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ABSTRACT

In this paper, we consider the FMS planning problem of determining optimal ma-
chine workload assignments in order to minimize mean part flow time. We decompose this
problem into the subproblems of first forming machine groups and next assigning operations
to these groups. Three types of grouping configurations — no grouping, partial grouping
and total grouping, are considered. In both no grouping and partial grouping, each machine
is tooled differently. While each operation is assigned to only one machine in no grouping,
partial grouping permits multiple operation assignments. On the other hand, total grouping
partitions the machines into groups of identically-tooled machines; each machine within a
group is capable of performing the same set of operations. Within this grouping framework,
we consider three machine loading objectives - minimizing the total deviation from the op-
timal group utilization levels, minimizing part travel and maximizing routing flexibility, for
generating a variety of system configurations.

A queueing network model of an FMS is used to determine the optimal configurations
and machine workload assignments for the no grouping and total grouping cases. It is shown
that under total grouping, the configuration of M machines into G' groups that minimizes
flow time is one in which the sizes of the machine groups are maximally unbalanced and the
workload per machine in the larger groups is higher. This extends previous results on the
optimality of unbalancing both machine group sizes and machine workload to the mean flow
time criterion. |

A simulation experiment is next conducted to evaluate the alternative machine configura-
tions to understand how their performance depends upon the system characteristics, such as
utilization level and variation among operation processing times. We also study the robust-
ness of these configurations against disruptions, such as machine unreliability and variation
in processing batch sizes. While different coﬁﬁgurations minimize mean- flow time under
different parameter values, partial grouping with state-dependent part routing performs well
across a wide range of these values. Experimental results also show that the impact of dis-
ruptions can be reduced by several means, such as aggregating operations of a part to be
performed at the same machine and maximizing the number of operation assignments (in

order to minimize part movements), in addition to providing routing flexibility.




1 Introduction

Greater product proliferation and market fragmentation, and shorter product life cycles
have made firms increasingly aware of the importance of manufacturing flexibility. Unlike
conventional manufacturing methods, programmable automation with computer-controlled
and versatile machining and assembly capabilities promises an effective solution to the si-
multaneous requirement of manufacturing efficiency and process flexibility. Consequently,
the design and operation of flexible manufacturing systems (FMSs) and the definition and
classification of production flexibility are subjects of growing interest among researchers and
practitioners alike.

The manufacturing issues faced in an FMS can be categorized into: i) design problems, ii)
planning problems, and iii) scheduling and control problems. FMS design problems address
the long term issues relating to the system, and they include decisions regarding the selection
of part types that can be produced in the system, selection and layout of machine tools
and the material handling system, design of buflers and the computer control architecture.
FMS planning problems comprise resource allocation decisions during pre-production system
setup. They include selecting the subs;et of part types for imminent manufacture from the
set of all part types that the FMS can produce, determining the ratios in which these part
types will be manufactured concurrently, the assignment of pallets, fixtures, etc. to these
part types and the allocation of operations and tools to individual machines. FMS scheduling
and control problems relate to the execution of orders and include the determination of part
input sequences, the part processing sequence at each machine and monitoring the actual
system performance and taking the necessary corrective actions.

Within such a hierarchical categorization of FMS problems, this study addresses the
planning level. Much of the effectiveness of an FMS is derived from the fact that a part can
have, in general, several alternative routes through the system. The ability of an operation
to select a machine in real time based on the current system status reduces part flow time
relative to a conventional system in which each operation is typically assigned to only one
machine. Routing flexibility also renders the system less susceptible to disruptions such as

machine failures. The number of such alternative part routes is determined by the manner



in which the operations of individual part types are assigned to the various machines — a
decision that is made at the planning level, and the resulting machine grouping configuration
| of the system.

The .performan.ce measure of interest in this study is mean part flow time. In an FMS,
mean flow time includes machining time (processing time and waiting time at machines)
as well as material transfer time (travel time plus waiting time for the transporters). This
work focuses on the machining times. The objectives of this paper are to generate and
evaluate alternative machine configurations of a dynamic FMS as well as to understand how
their relative performance depends upon many underlying system characteristics. These
configurations are generated by solving the machine grouping and machine loading problems.

Following Stecke (1983) and Stecke and Solberg (1985), the machine grouping problem
is the problem of optimally partitioning the available machines into groups of identically-
tooled machines and determining the appropriate machine workloads. We investigate three
types of grouping configurations — no grouping, partial grouping and total grouping. The
terminology used here to define various FMS configurations is as follows. In both no grouping
and partial grouping, each machine is tooled differently. While each operation is assigned to
only one machine in no grouping, partial grouping permits multiple operation assignments.
On the other hand, total grouping partitions the machines into groups of identically-tooled
machines. Each machine within a group is capable of performing the same set of operations
and different groups have mutually disjoint operation processing capabilities. If all machines
are identi\cally-tooled, this set of machines is called a pool.

In the first stage, we develop an open queueing network model for no grouping and total
grouping in order to determine characteristics of optimal solutions. These characteristics are
then incorporated within a mathematical programming model for the machine loading prob-
lem. The objective of the machine loading problem is to assign operations to machines such
that the resulting machine workloads conform closely to the optimal workloads determined
by the solution to the grouping problem. In addition, this study considers two secondary
loading objectives — minimizing part travel and maximizing operation routing flexibility.
These loading objéctives are combined with the three grouping types diécussed above to

generate several system configurations.
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At the next stage, a simulation study is used to evaluate these configurations. The
purpose of these experiments is three-fold. A first is to better understand the case of partial
grouping because these configurations are not easily amenable to analytical evaluation using
queueing networks. Second, we study the impact of relaxing some of the assumptions made
while developing the queueing network model. Third, we evaluate the robustness of each
configuration on the basis of two criteria — the insensitivity of the configuration to the actual
scheduling rule used and the deterioration of system performance in the face of disruptions.
Conway et al. (1967) observe that one of the major benefits of providing routing flexibility
is that the system is less sensitive to schedule quality. Consequently, one of the major
objectives at the FMS planning stage is to simplify the decisions that need to be made at
the subsequent scheduling and control stage. In evaluating the second criterion of robustness,
we consider two types of disruptions — machine breakdowns and variations in the batch size
of a given part type.

Much of the previous research on dynamic FMSs is based on queueing-theoretic ap-
proaches. Buzacott and Yao (1986) present an excellent survey of this literature. Studies
that address closely related issues include Stecke (1983, 1986a, 1986b), Stecke and Solberg
(1985), Shanthikumar and Yao (1987, 1988), Stecke and Kim (1989, 1991), Dallery and
Stecke (1990), and Arbib et al. (1991). Some of these investigations model an FMS as a
closed network of multiserver queues and derive the optimal partitioning of the system into
groups of identically-tooled machines for the objective of maximizing system throughput.
The underlying result of Stecke and Solberg (1985) is that under certain service disciplines
and operation processing time distributions, the expected part production rate is maximized
by grouping machines into unequally sized groups and assigning appropriately unbalanced
workloads per machine to these groups. Shanthikumar and Yao (1987, 1988) show that the
throughput of a machine group is concave in the number of machines. This results in an
efficient heuristic algorithm for assigning a given number of machines to individual groups.
Stecke (1986a) shows that throughput is quasiconcave in the workload allocated per machine
for single-machine groups. Stecke (1983, 1986b) considers various operation assignment ob-
jectives appropriate in an FMS and presents a hierarchical framework for considering these

objectives.



There is a parallel body of research which addresses the allocation of operations to ma-
chines in a static FMS environment. Ammons, Lofgren and McGinnis (1984), Kusiak (1984),
Rajagopalan (1986), Berrada and Stecke (1986), and Hwang (1986) present mathematical
programming approaches to solve this problem for various objectives. However, because of
the static nature of the problem considered, they do not explicitly address the impact of
system utilization levels and unexpected disruptions.

This work differs from the previous studies on dynamic FMSs in the following aspects.
First, we extend the notion of the optimality of unbalancing machine workloads to the
performance measure of mean flow time. To our knowledge, this has not been done before. -
These results are then used to link the solutions to the machine grouping and machine loading
problems in a hierarchical manner. Second, we address the issue of robustness; in particular,
we study the impact of schedule quality on system configurations. Finally, we demonstrate
the effectiveness of partial grouping under ideal conditions as well as its robustness against
disruptions. Partial grouping configurations have not been previously investigated to our
knowledge. Results of this paper indicate that these configurations can yield significant
performance improvements. This study also helps to clarify the different circumstances in
which each of the various types of configurations investigated is best for minimizing mean
part flow time.

The paper is organized as follows. In §2, we develop a general formulation of the minimum
mean flow time problem. In view of the complexity of this problem, it is decomposed
heuristically into the machine grouping and the machine loading problems. In §3, we model
an FMS as an open network of M/M/c queues to address the machine grouping problem and
derive the characteristics of an optimal solution. The machine loading problem is discussed
in §4. The experimental investigation is presented in §5. We conclude in §6 with a summary

of the main results obtained in this paper.

2 FMS Planning Problem

Consider an FMS consisting of M machines. Let N be the number of different part

types produced in the system. We assume that all machines are of the same type because



machines are grouped only within a particular machine type. Orders for these part types
arrive randomly to the system. A particular part type requires a series of operations to be
performed in a specified sequence. Each operation can be assigned to one or more machines
capable of processing that operation by ensuring that the required tools are available at
the machines. Each machine, say m, has a tool magazine of limited tool slot capacity T™.
We note that there are FMSs with tool delivery capabilities, in which cutting fools can be
interchanged between the machine and a central tool storage facility automatically in real
time. At the planning level, this can result in a virtually unlimited tool magazine capacity
(unless too many tools require transport or automatic change at the same time). Operation
assignment in such systems is a real-time decision that is done simultaneously with operation
and transporter scheduling. We do not consider these types of systems in this study.

One objective of the production planning problem is to assign operations to machines
such that the steady-state mean part flow time is minimized. This problem is formulated

below; the notation used here is given in Table 1.

INSERT TABLE 1 HERE

MFT1
| M N on
min = Y Y Y M Wijniim (1)
A m=1 j=1i=1
subject to
N nj
Yo tizijm ST, Ym (2)
j=1i=1
N nj ..
Pm =D ) DA " Tijm, Ym (3)
j=1i=1
M . .
S X = N Vi j (4)
m=1
\im = f(wijmapm,/\j)a Vi, j,m (5)
0< pmn <1, Vm (6)
Tijm € {0)1}a I/Vijma/\ijm Z 0 Vi)jam (7)
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Equation (1) expresses the expected part flow time as the weighted sum of the average
time spent by each operation at the machine(s) to which it is assigned; W;;,, is the sum of the
expected waiting and processing times for operation ¢ of job j at a machine m. Equation (2)
relates to the constraints on the tool magazine capacity. Equation (3) measures the machine
utilizations that result from a given assignment of operations to machines. Equation (4)
ensures that the sum of operation arrival rates A\¥™ at different machines equals the part
arrival rate. Equation (5) expresses the dependence of these operation arrival rates upon the
assignment variables z;;,, machine utilizations p,,, and the part arrival rates . Finally,
Equations (6) and (7) specify the range of valid machine utilizations and the nature of the
problem variables, respectively.

We assume here that the cutting tools are not shared among different operation types.
This assumption is made primarily to keep the model relatively simple. Relaxing it will
introduce additional complexity without adding to our understanding of the particular is-
sues under study here, for example, the underlying differences among the various system
configurations. In addition, all machines are considered to be equally efficient in terms of
the operation processing times. In general, machines of the same type are equally eflicient.

MFT1 is a hard nonlinear 0-1 programming problem. The major difficulty arises in
characterizing W;;,, in a network of G/GI/c queues. A related issue is that of specifying the
functional form of Equation (5). In order to solve this problem, we decompose it heuristically

into the machine grouping and the machine loading problems, which are solved sequentially.

3 Machine Grouping Problem

In the machine grouping problem MGP, we determine the optimal partition of machines
into groups. This involves: 1) determining the number of groups G, and 2) assigniI{g ma-
chines to individual groups. In §3.1 we discuss total grouping using queueing networks.
These results are extended to the case of no grouping in §3.2. Partial grouping is discussed

in §3.3. These are all evaluated and compared in §4.



3.1 Total Grouping

The minimum mean flow time problem is restated for the total grouping configuration

as MFT?2 by taking groups into account.

MFT2
M N nj
min ——ZZZ/\ W,zijq (8)
g =1j=1i=1
subject to
M
Zmijg = l*) VZ,] (9)
g=1
M
Zymg =1, Ym (10)
g=1 '
N n;
ZZtUTUQ <7 Ymg + B( ymg)a Vm)g (11)
j=1i=1
N nj
Zztumqg < B Z ymg (12)
j=11i=1
Zj:l X Z:’leijwijg
= Vm, g (13)
I Zﬁ{:] ymg
0<p, <1, Vg (14)
Zijgs Ymg € {Oa 1}) Viaj)m)g ' (15)

This formulation introduces the additional variable y,,,, which equals 1 if machine m
is assigned to group g, and is zero otherwise. Equation (9) ensures that each operation

is assigned to only one group; it replaces Equation (4) in MFT1. Equation (10) ensures

 that each machine is assigned to only one group. Equation (11) specifies that an operation

is assigned to a group only if every machine in that group has adequate tool magazine
capacity available. Equation (12) ensures that no operation is assigned to a group to which
no machines are assigned. Equation (13) determines the utilization of each machine within
a group. Equations (14) and (15) parallel Equations (8) and (9) in MFT1 with subscript
m replaced by g wherever appropriate.

MGP uses MFT2 at an aggregate level by combining all part types into a single ag-
gregate part type. At this aggregate level, an open queueing network is used to model the

7



IFMS. Let the FMS comprise G groups such that group g consists of m, machines. Clearly
G < M and Ef=1 my = M. Let the transition probability that a part that has completed
processing at group ¢ will next visit a machine in group g be given by ;. The probability
that the part will exit the system after finishing at group 7 is 1 — ):fﬂ Tig. Let A be the
external part arrival rate to the system and ), be the average part arrival rate to group g.

From traffic balance, we have

G i
A=+ ) Aimy, g=1,...,G

i=1
where v, is the external arrival rate to group g.

We define o, the visit ratio at group g, as the average number of times that the aggregate
part type is processed at group g. Only one operation at a time is processed at each visit
to a group. In addition, let 1/u, be the average processing time of a part at group g, 1/p
the average part processing time, L, the average number of parts at group g, and T}, the
maximum number of operations that can be assigned to group g.

We have the following identities:

Ag

)
Mgfly

Py =

ag = Ag[A = mypypg/ A
1 & 1 &
- = Z ag/pg = b\ Z Mgpg. (16)
| g=1
We also have the following relationships between the variables in MFT2 and MGP:
Z.]j\-’_—l ’\j 2:21 Tijg
g = ;

, Vg

M
my = Z Ymg, Vg
m=1

1 TN N TE pii
—_— N : nj ) vg'
Kg it A ity Tigg

In addition, because all machines within a group are tooled identically, the maximum

number of operations T}, that can be assigned to group g is given by
T, = min{T™ | yng = 1}

8




From Little’s law, the expected part' flow time can now be restated as

1 & N n
MFT = -A-ZWQZAJ_Z%
g=1 J=1 =1
G
= ZWyay
g=1
>
= =) L,
X

For a given G, the machine grouping problem MGPg¢ can then be formulated as:

MGPg

G
min MFT = %Z Ly(myg, py)

7 g=1

subject to

G

Z ag/pe =1/p

g=1

taveg < Ty, Vg

g = Mypgig/A
G
E mg =M
g=1

0<p, <1, 020, Ly >0, my >0,integer Vg.

(17)

(18)
(19)
(20)
(21)

(22)

where t,,. is the average number of tool slots required by an operation. Using Equa-

tion (16), we can rewrite Equation (18) as

G
Zmy/’g =\ u= Mp,
g=1

(23)

where p = A/(Mp) is the overall system utilization. Note that the right hand side of

Equation (23) is a constant for planning level decisions.

3.1.1 Total Grouping Results

Even for known values of G, MGP remains quite difficult to solve primarily because of

the cumbersome expression relating L, to p, and m,. However, the following propositions

indicate that a sequential solution approach can be constructed efficiently.

9



Proposition 1. MFT does not decrease if any group g is decomposed into two subgroups

gl and g2, while the other groups remain unchanged.
PROOF. See Appendix 1.

Proposition 1 directly leads to the following result.

Proposition 2. MFT is minimized by minimizing the total number of groups.

This result holds independently of how the machines are partitioned into groups, and
how the workloads are allocated. Consequently, our solution approach to MGP consists of
first finding the optimal number of groups G*. At the next step, we solve Problem MGPg.
to obtain the optimal partition m* = (m},m3,---,m¢.) of machines into groups and in
so doing, we also determine the optimal utilizations of individual machines in each group,
P = (P03 PG )-

In order to develop some characteristics of the optimal solution, we determine the optimal
utilization levels p* corresponding to specific (feasible) values of m. First, consider the case
in which m; = my = -+ = mg, for which we have the following result.

Proposition 3. MFT is minimized for a system of machine groups of equal sizes by

allocating balanced workloads to all machines in each group.

PRroOF. Note that L, is convex in p, (Lee and Cohen 1983) and therefore, for equal-sized

groups, MI'T is a sum of identical convex functions. 0O

However, for unequal-sized groups, the optimal group utilizations will depend on the
number of machines in each group. In the following, we determine these utilizations for
3-, 4- and 5-machine systems by initially ignoring tool magazine capacity restrictions and
extend these results to the general system through Conjecture 1.

Three machines can be grouped in two ways: (1, 1, 1) and (1, 2). From Proposition 3
it follows that MFT is minimized in the (1, 1, 1) configuration by providing equal machine

utilizations, which are given by

Pe=p=7- 9=12,3
7
and the resulting minimum mean flow time is
13 13 o 3p
MFT*(1,1,1)==) L, =< i = .
b1 oot Ag_z-:ll—p; ML =)



For the (1, 2) configuration, the minimum MFT is given by

1 p %
AHT@%:XLTﬁ+L$A.

In Appendix 2 it is shown that p} and p} are obtained by solving
(4~ 12p)p5 + (T = 6p +99°)(p3)* + (4 = 120)(p3)° + 3(p3)" — 6p + 9" =0,

and

Py =3p —2p;.
The resulting machine utilizations, p} and p}, are shown in Figure 1 for various values of
system utilization p. Note that pj > p} for all p. In addition, as p — 1, p} and p5 — p. Hence,
MFT is minimized by utilizing each machine in the larger group more heavily. However, the
imbalance between machine utilizations of the two groups decreases with an increase in the

overall system utilization. In the limit, both groups have the same utilization.
INSERT FIGURE 1 HERE

Figure 2 compares the MF'T values under the optimal (1, 1, 1) and (1, 2) configurations
for various values of p. Note that the (1, 2) configuration with appropriately unbalanced
workloads consistently results in smaller MFT. Furthermore, the difference between these

two configurations grows at an increasing rate as the overall system utilization increases.
INSERT FIGURE 2 HERE

Four machines can be grouped in 4 ways — (1, 1, 1, 1), (1, 1, 2), (2, 2) and (1, 3).
Similarly, the alternative configurations possible in a 5-machine system are (1, 1, 1, 1, 1),
(1, 1, 1, 2), (1, 2, 2), (1, 1, 3), (2, 3) and (1, 4). Figures 3 and 4 depict the MFT values
obtained under these configurations given optimal group utilization levels for 4- and 5-
machine systems, respectively. These figures extend the result obtained earlier for the 3-
machine system. In addition, they bring out the relative impact of fewer groups and unequal

group utilizations individually.

11



INSERT FIGURES 3 AND 4 HERE

Consider, for example, the 5-machine system. MFT decreases as the number of groups
decreases from 5 to 2. For a given number of groups, MFT is minimized by maximally
unbalancing the group sizes. For instance, (1, 1, 3) is superior to (1, 2, 2) when G = 3.
Similarly, (1, 4) is superior to (2, 3) when G = 2. Figures 3 and 4 also show that reducing the
number of groups is more effective than unbalancing group sizes and allocating appropriately
unbalanced workloads.

These results lead to the following conjecture.

Conjecture 1. MFT is minimized by minimizing the number of machine groups, group-
ing machines into unequal groups, and by allocating appropriately unbalanced workloads to

these groups.

Because of the cumbersome nature of the MFT function, it is difficult to verify the
generality of this assertion. However, it has been proved to be true for the several systems
that we have examined. Proposition 2 and Conjecture 1 parallel the conjectures stated in

Stecke and Solberg (1985), who studied the production rate function in closed queueing

networks of multiserver queues.

3.1.2 Machine Grouping

The solution method for MGP follows from Conjecture 1: the individual steps in the
procedure are: 1) determining the minimum number of groups that can be formed, 2) al-
locating the available machines to these groups such that these group sizes are maximally
unbalanced, and 3) determining the appropriate groups utilization levels. These steps are
discqssed below.

If all machines have the same tool magazihe capacity T, then the minimum number of
machine groups required is given by |

N nj o,
j=1 Ei:l tt]"
’

G ===

where [a] is the smallest integer greater than or equal to a.

12



If individual machines have different too_l mé,gazine capacities, G* can be found by ap-
plying the following procedure. Renumber all machines in the non-increasing order of T™.
Then, G* is the smallest integer K such that

;'V=1 E?il tij <1
YTt T
Note that this step insures that the groups formed are feasible with respect to Equation

(19). The optimal grouping configuration is given by
m*=(1,1,--- M - G*+1).

The optimal group utilizations are obtained by solving the following problem.

G*-1

+1,p04)]

1 —
subject to
(6" = 1y + (M = G" + )pg- = Mg
0<p, <1, Vg
Because G* is known, L(M — G* + 1, pg+) can be expressed as a function of only pg.. This

problem can be solved in a manner similar to the 3-, 4- and 5-machine systems discussed

earlier. The resulting p* is next input into the Machine Loading Problem MLP.

3.2 No Grouping

Because no two machines are tooled alike in the case of no grouping, the system com-
prises M single machine groups. From Proposition 3, it follows that machine workloads are

balanced in the optimal configuration. Consequently, p,, = p, V¥m.

3.3 Partial Grouping

Since each machine is tooled differently, M single machine groups are formed in partié;l
grouping as well; consequently, the results of Proposition 3 apply. However, in this case, the
fact that an operation can be performed at more than one machine permits state-dependent

routing (Towsley 1980, Sauer 1983, Yao and Buzacott 1985) which could perform better

13



than the case in which the selection of part routes is based on pre-determined branching
probabilities (Chow and Kohler 1979). Analytical performance evaluation of such a policy
for the FMS type considered here using queueing networks is, however, difficult. One of the
major difficulties lies in efficiently decomposing the FMS into mutually exclusive subnetworks
consisting of parallel machines. It is unclear if there is any particular merit to unbalancing
machine workloads in such configurations. On the other hand, studies of single-stage systems
by Winston (1977) and Chow and Kohler (1979) indicate that a policy which routes a part
to the machine with the shortest queue is likely to perform well. Such a policy helps to level

machine workloads.

4 Machine Loading Problem

Given the solution to MGP, the machine loading problem deals with the allocation of
operations to individual groups such that deviations of actual utilizations from their ideal

values are minimized. This leads to the following formulation for the case of total grouping.

MLP
G.
min Z | pg — P; |
9=1
subject to
G‘
D ijg =1, Vi, j (24)
g=1
N nj
2 tijtiig < Ty, Vg (25)
j=11i=1
N NS 5o
Py = j=1 E;:l pz]mt]g, Vg (26)
g
0<p <1, Vg (27)
zijg € {0,1}, Vi j,g ‘ (28)

For the cases of no grouping and partial grouping, we replace subscript ¢ with m. In

addition, for partial grouping we substitute Equation (24) with

G.
Lij S Z Tijm S Uij, Vl,] (29)

m=1

14



to account for any pre-specified lower bound L;; and upper bound U;; on the number of
permissible assignments for any operation. [If these bounds are not specified, then trivially
L;; =1, and U;; = B, where B is a large number.]

A polynomial time exact algorithm for solving this problem is unlikely to exist because
it can be shown to be NP-complete. We propose a heuristic solution approach which is a
modification of the first fit decreasing heuristic for the bin packing problem. The algorithm

consists of the following steps:
1. a) Determine the target workloads 0,, ¢ =1,2,...,G*.
0g = myp,, 9=1,2,...,G".

b) Initialize the counters for the current workload W, the remaining assignable work-
load A, and the remaining tool magazine capacity ,, for each group.

W, =0, ¢g=12,...,G"

A, = 0, g=1,2,...,G"

7, = min{T™"}, ¢=1,2,...,G".

meg

¢) Form two lists of operations. For no grouping and total grouping, the primary list |
consists of one copy of each operation, and the secondary list is empty. For partial

grouping, the primary list consists of L;; copies, and the secondary list consists of

Ui; — Lij copies of each operation. Arrange all operations in both lists in the decreasing

order of w;; = A;p;;.

2. Assign the operation ¢*5* al the head of the list of unassigned operations in the primary
list to g*, where

A
g =argmaz {=2 | 1, 2 tinje }.
my
Update workloads and available tool magazine capacity.

I/I/gt — Wt+witjt,
Ago — Agn — U)i‘jt,
Tg  Tg—tinjs.
If 7, = 0, eliminate group ¢ from further consideration.

15



3. Repeat Steps 2 and 3 until all operations in the primary list are assigned.

4. Stop in the cases of no grouping and total grouping. For partial grouping, go to Step
5.

5. With respect to operation *j* at the head of the unassigned operations in the secondary

list, find group ¢* such that

xi‘j‘g‘ = 0,
Agt + witjn 1
mg. k
Agt + w;.j. " Agt * d
Pyl < — Pgi» 2N
mgo mg~
A
¢ = argmaz,(22),
myg

If these conditions are satisfied for any group, assign operation 7*j* to group ¢g* and
update the workload and remaining tool magazine capacities as shown in Step 2. Oth-

erwise, delete all copies of operation i*j* from the secondary list.

6. Repeat Step 5 if the secondary list is not empty. Otherwise, stop.

In many systems, it may be appropriate to consider other loading objectives in addition to
the objective of ensuring appropriate group utilizations. Following Stecke (1983), we consider -
two such objectives. The first is minimizing part movements. This objective is particularly
useful for the case in which travel times are significant and/or the material transporters are
heavily utilized. In addition, this objective leads to an aggregation of operations of a given
part type at a machine. Consequently, each part tends to join fewer machine queues.

The formulation of the machine loading problem corresponding to the objective of mini-

mizing part travel, MLPMT, is given below.

MLPMT
G* N nj-1
min Z Z Z | @ijg — Tivn,jg
g=1j=1 i=1
subject to
| pg =y 1< €, Vg (30)
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and (24)-(28)

In this formulation, € denotes the maximum deviation from the ideal value permitted to
the actual utilization of any group.

The second objective considered is the maximization of the weighted number of operation
assignments. The weights assigned to individual operations reflect their criticality. This
objective attempts to increase system flexibility selectively by providing more alternative
routes to operations that have greater impact on the overall system performance.

Determining the criticality ¢;; of a given operation 7 in part type j is, however, difficult.
If processing times are a measure of criticality, then relative to MLP, longer operations
will be assigned more often under this objective. On the other hand, if all operations are
considered equally critical, then this objective will lead to more duplications of the shorter
operations. We consider the relative merits of these two extreme scenarios in greater detail
in §5.

The loading problem corresponding to the secondary objective of maximizing flexibility,

MLPMPF, is formulated below.

MLPMF
Gt
max Z CijTijg
g=1
subject to

(24)-(28), (30)

We combine the three loading objectives given in formulations MLP, MLPMT and
MLPMF, with the grouping constructs of no grouping, partial grouping and total grouping
to generate system several configurations. The experimental investigation of these configu-

rations is now discussed.

5 Experimental Study

In this section, simulation experiments are performed in order to extend our investigation

to a general FMS that is based upon the facility at a major manufacturing plant in Illinois

17



producing heavy engineering equipment. One objective of these experiments is to evaluate
the relative performance of partial grouping configurations. We also test the robustness of
the results obtained in the previous sections when the assumption regarding exponentially
distributed operation processing times is relaxed. Specifically, parts now have deterministic
processing times. In addition, we measure the effectiveness of the various grouping and
loading objectives under different values of the system parameters and in the face of system
disruptions.

The two system parameters that are studied are system utilization level p, and the
coeficient of variation of the operation processing times (CVOPT). While the impact of
p on MFT is well known, different system configurations are likely to respond differently
to a change in p. Recent studies (see, for example, Kochman 1989, Monahan and Smunt
1990) show that mean part flow time is affected significantly by the variability in operation
processing times as well. As Monahan and Smunt indicate, CVOPT can be considered as
a surrogate for system disruptions. However, it merits independent consideration because
it affects the coefficient of variation of service times at individual machines. An increase
in CVOPT will likely result in larger MFT for any system. An important measure of the
effectiveness of any configuration is its robustness against changes in CVOPT.

In addition to varying CVOPT, we consider two kinds of system disruptions. The first
is machine breakdowns. The degree of unreliability of a machine can be expressed in terms
of its mean time to failure (MTTF). The smaller the MTTT, the greater the unreliability.
The second type of disruption that we consider is the variation in the batch size of a given
part type. It is well-known (see, for example, Kleinrock 1975) that bulk arrivals, especially
in varying batch sizes, result in larger MFT. Consequently, in a manufacturing system,
batch size variations have a disruptive impact. Such variations are caused, for example,
by fluctuations in customer order quantity. In many multi-stage manufacturing systems,
process batch sizes variability is a result of changes in machine yieid and/or transfer batch

sizes.
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5.1 Experimental Design

The experiments consider a dynamic FMS that produces twelve part types to order.
Orders for these part types arrive randomly to the system following a Poisson process. Fach
part type requires six operations with deterministic processing times. The FMS consists
of six machines. The processing time of a particular operation type is the same across all
machines. Material handling, and the scheduling and routing of the material transporters
are not considered here so as to not confound these issues with the machine configuration
and operation allocation issues that are the focus of this study. Consequently, we assume
that material transfer times are negligibly small.

Four system utilization levels — p = 0.6, 0.7, 0.8 and 0.9 are considered. Operation
processing times are sampled from a uniform distribution to yield three levels — 0.0, 0.4,
and 0.8 of CVOPT. Two scheduling rules — First-come-first-served (FCFS) and Shortest
Processing Time (SPT) are used to evaluate the impact of the quality of the scheduling rule
on different configurations. FCFS is used primarily to serve as a benchmark. SPT is widely
regarded as an effective heuristic for the mean flow time problem. Thus, a large difference
between the FCFS and SPT values for a given configuration would imply that it is very
sensitive to the quality of the scheduling rule.

Three levels of unreliability are considered corresponding to MTTF values of oo, 10p
and 5p, where p is the average part processing time. An exponential distribution is used
to represent the time to the next failure for any machine. In each case, the mean time to
repair a machine is sampled from a uniform distribution with mean 0.3p. Three levels of
batch sizes are used in the study. In the first level, the batch size is fixed at 1. In the second
level, the batch size is sampled from the uniform distribution (3,7), while in the third level,
the batch size is sampled from the uniform distribution (6,14). Note that in the two latter
cases, the ratio of the range to the mean is the same. We study the effect of machine failures
and variation in batch sizes at the system utilization level of 0.9. A high utilization levél is
selected primarily to highlight the impact of such disruptions.

The method of replications is used to obtain the summary statistics. Each scenario is
replicated four times. Within each replication, steady-state statistics are obtained for over

4500 parts.
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5.2 System Conﬁgurations

While each machine has the capability of processing any one of the required operations, its
ability to ezecute an operation in real time depends whether it has the required cutting tools.
We consider the general case in which, because of the tool magazine capacity constraints,
it is not possible to assign all operations of all part types to a single machine. Therefore,
all machines cannot be pooled into a single group. The actual assignment of operations
to machines is given by the system configuration. The various configurations studied are

described below.

5.2.1 Grouping Configurations

All three grouping configurations discussed eatlier, no grouping, partial grouping and
total grouping, are examined. For comparison purposes, we consider three groups under
total grouping. This leads to three possible configurations — (1, 1, 4) which is maximally
unbalanced, (2, 2, 2) which is perfectly balanced, and the intermediate configuration (1, 2,
3).

Corresponding to a given system utilization p, the optimal workload per machine in
each group for each configuration was determined by using the approach given in §3.1.2;
the resulting values are shown in Table 2. In this table, p;, pa, and ps refer to the optimal
utilization of each machine in groups 1, 2 and 3, respectively. For example, corresponding to
p = 0.2 under the (1, 2, 3) configuration, the utilization levels that minimize mean flow time
are as follows: the machine in group 1 is assigned a utilization level of 0.044, each of the
two machines in group 2 is assigned a utilization of 0.173, and each of the three machines in

group 3 has a utilization of 0.270. Then p} + 2p} + 3p5 = 1.2 = Mp.

INSERT TABLE 2 HERE

No grouping or partial grouping results in group sizes of one with optimal machine
 utilizations that are balanced. Consequently, in both of these cases, p,, = p, Vm.
In addition, for the partial grouping configuration, L;; = U; = 2 in order to make

it comparable to the total grouping case with equal group sizes. Preliminary experiments
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showed that for processing a particular operation, the policy of routing the part to the
machine with the shorter queue performed consistently better than the policy in which
the machine was selected randomly based upon probabilities that were specified a priori.
Consequently, further experimentation considered partial grouping configurations only with

state-dependent routing based on the shortest queue.

5.2.2 Loading Configurations

The alternative loading objectives discussed in §4 are used in conjunction with the group-
ing configurations mentioned in §5.2.1 to generate the system configurations listed in Table
3. C1 through C5 are constructed by solving MLP for the three cases of machine grouping.
Cl is the base configuration, which is most similar to a conventional job shop. It is used

primarily as a benchmark to evaluate the relative performance of the other configurations.

INSERT TABLE 3 HERE

Solving MLPMT results in configurations C6-C10, which parallel those obtained by
solving Problem MLP under each machine grouping scenario. Configurations C11 and
C12 are obtained by solving MLPMF for the (1, 2, 3) and (1, 1, 4) groupi;lgs. (Note
that MLPMF applies only to these two grouping configurations because in all other cases,
Ym Zijm 18 fixed: it equals 1 for no grouping, and equals 2 for partial grouping and for
total grouping with (2, 2, 2) configurations.) Each of these two configurations is further
decomposed into two subconfigurations corresponding to the way the weights are associated
with the different operations. In C11A and C12A, all operations are given equal weights.
This results in shorter operations being assigned to larger groups. Consequently, they will
tend to be dublicated more often. In C11B and C12B, longer operations are assigned higher
weights. This tends to generate configurations in which the longer operations are assigned

to larger groups.
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5.3 Experimental Results

The reported values of MFT are normalized with respect to the average part processing
time . The first set of results corresponds to the impact of configurations C1—C5. These
are discussed in §5.3.1. The configurations C6—C12 generated by considering the secondary
loading objectives are dealt with in §5.3.2.

5.3.1 Impact of Grouping Configuration

Figure 5 shows the impact of CVOPT on MFT for these 5 configurations. Several results
follow from these graphs. First, the performance of partial grouping and total grouping
relative to no grouping improves with an increase in CVOPT. Second, partial grouping
performs the best across all values of CVOPT and at all utilization level.s. Once again, the
relative superiority of using partial grouping increases with CVOPT; it also increases with
an increase in the utilization level. Among the total grouping configurations, C3 is superior
at low CVOPT; however, as CVOPT increases, the unbalanced configurations C4 and C5
perform better, especially at high utilizations. In particular, C5 is the best configuration at

90% utilization and at CVOPT=0.8.
INSERT FIGURE 5 HERE

These configurations exhibit varying levels of sensitivity to the scheduling rule used as
shown in Table 4 for p = 0.9. (Results at other values of p are similar. Hence, they are not
shown here.) C1 is most sensitive, and the impact of the scheduling rule increases with an
increase in CYOPT. This is expected because as the difference among operation processing
times increases, the impact of schedule quality increases. On the other hand C2 is, in general,
least sensitive to the scheduling rule used. Its insensitivity does not depend upon CVOPT.
C3-C5 show varying degrees of sensitivity, although, in all three cases, the impact of using a
better scheduling rule increases with an increase in CVOPT. In particular, at CVOPT=0.8,
the performance of C5 under SPT approaches that of C2.

INSERT TABLE 4 HERE
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Table 5 depicts the impact of machine unreliability. First, note that in general, while
increasing the level of unreliability increases MFT, the percentage increase comes down with
an increase in CVOPT. This decrease is most prominent for the unbalanced configurations C4
and C5. Once again, C2 is the most robust configuration across all levels of unreliability, and
its relative superidrity improves with an increase in unreliability. Among the total grouping
configurations, C3 is the most robust. As unreliability increases, it results in increasingly
better values of MFT than both C4 and C5. Note that all groups have 2 machines in C3.
Therefore, if one machine fails, an alternative machine is available ‘to process parts. At
the other extreme, C5 has two groups with one machine each. Hence, if any one of these

machines fail, the operations of parts that are waiting at them are blocked.
INSERT TABLE 5 HERE

The impact of varying batch sizes is shown in Table 6. Once again we notice that as
CVOPT increases, the adverse impact of larger batch sizes decreases. C2 remains the most
effective configuration; however, its performance is closely matched by C3 at low CVOPT. As
CVOPT increases, the relative performance of C3 deteriorates. Interestingly, the unbalanced
configurations exhibit greater sensitivity to batch size, and they perform poorly as the batch
sizes increase. IFor example, while C5 is superior to C3 at a batch size of 1 for CVOPT=0.8,

the opposite is true when batch size increases to 10.

INSERT TABLE 6 HERE

5.3.2 Impact of Secondary Loading Objectives

Table 7 compares the performance of the configurations generated by solving MLPMT
with those obtained from MLP at 0.9 system utilization level. The results show that, while
operation aggregation has a mixed impact on MFT at low CVOPT, it leads to superior per-
formance at high CVOPT values. This is partly explained by the fact that with an increase

in CVOPT, the coefficient of variation of service times (C;) at each machine increases; this,
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in turn, leads to a higher MFT. However, the aggregation of operations tends to reduce Cj,
and therefore, MFT as well. Note, however, that in the case of partial grouping, operation

aggregatidn is uniformly superior.
INSERT TABLE 7 HERE

Table 8 shows the impact of assigning operations based on the objective considered in
MLPMF. Recall that C11A and C12A assign shorter operations to larger groups, and
consequently provide greater flexibility to these operations. On the other hand, C11B and
C12B provide greater flexibility to the longer operations. For comparison purposes, the MFT
values obtained by solving Problem MLP are also included in Table 8. The results indicate
that at low values of CVOPT, the C11B and C12B configurations are better, although they
are comparable to C4 and C5, respectively. However, at higher CVOPT, C11A and C12A
are significantly superior. This shows that at sucli high values of CVOPT, it is preferable
to provide more alternative routes to as large a number of operations as possible. More
importantly, this result shows that the weights that should be assigned to each operation to

indicate its criticality are likely to depend upon CVOPT.

INSERT TABLE 8 HERE

6 Summary

This paper investigates the FMS planning problems of i) partitioning' machines into
groups, ii) determining the appropriate group utilization levels, and iii) assigning opera-
tions to these groups, for the objective of minimizing mean part flow time. Three grouping
configurations — no grouping, partial grouping and total grouping, and three loading objec-
tives are used for generating a variety of system configurations. An open queueing network
representation of an I'MS is used to show that, under total grouping, mean flow time is min-

imized when machine groups are maximally unbalanced, and the larger groups are utilized
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more heavily in terms of workload per machine. It is important to note that this result, as
also the optimal group utilization levels derived in this study, hold when all machines are of
the same type. If the FMS coﬁsists of several machine types, then in view of the findings
of Dallery and Stecke (1990), it appears possible that the optimal grouping configuration
for the entire system need not be the union of the optimal grouping configurations for each
machine type considered individually. For the throughput function, Dallery and Stecke show
that this condition is satisfied only when the optimal grouping configurations for each ma-
chine type are N-dominant. We are currently investigating equivalent conditions required
for the mean flow time measure.

A simulation experiment is performed to study the impact of various system parameters
on the performance of these configurations. Experimental results show that the importance
of (partial or total) grouping increases with an increase in CVOPT. The relative merit of
various configurations under total grouping depends upon, among other factors, the overall
system utilization level and CVOPT. In particular, configurations with unequal group sizes
are superior under high system utilizations and high processing time variations, and for more
reliable systems with smaller fluctuations in production batch sizes.

Among the three grouping configurations considered, partial grouping with state-dependent
routing is, in general, found to be superior across a range of different values that the various
system parameters can take. Its performance is improved further if overall part movement is
reduced by performing several operations of a part at the same machine. This improvement
will increase when the actual travel times are accounted for. Aside from yielding superior
flow time values, the partial grouping configuration is also robust in the face of machine
failures and changes in production batch sizes, and is least sensitive to the quality of the
scheduling rule employed.

- Among the loading objectives, greater operation aggregation leads to superior perfor-
mance at high CVOPT for all grouping configurations. For partial grouping and total
grouping with unbalanced configurations, it does so at low CVOPT as well. Experimental
results also indicate that when CVOPT is low, the assignment of longer operations should be
duplicated more often. However, at high CVOPT, it is important to assign greater routing

flexibility to a larger number of operations, by duplicating the shorter operations.
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Appendix 1. Proof of Proposition 1

Proposition 1. MFT does not decrease if any group g is decomposed into two subgroups

gl and g2, while the other groups remain unchanged.

Proof. First, note that group ¢, and after decomposition subgroups g1 and ¢2, can be con-

sidered independent of the other groups. Let ag1 (ag2), mgr (mg2), and Ay (Ag2) denote,

respectively, the visit ratio, number of machines and arrival rate for g1 (¢2). Then, we have

Mg =My + Mg2.

Also, from workload balance, we have

A _ A A
Pg  [g1  Hg2
Hence,

MgpPg = Mg1Pg1 + Mg2pg2.

The increase in MFT because of decomposing g is

AMFT = [(agW,1 + a2Wya) — a,W,]

(31)

1
= ’X[(Lgl + L,g2) = Ly).
For the trivial case in which my or my, equals zero, clearly AMFT = 0. Otherwise note
that -
A
L, = .U_z + L]
= mypg + Lg)

where LI denotes the mean queue length (parts waiting for service) at group g. Hence,

1

AMFT = X[{(mglpyl +mgapg2) — mgpg} + {(Lgy + Lgp) — L3 }]

1
= :\'[(Lgl + ng) - LZ]-

From queueing theory, we know that the mean queue length L? in a single-channel system

with ¢ parallel servers is given by

(cp)°p
R o
Le=m c(1-p)?
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where p is the server utilization, and po is the probability that an arriving part finds the
system empty. Note that L is convex in p for a given ¢, and convex in ¢ for a given p.

From Equations (31) and (32), it follows that p, is a convex combination of pg; and pga.
Therefore, LI < Li; + L,, and consequently AMFT' > 0.

This proves the proposition. O
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Appendix 2. MFT under the (1, 2) configuration

The MGP for the (1, 2) configuration can be written as

. L p 2p;
MFT = <
e AL—lerl—pz"’]

subject to
pr+2p2=3p - (33)
0<p, <1, g=1 and 2.

Associating the multiplier u with constraint (33) and using the Kuhn-Tucker conditions

yields the following relationships at the optimal solution to minimize MFT:

2

ML=p1)* ML= p3)?

or

1= (34)
From Equations (33) and (34), we have
(4= 120)p2 + (7= 6p + 99°)(p2)" + (4 — 120)(p2)” + 3(p2)" — 6p + 9p* =0,

and

p1 = 3p — 2p,.
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TABLE 1

Notation

Parameters

n;  Number of operations for a part of type j, j =1,2,...,N.

pij  Processing time of operation 7 of a part of type j,
3=12,...,N;e=12,...,n,.

t;;  Number of tool slots required for operation 7 of part type 7,
J=12,...,N;e=12,...,n;.

T™  Tool magazine capacity of machine m, m =1,2,..., M.

M Arrival rate of parts of type j, j =1,2,...,N.

A Cumulative arrival rate of all parts at the system = Z?’___I M.

Aijm  Arrival rate of operation 7 of part type j at machine m.

B A large number.
Variables

Pm Utilization (workload) of machine m,m =1,2,..., M.

Wijm (Steady-state) average time spent by a part of type j at machine m
for operation z, y =1,2,...,N;t=1,2,...,n;;m=1,2,..., M.

zijm Operation to machine assignment variable,

Tijm = 1, if operation z of part type j is assigned to machine m; 0, otherwise.
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TABLE 2
Optimal Utilization per Machine within Each Group - Total Grouping

(1,2, 3) (1,1, 4) (2, 2, 2)
R R LR
0.1 || 0.008 | 0.074 | 0.148 || 0.002 | 0.002 | 0.149 0.1
0.2 || 0.044 | 0.173 | 0.270 |f 0.026 | 0.026 | 0.287 0.2
0.3 || 0.I11 | 0.276 | 0.378 || 0.084 | 0.084 | 0.408 0.3
0.4 | 0.203 | 0.382 | 0.478 || 0.174 | 0.174 | 0.513 0.4
0.5 || 0.313 | 0.487 | 0.571 || 0.288 | 0.288 | 0.606 0.5
0.6 || 0.438 | 0.589 | 0.661 || 0.418 | 0.418 | 0.691 0.6
0.7 || 0.572 | 0.694 | 0.747 || 0.558 | 0.558 | 0.771 0.7
0.8 || 0.712 | 0.796 | 0.832 || 0.702 | 0.702 | 0.849 0.8
0.9 || 0.855 | 0.890 | 0.917 || 0.850 | 0.850 | 0.925 0.9
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TABLE 3

System Configurations Examined with Various Loading Objectives

System Loading Level of Grouping
Configuration | Objective Grouping Configuration
Cl MLP No Grouping | (1,1,1,1,1, 1)
C2 MLP | Partial Grouping | (1,1, 1,1, 1,1)
C3 MLP Total Grouping (2,2,2)
C4 MLP Total Grouping (1,2,3)
C5 MLP Total Grouping (1, 1, 4)
6 MLPMT | No Grouping | (1,1,1,1,1,1)
C7 MLPMT | Partial Grouping | (1,1, 1,1, 1, 1)
C8 MLPMT | Total Grouping (2,2,2)
C9 Mt;PMT Total Grouping (1,2,3)
Cl10 MLPMT | Total Grouping (1,1, 4)
C11 (A, B) | MLPMF | Total Grouping (1,2, 3)
C12 (A, B) | MLPMF | Total Grouping (1,1, 4)
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TABLE 4
Impact of Scheduling Rules on MFT at p = 0.9

CVOPT | Configuration MFT % Decrease
under under SPT
FCFS | SPT

0.0 C1 3.46 | 3.46 0.0

C2 240 | 2.40 0.0

C3 245 | 245 0.0

C4 272 | 2.712 0.0

Ch 3.11 | 3.11 0.0

0.4 C1 4.50 | 3.49 22.6

C2 2.44 1229 6.3

C3 290 | 2.57 11.4

C4 2.88 | 2.68 7.1

C5 297 | 2.89 2.7

0.8 Cl1 8.25 | 4.75 42.5

2 269 |252| 60

C3 4.38 | 3.33 23.9

C4 4.31 | 3.04 28.8

C5 4.14 | 2.17 33.2
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TABLE 5
Impact of Machine Breakdowns on MFT at p = 0.9

CVOPT | Configuration MFT under % Increase
Level over Level ()
0 1 2 Level 1 | Level 2
0.0 C1 3.46 | 4.61 | 6.41 | 33.2 85.4
C2 2401 280 | 3.37 | 16.5 40.3
C3 2451 341 | 494 | 39.3 101.7
C4 2721494 | 686 | 819 | 1524
C5 311 5.04 | 938 | 622 | 201.6
0.4 Cl1 4.50 | 591 | 8.40 | 31.2 86.5
C2 2441 2.86 | 3.40 16.9 38.8
C3 290 3.95 | 5.56 | 36.5 92.1
C4 2.88 | 4.10 | 6.52 | 42.2 126.6
Ch 2971 4.38 | 6.94 47.7 133.5
0.8 Cl1 8.25 [ 10.77 1 13.92 | 30.5 68.6
C2 2.69 | 3.08 | 3.58 14.9 33.2
C3 438 5.64 | 7.70 | 28.7 75.9
C4 431|592 | 831 | 375 92.8
C5 414 | 578 | 889 | 39.5 | 146.9
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TABLE 6

Impact of Batch Size on MFT at p=0.9

CVOPT | Configuration MFT under % Increase
Batch Size over BS = 1
1| 5 | 10 |BS=5|BS=10
0.0 C1 3.46 | 8.29 [ 13.92| 139.6 | 3024
C2 240 | 7.54 | 13.50 | 214.1 | 4625
C3 2.45| 757 | 13.51| 2088 | 4515
C4 2.72 | 9.20 | 15.86 | 238.6 | 483.9
C5 3.11[11.18|18.75 | 259.8 | 503.1
04 C1 450 | 9.77 {1531 116.8 | 239.9
C2 2.44 | 7.55 | 13.46 | 208.8 | 450.4
03 2.90 | 8.02 {13.70 | 176.8 | 372.9
C4 2.88 | 8.88 | 15.19 | 208.5 | 427.6
C5 2.97 | 890 | 15.31 | 199.7 | 415.3
0.8 C1 8.25|14.27 | 19.83 | 72.9 | 1402
C2 2.69 | 7.79 | 13.80 | 189.9 | 413.3
c3’ 4.38 110.00 | 16.10 | 1284 | 267.6
C4 43111087 | 17.72 | 1523 | 3114
C5 4.14 [ 1024 | 16.58 | 1474 | 300.3
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TABLE 7
Impact of Operation Aggregation on MFT at p = 0.9

Configuration CVOPT
00|04 |08
No Grouping
Cl 3.46 | 4.50 | 8.25
C6 4.75 | 5.60 | 5.41

Partial Grouping
C2 240 [ 2.44 | 2.69
C7 2.25 | 2.31 | 2.33

Total Grouping

C3 2451290 | 4.38
C8 2.85 | 3.10 | 3.79
C4 2.72 1 2.88 | 4.38
C9 2.70 | 2.75 | 2.77
C5 3.11 1297 | 4.14
C10 2.97(3.02 | 3.11
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TABLE 8

Impact of Operation Duplication on MFT at p = 0.9

Configuration | CVOPT
04 | 0.8

C4 2.88 | 4.31
Cl11A 3.39 | 3.52
Cl11B 3.20 | 3.74
C5 2.97 | 4.14
C12A 3.28 | 3.46
C12B 2.91 | 4.62
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