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ABSTRACT

During the operation of a flexible manufacturing system (FMS), there are
various set—-up decisions that have to be made somewhat periodically, for exam-
ple, if the part mix is changed or when the production requirements are fin-
ished for some part type or a machine breaks down. Five production planning
problems have been defined to address these set-up decisions and several of the
problems have been addressed previously.

This paper focuses on two of these planning problems that have not yet
been sufficiently addressed either in practice or in the literature. In
brief, the problems are to:

l. Determine production ratios at which a set of part types, selected

to be machined concurrently over the next time period, should be

produced.

2, Determine the minimum in-process inventory (numbers of pallets and
fixtures) requirements to maintain those production ratios.

First, aggregate methods are used to solve these problems, i.e., to sug-
gest appropriate production ratios for the individual part types. Initial
computations are based on machine utilizations. Several objectives are con-
sidered, each applicable in different FMS situations. These aggregate produc-
tion ratios are useful to help solve other planning and operating problems.
For example, they provide guidelines to help in determining appropriate part
input sequences. They can decrease the size of subsequent scheduling problems
by decreasing the set of feasible alternatives.

The ratios also provide input into more detailed models that are used to
determine the actual, operating, production ratios. Two complementary models
are suggested. A stochastic model, a multiclass, closed queueing network, will
provide slightly pessimistic, but relatively accurate, aggregate and steady

state performance evaluation results. A deterministic model, a timed Petri



net and its associated algebraic representation, will provide slightly
optimistic and accurate results. Either model could be adequate to use to
determine the operating production ratios and minimum inventory requirements.

Many future research areas are also noted.



1. INTRODUCTION

A flexible manufacturing system (FMS) consists of a set of computer numer-
ically controlled machine tools connected via an automated material handling
system. The high level of automation allows efficient and flexible simultane-
ous machining of a variety of part types in unit batch sizes. The operation
of these systems is different from the traditional assembly line or job shop
situations. The FMS planning, scheduling, and control problems have sometimes
similar, but often different counterparts in the conventional manufacturing
systems.

Five production planning problems were defined in Stecke [1983] to help
an FMS manager to set up his/her system in an efficient and productive manner
prior to the start of production. Several of these have been addressed pre-
viously at various levels of detail. This paper addresses a different two of
the five planning problems.

The plan of the paper is as follows. §2 begins by briefly reviewing the
planning problems and various solution approaches to date. We discuss how
these problems and appropriate solution procedures are different for FMSs as
well as how their solutions relate to the FMS scheduling problems that would
need to be solved subsequently. §8§3 and 4 suggest solution approaches to
determine aggregate production ratios for several relevant operating objectives
and associated problems. §5 takes the results of §§3 and 4 as input into two
models to use to help determine operating solutions. Future research needs

are provided in §6.

2. PROBLEM DEFINITION
The following five planning problems are addressed and implemented in an

FMS, periodically and in advance of the start of production of a new or
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different part mix. Suri and Whitney [1984] call problems like these second
level decisions, to be addressed over a time horizon of several days or weeks.

l. The part types that are to be produced next, and simultaneously over
the upcoming period of time, have to be selected.

2. Within each machine type, machines may be partitioned into identically-
tooled machine groups. Then each group can perform the same opera-
tions. Grouping is useful in that it automatically provides redun-
dancy for breakdown situations; it automatically provides for alterna-
tive part routings; it decomposes the tooling problems into smaller
problems and makes them easier to solve. However, grouping is not
essential and sometimes cannot be performed. The necessary planning
functions can be addressed directly in (5) below.

3. The production ratios at which the selected part types should be pro-
duced over time are determined.

4, The minimum numbers of pallets and fixtures of different fixture types
required to maintain the production ratios need to be determined.

5. The cutting tools of all operations of all of the selected part types
have to be loaded into some machine's (one or more) limited capacity
tool magazine in advance of production. This determines which
machine tools each operation can be performed on during the real time

production of parts.

There are production requirements that usually change over time for a

variety of part types. These production requirements are derived either from
some forecast of demand or actual customer orders. Depending on many factors,
such as system capacity or due dates, for example, usually some subset of the

required part types will be chosen to be produced next over the upcoming time
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period. When the production requirements for some part type(s) are finished,
space is freed up in the tool magazines and either one or more part types can
be input into the system (if space for all cutting tools can be found) or just
the reduced set of part types can be machined (perhaps more pooling can be
done). An alternative heuristic to select the part types to be produced next
is suggested by Whitney and Gaul [1984]. They partition all part types into
batches and then machine one batch at a time.

The grouping and loading problems (problems (2) and (55) have been treated
at several levels of detail. Queueing networks have been used to characterize
appropriate solutions to these and other FMS problems at an aggregate level of
detail and to provide qualitative or operational insights in Buzacott and
Shanthikumar [1980], Cavaillé and Dubois [1982], Dallery and David [1983],
Dubois [1983], Hildebrant [1980], Solberg [1977, 1979], Shanthikumar and
Buzacott [1980], Shanthikumar and Stecke [1986], Stecke [1985], Stecke and
Morin [1985], Stecke and Solberg [1985], Suri [1983], Suri and Hildebrandt
[1984], and Yao [1984], for example. At a detailed level, the various prob-
lems have been addressed using mathematical programming (Stecke [1983],
Berrada and Stecke [1984]), heuristics (Stecke and Talbot [1983], Whitney and
Gaul [1984]), and at a less detailed level by Kusiak [1983]. Many of these
studies assume that part type mix problems like the third and fourth planning
problems have already been solved.

This paper addresses the third and fourth planning problems. In particu-
lar, aggregate approaches to help determine appropriate, "optimal” input
ratios in which a selected set of part types should be produced are suggested
in §§3 and 4. The main, overall system objective that is considered in this
paper is to maximize production or system utilization. The equipment is
expensive and many FMS users admit that a high utilization and maximum

production is of major concern (i.e., Vought AeroProducts, Caterpillar
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Tractor, John Deere, Renault Machines Outiles, Olomouc and Celakovice in
Czechoslovakia,...). If due dates are relevant, these would impact other
problems, such as part type selection as well as the part input sequence and
scheduling procedures. Makespan might also be important, but maximizing
utilization could help to attain makespan objectives.

Two distinct and relevant objectives to determine the production ratios to
follow that will help maximize production are considered here. Each would be
applicable in a different type of FMS. These various FMS situations and those
relevant for consideration here are now described.

Some FMSs produce parts that are required in certain relative ratios. For
example, perhaps the system machines many parts or components for later assem-
bly purposes. Then the parts are required in certain, perhaps equal, output
ratios of each. These requirements can be translated into operating produc-
tion ratios as we shall see in §3, where we provide other potential scenarios
for this application. There are also interesting part type selection, group-
ing, loading, part input sequence, and scheduling problems in this case, which
are not the subject of this paper. However, we show that the selection of
appropriate production ratios can impact and simplify these other FMS opera-
ting problems.

The systems that are of more interest here are those that machine indepen-
dent part types. There may be requirements for varying numbers of each, but
we are free to determine the relative ratios in which they should be produced.
There are several scenarios possible in this case. Some approaéhes to operate
the system are better than others (with respect to maximum utilization, say).

We first examine, in §3, the situation in which a set of part types has
been selected to be machined, having varying production requirements, with the
operating objective of starting and finishing all of these parts at the same

time. There are plausible reasons for such an operating decision. Before



production begins, all required cutting tools have to find their places in
some tool magazine(s). When all requirements are finished, all magazines can
then be emptied and the system set up for the next mix of part types. This
approach tends to minimize the frequency of tool changes. We show in §3 how
to determine aggregate ratios of part types so that they begin and end all
requirements simultaneously. One can see that this approach defines the
workload constraints and the bottleneck machine (type). In general, it will
neither maximize production nor utilization. However, this may be an appro-
priate approach for some FMSs, for example, if demand for some parts is
dependent and certain relative output ratios are required. These output
ratios would be translated into different production ratios. We show how to
implement this approach in §5.

The operation of the FMS is different in §4. Aggregate ratios of part
types are determined so as to keep the workload per machine on each of the ma-
chine types relatively balanced (or unbalanced, if that is applicable) over a
time horizon. In this case, the operation of the FMS is more flexible. Now,
the requirements of some part type are finished first, and all of the planning
problems can be addressed again, including the determination of production
ratios. The planning for set up of the system prior to production is more
complicated and still manageable, but system utilization and production
increases. Groups of pooled machines are also considered.

Throughout §4, it is seen that by determining ratios to balance workloads,
idle time tends to decrease, the amount of buffer space required is less than
otherwise, less lead time is required, and inventory requirements can be mini-
mized. Some theoretical justification of the latter observation is provided

by Shanthikumar and Stecke [1986].
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In some systems, parts require one or more refixturings so that cutting
operations can be performed on a different surface of the part. In these sit-
uations, there are relative ratios predetermined for each fixturing of each
part type, but if the types are independent, ratios can again be found for
the final products. Another situation that can be handled similarly is that
of different components being machined in fixed ratios but for different
assemblies. The ratios of assemblies can then be determined. These situ-
ations are addressed in §4.5. 1In §4.6, we formulate the problems as parametric
linear and integer programs to allow the generation of many of the possible
optimal solutions. Examples demonstrate the usefulness and further research
needs regarding the use of these ratios.

In §5, we address the problems of determining: (1) actual operating
production ratios; and (2) minimum inventory requirements to operate at these
ratios. The suggestions of §§3 and 4 serve as input into any of several
models that can help determine both the best ratios at which to operate the
FMS and the minimum numbers of pallets and fixture requirements. Both
queueing networks and Petri nets are used to determine these. Simulation
might also be used but often, not that much detailed modeling capability is
required. More aggregate or simpler models might be desirable because of the

frequency of solution that might be required.

3. SIMULTANEOUS COMPLETION OF ALL PART TYPES
We begin by defining in Table I the notation that will be used subse-

quently in this section. Additional notation will be defined when it is re-
quired in §4.

Given the part types that have been selected to be machined simultaneously
over some upcoming production period, and each part type's total processing

time and production requirements, the problem is to find a set of aggregate
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TABLE I
Notation
i part types, 1= 1,e0e,N
j machines, j=1,0es,M
k machine types, k = 1,...,K
a; production ratio of part type i
r, production requirements for part type i
n, number of pallets required for part type i
pij processing time of part type i on machine j
P, average workload of part type i on a machine j of
ik type k = p,./m
ij' 'k X
tp. total workload of one part of part type i = Z P
i k=1 ik
m number of machines of type k
I
n | total number of pallets required = X n,
i=1

production ratios to be followed that allow all part types to finish at the
same time,
The aggregate production ratios are obtained simply by solving the fol-

lowing equations for a;, i=1,ee4,N

r, (tpl)/a1 =r, (tpz)/a2 = e =T (tpi)/ai = eee =Ty (tpN)/aN (1)

This situation can be thought of as a static, deterministic, aggregate,
minimum makespan-like problem. Travel time, waiting time, and the like are
not considered here. The real-time control of production accounts for these.
These aggregate production ratios, a;, serve as guidelines for production. For
example, we shall see that they impact and can be used to help determine an
appropriate part input sequence. Applicable scheduling procedures will direct

the flow of work through the system. These other considerations, i.e.,
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waiting time,..., are accounted for shortly in §5 to determine actual
production ratios.

The following simple example illustrates the concepts. Table II contains
processing time information and production requirements for two part types on
two machine types (mills and drills, say). The information indicates that

output ratios of 1:2 are required for part types 1 and 2, respectively.

TABLE II

Processing Times for Two Part Types on
Two Machine Types with Production Requirements

Mill Drill ri
PT1 10' 40! 50
PT2 20! 10! 100

Substituting the appropriate information into equation (1) and solving,
the aggregate production ratios are: a = 5 and a, = 6.

It can be seen that maintaining these relative input ratios over time
will help to allow the completion of all requirements of both part types at
the same time. This might be a goal of Whitney and Gaul's [1984] batching
procedure. Begin a batch of part types, complete its requirements over some
time horizon, and then begin the next batch. The frequency of tool changes is
minimized. However, production rate is lower using this approach, rather than
following the different objective of §4. Hence the total number of tools
changed will also be less. Also, starting and ending conditions are important.
Is the system starting empty? Can batches overlap? There might be a signifi-
cant amount of idle time during the beginning and ending o£ a batch of part

types.
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This procedure can be applicable in various situations. Suppose, for
example, that two of PT2 are needed for every PTI' This required output ratio
can be related directly to the production requirements in Table II of 100 and
50 pieces, respectively. More generally, several part types may be required
in predetermined ratios to be fed to downstream workstations, say, for
assembly purposes.

As another example, suppose that several final products are for the same
customer. Then the orders should be shipped together when completed to keep
freight costs down. If there is only a small area for finished goods inven-
tory, then this approach is appropriate also. Batching the requirements of a
customer will minimize finished goods inventory.

This approach can also be used in an MRP environment (dependent demand),
where predetermined quantities (obtained by exploding the bills of materials)
of several components are specified to be manufactured within a particular
time bucket. The ri's represent the requirements within the time bucket. The
derived production ratios would facilitate overlapped production of the down-
stream workstations. This could reduce the effective lead time while ensuring
that the total requirements for the time period are met.

Operating the system in this manner defines the workloads on each machine.
In the particular example of Table II, the workload unbalance is not too bad.
Over time, the drills would be the bottleneck machine type if the output ratios
of 1:2 were followed. In §4, another approach that is applicable for
different types of systems determines aggregate ratios to provide a better
workload balance.

Recall that we have not yet accounted for travel time, waiting time, or
congestion. Only the aggregate input ratios have been determined. These
other considerations are accounted for in §5, where these ratios are input

into other models that determine the actual operating production ratios as
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well as the minimum numbers of pallets and fixtures to maintain these ratios.
Rarely, these ratios are slightly revised at this next stage. Finally, we
note that this procedure generalizes immediately to N part types, M machines,

and K machine types.

4, BALANCING WORKLOAD PER MACHINE

Given the processing time requirements of each part type on each machine
type, the problem is to determine relative ratios at which the part types
should be maintained in production, so as to keep the workloads on the machine
types balanced.

For different types and sizes of problems, the following suggested solu-
tion procedures differ. Also, for larger problems there are multiple "optimal”
solutions with respect to balancing, so that other, secondary criteria can be
used to determine the ratios to follow. For these reasons, the following
presentation consists of cases, presented in order of increasing complexity.
Examples are used to illustrate. The bénefits to be obtained from following
the suggested procedures are first demonstrated in $4.3, as the situations
become sufficiently complex enough to be of interest. Parametric integer and
linear programs are suggested in $4.6 to solve many of the problems presented
here for larger problems.

Aggregate production ratios are determined that are to be followed over
time. These ratios are input into the more detailed models in §5. They can
be revised, if need be. Often, the minimum number of pallets and fixtures to

maintain these ratios can be found via the procedures of §§3 and 4.

4.1 TWO PART TYPES, TWO MACHINE TYPES
The simplest situation consists of two part types and two machine types

with one machine of each type. Using the notation of Table I, the aggregate
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ratios to balance the workload on both machines over time can be found by
solving:

Pyy 3 * Py 3 = Py a; * Py, aye (2)

The solution is:

81 2 Pap -~ Py, (3)

a Py - Py
Note that the quantity on the left (right) hand side of equation (2) is an
aggregate measure of workload over time on machine one (two). Equating the
two quantities balances the workload.

If the solution (3) consists of positive a and 2y, these are then the
ratios to maintain over time to balance the workload. However, a little care
has to be taken to ensure a feasible (all a; greater than zero) solution to
equation (2). In selecting the two part types to be produced, one has to
utilize one machine type more, while the other part type has to utilize the
other machine type more. Otherwise, a workload balance between the two
machines is impossible and a queue has to build and idle time results. This
situation would surface in (3) as the ratios, a; and ay, would then relate
negatively to each other. Obviously, the processing time requirements on each
machine type j cannot be identical.

To illustrate with the data in Table II, the production ratios that bal-
ance the workload on the mill and drill are:

a; = 1 and a, = 3.

We return to this situation in §5, where these aggregate operating ratios are

to be input into more detailed models.
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The procedure generalizes immediately to systems containing pools of ma-
chines. If there are several machines (mk) of each type k, then the workload

per machine is balanced by solving:

Pyp My @) ¥ Pyy My 8y = Pyp My 3+ Pyy My 3y o (4)
The solution is:

8 P M- Py My (5)

a

2 Prp M -Prp™

To illustrate with the same data of Table II, if there are 2 mills and 4
drills, the relative ratios that balance the workload per machine on each mill
and drill are:

a, = 3 and a, = 2.

The next generalization is to include a third part type.

4,2 THREE PART TYPES, TWO MACHINE TYPES
By including a third part type 3 on the system, the equation to solve to

find the production ratios of three part types on two machines is:
Pyp @1 T Py 3y ¥ Py 33 7 Pyp 3 F Pyy 3y + Pyy 2y (6)

The solution to equation (6) is of the form:

a, _ (Pyy - Py) 2y + (pgy - pgy) ag, (7)

2

Po1 = Py

In this case, the solution is not a set of ratios. The solution described
by (7) is an equation, in particular, a plane. If the problem is well-defined
(along the lines described in §4.1), then there is an infinite number of
solutions that will balance each machine's workload. The problem of how to

choose one of these solutions is addressed in §5.
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To illustrate, consider the inclusion of a third part type in addition to
those of Table II, requiring 10 minutes on the mill and 20 minutes on the
drill. These requirements are in reverse to those of part type 2. In this
case, the solution to equation (6) is:

a, = 331 + aqe (8)

Table III contains some possible solutions, all of which balance the workload.

TABLE III

Production Ratios from Equation (8)

n 6 8 12 10 10

If, for example, the number of pallets in the system is the sum of the ratios,
we see that there can be several ways to distribute some n pallets among the
three part types so as to balance workload. We return to this issue in $4.6.
Notice that although part types 2 and 3 have asymmetric machine requirements,
their ratios will never be equal unless part type 1 is not produced.

Finally, note that in the case of pooling machines, the equation to solve

for the optimal production ratios is:

Pyp My ap ¥ Pyy My @y + Pgy My g = Py my a; + Py, my 3y + pgy my age (9)

One solution to equation (9) is of the form:

ay _ (Pypmy - Py my) 3y + (pgy my - pyy my) 3y (10)

Pyp Mg = Pyp ™
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4.3 N PART TYPES, N MACHINE TYPES

The procedure described now to find the production ratios is different
from those provided in the previous sections. In the present case, N equations
are solved for N unknowns. The production ratios are unique. In order to
obtain a feasible and meaningful solution (i.e., all a > 0), an initial,
simple check should be made to see that the maximum processing time of each of

the N machine types is required by a different part type.

The ratios to balance the workload on the machine types over time can

be found by solving the N equations:

W= Y a p,., §=1.ee,N (11)

W is a measure of the workload on the machines. Notice that these equations
can be solved quickly to find the unique éolution by using linear programming
with an arbitrary objective function.

To illustrate the procedure, consider the aggregate processing time infor-
mation in Table IV. We want the workload, W of equation (11), to be the same
on each machine type:

W= 10al + 20a2 + 10a, = 20a1 + lOa2 + 30a, = 50a, + Sa2 + 20a

3 3 1

30

TABLE IV

Processing Times for Three Part Types on Three Machine Types

Mill Drill VTL

PT 10 20 50

PT 20 10 5

PT4 10 30 20
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Since the three equations are dependent, a value for W has to be chosen.
The relative ratios remain the same, regardless of the value of W. The
selected W merely scales the a;. Setting W = 100 and solving the three

equations simultaneously, we obtain: a, = 1.083, a, = 3.783, a, = 1.35.

2 3

5 = 7.566, ay = 2.7. Rounding

these values translates to ratios of about 1:4:1 or 2:8:3.

1

Doubling each a;, we obtain: a; = 2.106, a

Simulating this situation quickly showed that maintaining the ratios of
1:4:1, and including a second PT3 every other period, both kept the machines

balanced and minimized the in-process inventory. Of course, an appropriate

part input sequence has to be determined and the calculated production ratios
help with this problem also. They provide guidelines to follow. By following
the production ratios of 1:4:1.5, several input sequences provided: a balanced
workload; minimum work-in-process required; minimum buffer space required; and
minimum idle time. In fact, the minimum number of pallets and fixtures of
each fixture type required to maintain the ratios was either:

(1, 4, 1) or (1, 3, 2).
Only 6 pallets in total were required. For all other sets of aggregate produc-
tion ratios that were simulated, queues built up, there was inserted idle time,
additional pallets (inventory) were required to keep machines busy, workload
was unbalanced, and more buffer space at each machine was required.

Linear programming can be used to find the unique ratios. Using the
formulation (P1) of §4.6 and LINDO, a first IP solution is 1:3:2. The IP
optimum is 1:4:1 and took 0.194 seconds of CPU time to find. These matched

the integer solutions that were suggested above by rounding the linear optimal

solution.
This simpler situation illustrates the concepts and benefits. The

procedure generalizes directly to N machines and N part types.
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4.4 N PART TYPES, M < N MACHINE TYPES

A more usual situation is when there are more part types being machined
concurrently than machine types. As in $§4.2, the solution will most often no
longer be unique. There could be an infinite number of solutions, but as we
shall see, most of these can often be eliminated as either infeasible or
undesirable. Other criteria in addition to balancing can be used.

One procedure to find the optimal aggregate production ratios is similar to
that described in §4.3: The M equations (11) are solved for the a; . However,
there could be many solutions. The following example illustrates this situation.

Consider the three-machine system described in Table V. In order for the

workload on each machine to be identical, equation (l1) provides the three

equations:
W= lOal + 20a2 + lOa3 + 1534 = 40al + lOa2 + 3Oa3 +20a4
= 50a1 + 5a2 + ZOa3 + 4034.
TABLE V

Processing Times for Four Part Types on Three Machine Types

Mill Drill VTL

PT 10 40 50

20 10 5

PT 10 30 20

PT, 15 20 40

W is an aggregate measure of workload on each machine. It is an indication of

machine capacity over some time horizon. Setting W = 100, we can solve for

a)s 2y, and ag, as functions of at
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al = 107808 - 10195934
a, = 4.3477 - .739a4 (12)
a, = - 4347 + 1.1738a4.

It appears as though there would be an infinite number of solutions. 1In
reality, the feasible set of solutions is small., For any integer value of a,

greater than one, a, is negative (i.e., infeasible). The equations (12) are

1

graphed in Figure 1. For any values of a, outside of the interval (.37, 1.49),

either a or a3 is negative. For a4 =1,

al = 0585 az = 306 33 = 07390
Rounding these values up to integer values, suggests aggregate production
ratios of:

(al, 8y, a4, a4) = (1, 4, 1, 1). (13)

It can be seen that in this example, any other ratios that would tend to bal-
ance workload would be fractional, i.e., a, = e5e

Figure 2 is a Gantt chart of one possible scenario. It depicts a flow
shop, where each part visits the mill first, the drill second, and the lathe

last. Using the aggregate production ratios (13) as guidelines, a good part

input sequence was determined to be:
1, 2, 2, 2, 3, 4, 2.

The subscript of each part number in Figure 2 is the pallet/fixture number that
is assigned to that individual part. The sequence is periodic and repeats as is.
The small boxes (M) indicate the completion of a c¥cle of the input sequence.
Three cycles are shown here.

The production ratios of equation (13) were very useful in the following
ways:

1. Théy were useful as guidelines to help find a good, periodic, input

sequence of parts.
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Figure 1

Graph of Feasible Solutions to Equations (12).
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2. They helped to find a schedule with very little idle time. Workload
is nearly perfectly balanced.

3. The numbers of pallets/fixtures required to maintain these production
ratios is exactly the values of the ratios: 1, 4, 1, 1. The total
number of pallets required is 7.

4. The amount of buffer space at each machine to hold the WIP inventory

is minimal.

The little idle time on the mill in Figure 2 can be decreased even fur-
ther by following the ratios: (.5, 4, 1, 1). These ratios are closer to the
optimal fractions that balance workloads. A part input sequence that provides
an even better schedule (less idle time,...) while following these new ratios is:

1, 2, 2, 2, 3, 4, 25 2, 3, 2, 2, 4, 2.

Again, the procedure generalizes immediately to M < N machines and N part
types. The usual situation is that there are more part types than machine
types. This could result in several sets of "optimal"” aggregate production
ratios. In §4.6, parametric linear (integer) programming is used to provide
many candidate, optimal and nonoptimal but good, ratios. In §5, queueing and

idle time are considered to find actual operating ratios.

4.5 REFIXTURING

For most types of prismatic parts, after a series of operations are per-
formed, they move off the system to be refixtured. The part is clamped to a
different fixture type on a different pallet. The part is then released to
the system again and additional cutting and inspection operations are performed
on a different surface of the part. Each refixturing in most respects can be
treated as a new part type. However, for each part, the production ratios of
the refixturings have to remain at one to one. If the end products are inde-

pendent, aggregate ratios can be found for these that balance the workload.
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Depending on the numbers of part types and machine types, the appropriate
methods described earlier in §4 can be applied to find these ratios.

We again illustrate with an example. The system described in Table VI
consists of two machine types processing two part types, each of which required
a refixturing after passing through the mill and then the drill. 1In Table VI,

PTij is part type i with pallet/fixture combination j.

TABLE VI

Processing Times for Two Part Types
Requiring Refixturings on Two Machine Types

Mill Drill
PT11 10 40
PT12 10 30
PT21 20 10
PT22 15 20

Aggregating the processing time information of Table VI and substituting
into equation (2), the aggregate production ratios are: (al, az) = (1, 10).
Maintaining these ratios balances the workload. However, we shall see in §5
that in a flow shop situation, and ignoring for the moment the refixturing,
set-up, and transportation times while considering the processing and queueing
times, only three, rather than ten, fixtures for part type 2 are required to
produce at the indicated production ratios. This determination includes
waiting time and buffer requirements. When the delays due to transportation
and fixturing times are accounted for, a few more pallets will sometimes be

required.
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4,6 DETERMINING AGGREGATE OPERATING PRODUCTION RATIOS
The previous methods of §4 provide aggregate production ratios to follow
over time to balance the workload. In this section, more precise methods to
determine the ratios are provided. The problem of determining ratios so as to
balance workloads is formulated as both linear and integer programs.

The usual situation is that there are more part types simultaneously being
machined than machine types. This ratio problem is similar to that of §§4.2
and 4.4, where there can be potentially many optimal sets of aggregate ratios
to choose from. After the appropriate equations are solved, feasible inter-
vals for the ratios could be found, as shown in §4.4. Because the ratios have
to be greater than zero, the feasible intervals can be quite small. O0f course
if all part types in the current production plan dominate the same machine
type, then no feasible ratios can balance the workload per machine.

In some situations, graphical methods are helpful to both determine the
ratio intervals and to choose ratios, as in §4.4. In particular, a graph is
useful for situations in which N + 1 part types are to be produced on N machine
types. Otherwise, Tables of feasible combinations can be developed, as shown
in §4.2, i.e., like Table III.

In any case, there could be a question concerning how to round fractional
optimal aggregate ratios up or down to integer values. Fortunately, we shall
see that performance does not appear to be sensitive to small variations in
the ratios. 1In addition, considerations of transportation, fixturing, and
queueing time may revise the ratios slightly (more inventory required), but in
these situations also, experience has indicated that system performance does
not appear to be very sensitive to variations in the ratios.

Both linear and integer programming can be used to find optimal and near-
optimal sets of production ratios. The constraints are the M equations, one

for each machine type:
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Various sets of ratios can be generated by relaxing the equality con-
straints (11) by introducing slack (underload) and/or surplus (overload) vari-
ables for each machine type. These variables are:

le = amount of time by which the workload on machine j is greater than W;

ij = amount of time by which the workload on machine j is less than W.

Then the problem of finding aggregate production ratios so as to balance

the workload per machine is:

(P1)
M M
Minimize X., + X,
jzl jl jll j2
subject to

glaipﬁ-%l+)%2=w, 3= 1,e04,M

a. > 1’ i= l’.'.’N

X0 20,  §=1,000,M

Problem (P1) still provides a unique solution for a particular capacity work-
load W. However, multiple optima can be obtained by varying the parameter W.
If the objective function were changed to incorporate weighgs assigned to
the overload (le) and underload (Cjz) on each machine (type), then multiple
optima can also be obtained by parametric ranging of these weights., The objec-

tive function becomes:

(P2)

M
Minimize )
J=

M
C., X,. + ) C., X...
1 Jl 731 jzl j2 "j2
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The purpose of the following formulation is to combine both of the dis-
tinct objectives of §§3 and 4. The aim is to find ratios that balance the
workload but finish all parts at around the same time, T. Let

Tli = amount of time by which part type i finishes later than T;

T,. = amount of time by which part type i finishes earlier than T.

2i

Then the problem is to find ratios so as to satisfy:

(P3)
N N
Minimize iZl Tli + izl T2i
subject to
N
izl al pij = W, i l,60.,M
ai "]’.‘i (tpi) X+Tli —T2i=0, i= l,ooo,N (14)
a; 21

Tli, Tzi Z 0, i = ].,toa’No

Variations of (Pl), (P2), and (P3) can occur by changing the objective

function and the constraints. For example, the objective function could be:

~=

N
Minimize B1 izl (Tli + TZi) + B (le + ij).

2 j=1

Different sets of ratios could be obtained by varying the Bi's, Cij's, X, and
W. 1In any case, further research is required to determine how to set some of
the parameters appropriately, such as W and X, so as to get meaningful ratios
for the situation of trying to satisfy both objectives simultaneously.

We now describe how the IPs, LPs, and the methods of §§3 and 4 can be use
to provide various optimal or near optimal sets of aggregate ratios. One way

is to vary the parameters W, C. C

Jl, j =1,000,M-

j2’
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This is illustrated first with the results of Table VII. LINDO was used
to provide both LP and IP optimum solutions to programs (P1) and (P2) for the
four part type, three machine type example of §4.4, for varying parameters
W, C'l’ Cj2‘ (Results for a ten part type problem are provided subsequently.)

J

CPU time is given in seconds. Case 1 of Table VII is one solution obtained
from manually solving the problem. Cases 2-13 and 17-19 all included the con-
straints that a; 2> 1, for all i. We discuss this constraint shortly. Cases

14-16 required only that a; 2> 0. Cases 2-10 and 14-16 have all Cj and Cj

1

equal to 1, while Cases 11-13 have different Cjk's. Finally, Cases 17-19

2

allow the workload W to be a variable of the problem.

We make the following observations and subsequently discuss the

implications.

1. Perfect balance is obtained only with the LP optimal solutions of
Cases 4, 11, 14, and 17. The remaining linear solutions and all of
the integer solutions (except Case 19) are unbalanced, with either an
overload or underload on one or more of the machine types.

2. 1In four of the 6 cases, the optimal integer solution is merely the
scaling of the linear solution. Only Cases 7, 18, and 19 provide
substantially different ratios. In three of the 5 cases, even the
first IP solution is quite similar to, or a rounding of, the linear
solution.

3., Varying W from 100 to 500 to 1000 provides quite different optimal
sets of ratios.

4, 1If we for the moment assume that the sum of the ratios is suggesting
the number of pallets, n, in a cycle, then from Table VIII and Figure
3 we see that n increases about linearly with W. Notice that the
three integer solutions for W = 100 (Cases 3, 15, and 16) all sum

to 6.
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TABLE VII

Linear and Integer Optimum Solutions with Varying Parameters for the Problem of §4.4

Case \J OHH OHN omH 29 31 39 ovumnmw<m a, a, ag a, nwc
Function Time

1 100 0. «585 3.6 «739 1. No Objective Function

2 100 1 1 1 1 1 1 48.75 1. 3.25 1. 1. .188 LP Optimum

3 100 50 1 3 1 1 350 IP Optimum

4 500 0. 1. 16.982 5.382 6.436 .186 LP Optimum

5 500 20 3 19 3 5 First IP Solution

6 500 15 3 18 3 5 Second IP Solution

7 500 10 6 20 1 2 .926 IP Optimum

8 1000 40.3125 1. 31. 12.625 13.563 .186 LP Optimum

9 1000 60 1 31 13 13 First IP Solution

10 1000 55 1 31 12 14 .993 IP Optimum

11 1000 50 0 50 0 1 1 0. 1. 31. 28./5 5.5 TP Optimum

12 1000 25 1 31 25 8 First IP Solution

13 1000 5 1 -1 31 28 6 IP Optimum

14 100 1 1 1 1 1 1 0. 1.296 4.074 0.0 .37 .201 LP Optimum

15 100 40 2 4 0 0 First IP Solution

16 100 15 1 4 0 1 .606 IP Optimum

17 15547 0. 1. Do/ T. Te 23 ~20% | LP Optimum

18 240 5 2 9 1 2 First IP Solution
L 19 390 0 2 14 3. 4 .616 IP Optimum
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Figure 3

Number of Pallets as a Function of Workload.
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TABLE VIII

Number of Pallets as a Function of Workload

W 100 500 1000

n 6 29 66

5. Varying le and Cj2 also provides substantially different sets of
ratios,

6. Letting ai.Z 0 in Cases 14-16, ag is always zero. This suggests that
three is the "least compatible" part type, and that if we had a
choice, it should not be produced with the other part types.

7. By letting the parameter W vary, even the IP optimum is balanced.

8. The CPU times (in seconds) are less than one second for all 19 cases.
The times reported for the IP optimum all include the time to reach

the LP optimum, since LINDO uses the LP optimum as a lower bound.

A larger example is now provided to continue to demonstrate possible uses
of programs (P}) and (P3). Table IX provides processing time and demand infor-
mation for a ten part type, three machine type, and five machine problem.,

Table X provides linear and integer solutions to problem (P1) (balancing aggre-
gate workloads) for a variable W and for W = 100, 500, and 1000.
We can make the following observations about the results of Table X.
1. The pairs of Cases 24 and 25, 28 and 29, and 35 and 36 all provide
two different linear solutions. Rounding these does not cause a
significant unbalance.
2. As W increases from 100 to 500 to 1000, z a; inéreases approxi-

mately from 8 to 40 to 80 as Figure 3 showed for the smaller problem.
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TABLE IX

Processing Times for Ten Part Types on Three Machine Types
with Five Machines

Mill (1)* | prill (2) | VTL (3) r,
PT1 10 20 50 50
PT2 15 20 40 100
PT3 20 10 30 70
PT4 10 20 20 100
PT5 10 10 20 200
PT6 10 30 20 150
PT7 20 10 10 100
PT8 15 20 30 50
PT9 25 10 20 150
PT10 5 40 40 200

All of the IP optimums are balanced.

Many of the intermediate IP solutions provide nearly balanced work-
loads (Cases 21, 22, 26, 31, 32, 33, and 44). Any of these could be
used to suggest compatible part types and appropriate ratios to
follow.

Out of a candidate set of 10 part types, the solutions suggest
various combinations of 3-7 part types that are compatible for
possible simultaneous machining.

All integer optima are found within 3 CPU seconds, including the

time to obtain the LP optimum.

*The number of machines of each type is in the parentheses.
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TABLE X

Linear and Integer Optimum Solutions for a Ten Part Type, Three Machine Type, Five
Machine Example for the Objective of Balancing Workloads

* ovumnmw<m CPU |No. of

Case| W Function = a, ag a, ag ag a5 ag aq 210 Timeja, 20 Y a;

20 230 O. 1. 1. 1. 1. 1. 10. 1. l. 1. 1. « 242 All 19 {LP Optimum aj > 1
21 365 10 2 1 2 1 1 15 2 1 2 3 30 |First IP Solution aj 1
22 325 5 2 1 2 1 1 15 2 1 1 1 27 ]Second IP Solution {aj 1
23 350 0 2 1 2 1 2 15 1 1 2 2 1.174 29 {IP Optimum as > 1
24 100 O. «625 1.875 2.625 « 207 3 8 |LP Optimum a; > 0
25 100 0. 2.632 4.737 <26 3 8 {LP Optimum

26 10 2 2 4 3 8 {First IP Solution

27 0 2 1 3 1 1 1.333 5 8 |IP Optimum

28 ] 500 0. 3.125 0.375 T B - 204 31 %0 |LP Optimum

29 500 0. 3. 1.65 {32. 9.3 .45 5 45 |LP Optimum

30 120 16 8 4 16 4 44 JFirst IP Solution

31 15 1 1 1 8 8 20 6 39 |Second IP Solution

32 10 1 8 2 8 20 5 39 |Third IP Solution

33 5 1 1 1 8 1 8 19 7 39 |Fourth IP Solution

34 0 2 1 - 1 8 8 19 1.456 6 39 JIP Optimum

35 11000 0. 6. 25 18.75 56.205 <205 3 81 |LP Optimum

36 11000 Q. 20.42 27.16 13.68}16. 4 78 JLP Optimum

37 125 7 1 2 3 32 36 6 81 |First IP Solution

38 125 7 4 1 32 36 5 80 {Second IP Solution

39 120 7 3 32 37 4 79 |Third IP Solution

40 120 11 1 32 36 4 80 }JFourth IP Solution

41 110 11 1 32 36 4 80 JFifth IP Solution

42 110 9 1 32 37 4 79 |Sixth IP Solution

43 105 10 : 32 37 3 79 |Seventh IP Solution

44 30 16 28 2 18 16 5 80 JEighth IP Solution

45 ] 0 16 1 31 18 14 2.795 5 80 |IP Optimum

*Cases 20-23 specify that all a; > 1 and allow W to be a variable. The remaining cases specify that a; > 0 and fix W to be

either 100, 500, or 1000.
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Table XI provides linear and integer solutions for the same ten part
type problem described in Table IX for the objective of finishing all require-
ments of the selected part types at about the same time. The program is that
of (P3) without the balancing constraint. The constraints (14) are developed

with the data of Table IX from equation (1) and the following:

45 (50) _ 45 (100) _ 40 (70) _ 30 (100) _ 25 (200) _ 35 (150) _
4 8y a4 34 a5 34

30 (100) _ 40 (50) _ 40 (150) _ 40 (200) _
a7 ag a9 210

There is no significance to the parameter 1/T.

Note that each of the 19 solutions of Table XI (18 are integer) provides
a quite different set of ratios and all sets allow the completion of all
requirements at nearly the same time. This suggests that secondary criteria
(such as balancing or meeting due dates) could be incorporated to select the
best of these (or even other) aggregate ratios to follow. It took 42.5 CPU
seconds to reach the IP optimum, which is much higher than the solution time

to the balancing problem. However, many good solutions are suggested.

4,7 BENEFITS AND USES OF AGGREGATE PRODUCTION RATIOS
We now outline many of the potential benefits and implications for

various operating situations from using these ratios.

Secondary Criteria

Programs (P1), (P2), and (P3) can be run to provide alternative sets of
ratios. Then secondary criteria, such as flow time or due date
considerations, can be used to select the most appropriate set. We return to

this issue later.
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TABLE XI

Three Machine Type
pes Simultaneously

Objective CPU
Case 1/T |Function mH mN mw mb mm mm mw mm mw mHo Time mH
, 46 2000. 0. 1.12 2.25 1.4 1.5 2.5 2.62 1.5 1. 3. 5. <282 22. JLP Optimum
47 562.3 8.47 4 8 5 6 8 7 5 3 7 16 68 First IP Solution
48 600. 7.5 4 8 5 6 8 7 5 3 7 15 67 Second IP Solution
49 642.7 7.36 4 8 4 6 8 7 5 3 7 14 65 Third IP Solution
50 700. 6.86 4 8 4 6 7 7 4 3 7 13 63 Fourth IP Solution
51 562.4 6.36 4 8 5 6 9 7 5 3 12 15 74 Fifth IP Solution
52 562.4 5.36 4 8 5 6 9 7 5 3 12 16 75 Sixth IP Solution
53 562.4 4436 4 8 5 6 9 7 5 3 11 15 73 Seventh IP Solution
54 562.4 4.02 4 8 5 5 9 7 5 3 11 16 73 Eighth IP Solution
55 600. 3.83 4 8 5 5 9 7 5 3 10 15 71 Ninth IP Solution
56 600. 3.5 4 8 5 5 8 7 5 3 10 15 70 Tenth IP Solution
57 333. 2.9 5 13 8 9 15 16 9 6 18 27 126 Eleventh IP Solution
58 333. 2.9 6 13 8 9 14 16 9 6 18 27 126 Twelfth IP Solution
59 333. 1.9 6 13 8 9 15 16 9 6 18 27 127 Thirteenth IP Solution
60 333. 1.6 7 13 9 9 15 16 8 5 18 27 127 Fourteenth IP Solution
61 333, 1.4 7 13 8 8 14 16 8 6 17 26 123 Fifteenth IP Solution
62 1000. 1.2 2 4 3 3 5 5 2 2 6 9 41 Sixteenth IP Solution
63 750. .93 3 6 4 4 7 7 3 3 7 12 56 Seventeenth IP Solution
64 250. .2 9 18 11 12 20 20 11 7 23 36 42.552% 167 IP Optimum
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All Selected Part Types Have to be Produced

Cases 2-13 and 17-19 in Table VII, Cases 20-23 in Table X, and all cases
of Table XI were run with a; 2 1. This can be appropriate since pallets come
in discrete units. If all of thé part types selected to be machined concur-
rently have to be selected (i.e., for assembly or due date purposes or the
batching of a customer's orders), then all a; should be forced to be greater
than one. Otherwise, a fractional solution would be rounded up to one in any
case., On the other hand, as we saw in the example of §4.4, an a; = .5 could

specify that one part i is introduced every other cycle.

Part Type Selection

The programs could also be used to help determine a compatible set of
part types to be machined together as follows. All candidate a; can be set
to be greater than or equal to zero. Those i such that a; is either equal to
or close to zero in the optimal solution could be excluded from the mix of
part types to be selected. For example, Cases 14-16 indicate that part type
3 is incompatible with the others and should be omitted from the current mix
if that is possible. Cases 24-45 suggest various sets of compatible part
types and different ratios for each. Other criteria could be used to select

one of these sets.

Integer Versus Linear Solutions

In many cases, the integer optimum is close to the linear optimum. This
suggests that it could be sufficient to round the linear solutions, especially
if the problems are large. However, most often an FMS consists of only one,
two, or three different machine types and the problems will not be very large.
In any case, the integer solutions provide either the best way of rounding
the linear solutions or suggest an alternative optimum. We conclude that the

linear solution is often sufficient because:
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(a) rounding the fractions cannot change the aggregate balance by very
much;

(b) the linear solutions do provide the best balance;

(c¢) these are aggregate ratios. Once secondary criteria, delay and
travel times, and real-time congestion are considered, "optimum"
matters even less. These ballpark, almost-balanced ratios appear

to be sufficient from the computational experiments to date.

Given Production Ratios

Any given, relative ratios of two or more part types (in the case of
assembly, for example), can be included in the objective function of (P1),

(P2), or (P3).

Part Input Sequence

We suggest that the allocation ratios can also be used to help determine
a part input sequence, as demonstrated in §4.4. Further research is required
to specify precisely how this could be done. For a dedicated type of FMS, a

periodic input sequence might be appropriate.

Other Constraints

Some remaining issues include a precise determination of how these ratios
can best be used. Demand requirements, capacity contraints, and due dates
could be incorporated. We use the "optimal" ratios of Case 13 to illustrate.
The ratios of

1:31:28:6
tend to provide a nearly perfect workload balance. Yet because of demand

requirements, it may be infeasible to produce only 1 of part type 1 out of
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every 66 (=) ai) parts. Demand and due date requirements might constrain
the mix to be

1:10:10:5,
which is more unbalanced, but similar and somewhat proportional to the optimal
ratios. Capacity may constrain the situation further. Suppose that a maximum
of 10 pallets can be on the system and it is desired to construct a cyclic
part input sequence of size 20. Then (assuming that demand and due dates are
still met) this might change the above pallet distribution to

1:9:8:2,
and an appropriate input sequence is chosen from this mix.

This example demonstrates some of the other issues that have to be add-
ressed when using these ratios. It also provides motivation for our
conclusion that the workload parameter, W, should be kept small. Then n, can
be set equal to aa, , where oo = 1 or 2, In the example of §4.4 (Case 1),
and letting n, = a, the distribution of pallets is

1:4:1:1
and n = 7, which is manageable, reasonable, and was used to find a good input

sequence.,

Machine Breakdowns

The procedures that have been described here could also be used to
analyze machine breakdown situations. For example, Hildebrant's [1980]
hierarchical approach assumes that the production ratios are known for every
possible failure state.

The ratios can also help determine the "hedging points” (optimal buffer
levels) in the flexible assembly applications of Akella, Gershwin, and Choong

[1984a, 1984b]. For each part type and for each failure state, the hedging
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point is a function of: the part's value; the routing sequence (higher priority
is given to parts that visit more unreliable machines); and the "extent of dif-
ficulty if the part is backlogged."” For a particular failure state, the pro-
duction ratios provide a measure of the "difficulty if the part is backlogged."
Further research is required to suggest how the procedures developed here can

be used to help specify the hedging points.

Due Date Criteria

Other criteria such as due date consideration, minimum flowtime, or
minimum tool changing can be used to help choose the appropriate production
ratios. More specifically, due dates may have been used to help solve the
first planning problem to select the part types to be simultaneously machined
next., From the feasible sets of ratios, those that best ensure that the due
dates are met can be selected. To determine that the due dates can be met,
processing time requirements, transportation, queueing, expected down time of
the machine tools, for example, have to be considered. Also, real-time
control has to occur to continuously monitor performance to ensure that no
part type's due date is in jeopardy. If possible, appropriate action (or
reaction) might be taken, in breakdown situations for example, to change the
way the system is operated (to change ratios, for example), so as to meet the
due dates. Some relevant due date-based criteria include tardiness, number of
late jobs, and earliness (in a JIT environment).

In these types of situations, artificial intelligence might be useful, for
the purpose of real-time, continuous monitoring. A rule based expert system
could be developed to propose certain actions to take, if the system state
changes drastically (i.e., a machine breakdown). Such a system could be used

to choose, update, or change the production ratios as the system changes.
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Different optimal ratios, all of which tend to balance workload, can be chosen
by the expert system, as the system state indicates. The different set of

ratios will specify different pallet distributionms.

5. DETERMINING ACTUAL PRODUCION RATIOS AND MINIMUM INVENTORY REQUIREMENTS

The aggregate ratios found by the methods of §§3 and 4 serve as guidelines
to help provide input into the models now described to find actual operating
ratios.

One model that is useful for these purposes is a multiclass closed queue-
ing network (CQN), such as MVAQ. (See Hildebrant [1980], Cavaillé and
Dubois [1982], and Suri and Hildebrant [1984].) This aggregate stochastic
model requires average input values and provides average output values. 1In
particular, for each part type, the input required is the average visit fre-
quency to each machine (group) and the average processing time of an operation
at each machine (group). The outputs include the steady-state mean production
rates of each part type, machine utilizations, and average queue leng?hs at
each machine (group).

MVAQ can also model, at an average, aggregate level, load and unload
times, refixturing times, queueing times, and transportation times. The pro-
duction ratios found by the methods described in §§3 and 4 can be used to sug-—
gest numbers of pallets and fixtures of different types to maintain these cal-
culated, optimal, aggregate ratios, subject to demand requirements, etcetera.
These ratios can serve as input to the aggregate queueing network model., The
output (machine utilizations) indicates how balanced the system is when the
additional delay factors are included. 1In addition, the average production

rates indicate if any due dates are in jeopardy.
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Suri and Hildebrant [1984] indicate that this model is reasonably accurate
and is about 10-207% pessimistic in its predictions, as compared to simulations
of similar systems allowing more modeling detail., However, MVAQ is even more
accurate in its relative predictions. For example, the ratios of the expected
production rates of parts and machine utilizations matched those provided by
simulation quite well., Tt is these relative values that would be of use here,
to indicate ratios that provide a good balance.

The ratios could also be evaluated using the operational analysis based
CQN models of Dallery and David [1983] to maximize the production rate of the
various part types. These models require no sequencing assumptions (such as
the usual FCFS at each machine (group)).

These models can't as yet provide information on the sequences that do
provide the maximum production. The results might be used as a lower bound
for an enumerative procedure.

Another useful model that could accept the production ratios found in §§3
and 4 as input to help find the minimum inventory requirements is a timed
Petri net. (See Dubois and Stecke [1983].) This model could complement the
queueing network model because it uses deterministic operation times. Also,
it is not an aggregate model. The actual processing times and part routes are
modeled. Set-up times, transportation times, and queueing times are modeled
in all detail, unlike the queueing network models. Finally, it can also be
used to help find an appropriate input sequence.

For a certain subclass of timed Petri nets (in particular, decision-free
nets), the graphical model can be easily translated into linear state equations
in a {max, + }-based algebra. (See Cohen, Dubois, Quadrot, and Viot
[1983].) Decision-free means that no decisions are to be made. Everything

needs to be specified in advance, such as the part routes, the input sequence,
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and the like. A particular Petri net representation can be analyzed very
quickly via some algorithms, based in part on Karp's [1978] efficient shortest
path algorithm, to provide much information that is useful for performance
evaluation.

Some of the output from the model includes the cycle time (hence the pro-
duction rate), the bottleneck machine, its utilization, and the utilizations of
all other machines. Some particularly useful information specifies that pro-
duction can be increased by either:

i) adding a machine of a particular type; or

ii) inputting another pallet/fixture for a particular part type.
We indicate how this information can be used via an example.

Prior to this, recall the following. In §4, we indicated how to find ag-
gregate production ratios that balance the workload on all machines. In most
of the many examples that were examined, including all of those discussed in §4
(except the example of §4.5, which we return to shortly), the aggregate ratios
found also provided the minimum numbers of pallets and fixtures required. When
the aggregate processing time information indicates an unbalanced machine work- |
load (as indicated by the total workload on each machine when only one part of
each part type is cénsidered), then the minimum number of pallets required per
part type can be much less than the specified ratios. See the example of §4.5
that is defined in Table VI. We use this example to demonstrate how the Petri
net model and the information provided can be easily used to determine the
minimum inventory requirements.

The information that the Petri net program requires is:

i) for each part type, the aggregate production ratios (the ai);

ii) also for each part type, the number of pallets/fixtures dedicated to
that part type;

iii) a part input sequence.
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For the example described in §4.5, this information is:

i) (al’ 32) (1, 10);

ii) (nl, nz) = (1, 4); (This is just to demonstrate. We know via simula-

tion that the minimum number of pallets required is: (1, 3));

iii) (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2).

The output from the Petri net program would indicate that we have too many
pallets/fixtures for part type 2. Changing (nl, n2) to (1, 3) in the next run
provides the information that: production is maximized, the machines are
balanced, there is no idle time, and these are minimum inventory and buffer
requirements to maintain the optimal production ratios of (1, 10).

Notice that the production ratios are also used to help find the optimal,
perhaps periodic in between periods of breakdown, input sequence. It is very
useful to know the relative numbers of each part type prior to the actual
sequencing. Of course, most situations will not be as simple as this example

of §4.5.

6. FUTURE RESEARCH NEEDS

Some considerations when using either of the two distinct objectives to
determine aggregate ratios include the following., If requirements are finished
simultaneously, tool magazines are changed less often. 1If the reason is to
batch a customer's orders, then both finished goods inventory and freight
costs are lower than otherwise. The objective of balancing workloads tends to
decrease work-in-process inventory and increase both machine utilization and
production rate., Which objective is more important is a function of many
parameters. It depends on: where and how much value is added to the part;
how much space is both available and required for in-process and finished

goods inventory; the methods and costs of delivering the final products.
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Since there are usually many good solutions for the balancing objective,
it should be possible to determine ratios that satisfy both objectives "quite
well.," Further research is required to determine both how to do this as well
as to specify a criteria that is satisfactory for both objectives. The
tradeoffs involved in following one objective over the other also needs to be
further investigated.

The ratios seem to impact many FMS operating problems and the methods
suggest many areas in which further research is required. For example, we
have seen that the ratios are useful to help determine the minimum inventory
requirements in terms of numbers of pallets and fixtures. The ratios also
provide guidelines for determining an appropriate part input sequence. How-
ever, further research is required to develope a more precise algorithm to
find a good part input sequence. Some applicable work along these lines has
been done by Hitz [1980] and Erschler, Lévéque, and Roubellat [1982].

These determine a periodic part input sequence, which could be appropriate
for a relatively dedicated type of FMS in particular. However, these have
been in flow shop situations, and did not allow several alternative routes.
These studies assumed that there was only one pallet or fixture of each type.
Both papers have also assumed that the production ratios of each part type
have previously been determined. The ratios can be suggested by the
procedures in §§3 and 4.

Hitz states that the efficiency of his branch and bound procedure for the
permutation flow shop problem is partly a function of the "balance of work
among machines.” 1If the workload is balanced, the search is brief, since many
descendent nodes can be fathomed immediately as infeasible. It appears that
the procedures of both Hitz and Erschler et al. might benefit from using the

approaches suggested here to calculate ratios in advance.
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The ratios found here could be used to reduce the size of some other FMS
combinatorial problems. The procedures might be used to reduce the size of the
batching problems considered by Whitney and Gaul [1984]. The sizes of part
input sequence problems could be decreased. The size of the binary matrix
. used by Dar-El and Sarin [1984] to list alternative routing combinations for
the purpose of FMS scheduling could be reduced a priori through the use of
these procedures. Whitney and Suri [1984] have formulated a large mixed
integer programming problem to help select parts and machines., The objective
is balancing workloads. The number of candidate part types impacts the
problem complexity. The procedures reported here could be used to reduce the
candidate set. In many of these cases, the ratios would impact a part type
selection problem, which is hierarchically at a higher level. 1In all cases,
further research is required to determine how these suggestions might be
implemented and how these ratios could be used to simplify subsequent FMS
planning and operating problems.

Easier and more automatic generation of the actual production ratios and
minimum inventory requirements is needed. Also, implementation of secondary
criteria for choosing ratios is needed for the situations in which multiple
sets of ratios balance the workload. What are the best ways to automatically
incorporate other criteria? Artificial intelligence techniques may be able to

help here.
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