m-1
l Xm—l (m—Xm—l)
n =()
m—-1
n n
_ Xm‘l ~ (m—Xm—l)
T _n+l n+l
Xm—l - (m_xm-l)
X1 ™ %
= ;E:E—ifzg;;f ’ since Xl+-X2+...+Xm = Xm—l+xm = m.
m-1 m

But this is the same form as Pr(2,n;X), which has already been shown to be

not concave in Theorem 2.

The following figures help to further demonstrate and clarify the be-
haviour of throughput. Figures 2 and 3 are different views of a 3-dimensional
graph of Pr(3,5;X). (Numerous other plots of Pr(3,n;X) for many values of n
are very similar in form to these.) Both figures show the function over its
entire range of relevant workload values: since there are three singleserver
queues in the closed network, our scaling ensures that X1 + X2 + X3 = 3, with
each Xi € [0,3]. The quasiconcavity can be seen as the function dips near
the extreme boundary points.

Figure 4 appears to demonstrate some bizarre behaviour of the throughput
function, particularly outside the dashed box. The function appears to change
direction. However, the function is well-behaved within the dashed lines,
which define the relevant range for our scaled workload.

Figure 5 interestingly demonstrates the non-symmetry of a one—-dimensional
slice of Pr(3,n;X) over a range of n, despite the symmetry of the entire

function. Figure 5 also shows the strict quasiconcavity of throughput as a

function of workload.
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Figures 6 and 7 also show the strict quasiconcavity of the production
function. When contrasted with Figures 2 and 3, the behavior is seen to
exaggerate as n increases. In this example, n doubled, from five to ten

customers. The closed network is more congested.

4. RECIPROCAL THROUGHPUT

For certain singleserver queueing networks, reciprocal throughput has been
shown to be convex. (For example, see Price [1974].) However, Price does not
consider throughput to be a function of the same quantities that are considered
in this paper and does not consider the same total workload constraint. Hence,
his results do not necessarily apply to our scaled versions of workload and
reciprocal throughput.

However, although we have not formally proven convexity, we can offer
some computational evidence that our scaled reciprocal throughput function is
also convex. In particular, Figure 8 demonstrates convexity for a closed
network of two singleserver queues, for a variety of n, ranging from n = 2 up
to 99.

Also, Figure 9 demonstrates the convexity for a closed network qf three
singleserver queues with the number of customers, n, equal to 5. Graphs for
other values of n are similar. Finally, Figure 10 provides some values, via a
conéour graph, for the reciprocal throughput function, Pr(3,5;X)“1, over the
relevant range of scaled workload, Xi € [0,3], for i =1, 2, and 3.

These figures and many other similar graphs provide evidence that
reciprocal throughput is convex. If this observation is true, we can use some

previous results in mathematical programming to prove directly that throughput

is strictly quasiconcave.
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Figure 9

A three-dimensional graph of Pr(3,5;X)-1, for Xi € [0,3].
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In particular, the following result that is stated as Theorem 5 can be
proven in several ways. One proof can use 3.39 on page 116 of Bazaraa and
Shetty [1979]. Another can use Variant H of Table 3.4 on page 63 of Martos

[1975]. Our proof shall use the latter.

Theorem 5: Throughput is strictly quasiconcave, if reciprocal throughput is

convexe.

f(x) .
g(x) '°

strictly quasiconcave, if f(x) is concave and nonnegative and g(x) is convex

Proof. Variant H of Martos [1975] can be stated: A function

and positive.

Let f(x) = 1 and g(x) = reciprocal throughput. Then f(x) is clearly
concave and nonnegative for all x, and g(x) is convex by assumption and
positive.

Hence throughput is strictly quasiconcave.[l

We note that without our particular scaling of workload (expressed via
'the constraint: Xl + X2 +ooot Xm= m), our reciprocal throughput function given
by equation (3) (Pr(m,n;X)~1) can be shown to be convex. One proof would

mimic that found in Kobayashi and Gerla [1983].

5. SUMMARY
We have attempted to provide some mathematical and qualitative insights
into a particularly useful scaled version of both throughput itself and
reciprocal throughput as functions of a particular scaled workload measure.
As a result, throughput is also scaled. In fact, it represents a probability:
all values lie between zero and one. (See Stecke and Schmeiser [1982].) To
our knowledge, such properties concerning the generalized concavity, of

throughput in particular, have not previously been investigated. This is,
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in part, because reciprocal throughput has been easier to get a handle on
and is also better behaved.

If this particular, scaled, reciprocal throughput function ig formally
proven to be convex, Theorem 5 is required to characterize throughput itself
directly, since the reciprocal of a convex function can be either quasiconcave
or quasiconvex. (Recall Table 3.4 on page 63 of Martos [1975].) Then
throughput is strictly quasiconcave.

0f course, if additional, general information can be discovered about
either function, some of that information can be useful, for example, for
performance evaluation or optimization purposes or general insights into the

behaviour of the functions.
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