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ABSTRACT

The theory of signal detectability is extended to include observation-decision
procedures other than the familiar fixed observation-decision procedure. The
theory of signal detectability usually partitions detection devices into two cascaded
sections. The first section processes the physical waveform and, in the optimum
decision device, has as an output the likelihood ratio of the input waveform. The
second section operates on the output of the first and its output is the actual de-
cision "'signal present" or '"signal absent." In much of the work in the literature
the emphasis is placed on studying the first section with the second section a sim-
ple threshold device. In this work we study the second section.

The observation-decision procedures studied include predetermined nonsequen-
‘tial procedures and the optimum (Bayes') sequential procedure, deferred decision.
Included are examples with normal observation statistics. Approximations and
bounds are derived for deferred decision parameters. Comparisons are given be-
tween the various observation decision procedures.

The comparison of the optimum nonsequential procedure and deferred decision
are roughly the following: if the available output signal-to-noise ratio which one
would obtain is small (on the order of +4 db in 2E/ NO), then sequential procedures
consume about 60% as much time as nonsequential procedures and the resultant
error probabilities are approximately the same; if the available output signal-to-
noise ratio is on the order of +10 db, then deferred decision and the optimum non-
sequential procedure consume about the same amount of time with sequential pro-
cedures making less terminal decision errors.

xiii



THEORY OF SIGNAL DETECTABILITY: OBSERVATION DECISION PROCEDURES

1. INTRODUCTION

The objective of the work reported herein is to study techniques and methods for the im-
provement of special receivers known as detection devices. The detection devices are simple
receivers whose only objective is to determine the presence or absence of a signal in a back-
ground of interference. The same theory and techniques, of course, apply directly to any
mechanism for deciding between two or a handful of simple causes which give rise to a phys-

ical observation.

The treatment of detection devices usually partitions the receiver into two cascaded sec-
tions. The first section processes the physical waveforms, i.e., amplifies, heterodynes,
filters, crosscorrelates, etc. Ideally, the output of this first section is the "likelihood ratio"
of the input waveform. The study and design of such equipments constitute the major portion
of the literature in detection theory. The second section operates on the output of the first,
and its output is the actual decision, "signal present' or ''signal absent." In order for the de-

tection device to be optimum, these two sections must form an optimum combination.

In much of the work in the literature, the detection situations studied are those for which
the second section is a simple "threshold," or voltage comparitor, and thus the first section
can be studied considering the possible threshold values as a parameter to be determined later.
In this report, the second section of the receiver is pursued; several progressively better
decision procedures are studied that might be used if the detection allows and warrants

such increase in complexity.

1.1 INTRODUCTION TO APPLICATIONS

Deferred decision is a formal abstraction of a procedure for observation and decision
which is quite common in human experience. Specifically, it is assumed that something is
being observed, e.g., the output of an electronic device called the receiver-front-end, and
that the input to the receiver is either the background, i.e, noise, or a signal in the background.
In this report it is assumed that the signal is of a steady-state nature, that is, the longer the
receiver output is observed the more information can be obtained as to whether the signal is
present or absent. In other words the condition at the input to the receiver, which is either
the background or the background and signal, does not change during the observation. The de-

cision that is to be made is whether the input to the receiver was caused by a signal or by



background conditions alone. Such a decision is referred to as a terminal decision because
the observation process terminates when such a decision has been reached. This terminal
decision may be made soon after the observation has begun or it may be deferred in order
that the observation can continue. A characteristic of this observation-decision procedure is

that a terminal decision cannot be postponed indefinitely.

One goal of an observation-decision procedure might be to make terminal decisions which
are as correct as possible. When this is the only goal then the optimum procedure is to ob-
serve the receiver input for as long as permitted. At the conclusion of the observation a
terminal decision is made. This observation-decision procedure is called a fixed observation-

decision procedure or a fixed time observation-decision procedure.

In many observation-decision procedures there is a competing goal. This other considera-
tion is that of reaching a terminal decision as quickly as possible commensurate with the
resulting terminal decision errors. In this procedure the observer balances the losses due to
an erroneous terminal decision with the cost of observing. The balance between the loss due
to a terminal decision error and the cost of observing is accomplished by selecting the correct
observation length before the observation begins. The observation length is predetermined and
depends on the "quality of the observation,'! the loss due to a terminal error, the cost of
observing, and the initial information. Since the observation length may be selected short of
the maximum length, it is the general nonsequential observation-decision procedure. We

call this a predetermined observation-decision procedure.

A third type of observation-decision procedure is characterized by the continuous hal-
ancing of the potential terminal error losses with the cost of observing. This is accomplished
by deciding at each moment whether to continue observing or to stop and make a terminal
decision. In the previous two procedures the length of observation is known before the obser-
vation begins. In this third type of observation-decision procedure the decision of whether to
continue or terminate depends on what has been observed. The observation length in this case
is a random variable, dependent on the quality of the observation, the loss due to terminal de-

cision errors, the cost of observing, initial information, and the observation itself.

l:”Qua.lity of Observation' is a phrase used here to include such factors as signal-to-
noise ratio, front end noise figure, and all similar factors. In each specific situation it will
be quantified by an appropriate definition.
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Another way to characterize these observation-decision procedures is to consider the
procedures on the basis of two decisions. The first decision is a decision on what the obser-

vation time will be; the second decision is a terminal decision on whether to respond "A'" or
HB "

In the fixed observation-decision procedure the observer necessarily does not account
for the observation quality, the cost of observing, and the initial information. This results in
the selection of the maximum allowable observation length. Thus the only nontrivial decision

which the observer makes is a terminal decision.

In the predetermined nonsequential procedure, the observer has two decisions to make:
a decision on the observation length which is based on parameters previously discussed and a
terminal decision at the end of the predetermined observation length. Note that in nonsequen-
tial observation-decision procedures, the decision on the observation length is made only

once for each terminal decision.

Sequential observation-decision procedures permit the observer to make the decision on
what the observation length will be many times for each terminal decision. It is clear that in
order to optimize a sequential procedure, the observer should make the decision on what the
observation length is continuously, that is, the observer should decide at each instant if the
observation should continue or be stopped at which time a terminal decision is made. Clearly,
sequential observation-decision procedures include the predetermined and fixed nonsequential
procedures as special cases. Thus, the word "sequential" refers to the fact that the observer
can make the decision on what the observation length is more than once for each terminal de-
cision. The advantage of a sequential procedure results from the fact that this decision can be
made many times, ideally, continuously. The observation length in a sequential procedure is
a random variable. The particular sequential procedure examined in this paper is an optimum

sequential observation-decision procedure called ''deferred decision."

One example of a physical situation by which such observation-decision procedures might

be put into practice is presented in the following diagrams and discussion.

Consider the physical model illustrated in Figure 1. The receiving array or antenna in-
put is due to one of two causes: the background or noise (N) or the signal-plus-noise (SN). As-
sume this input is processed by standard processing, i. e., heterodyning, filtering, detecting,
etc., followed by an integrator. After a predetermined amount of time the integrator is sampled
and this sampled output is then applied to a display scope. The observer makes the decision
"A" (alarm, alert, attack, action, etc.) when he decides signal-plus-noise was the cause of the

input. He makes the decision '""B' when he decides noise alone was the cause of the input.

3
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In a sequential test he has one more alternative; that of deciding whether to continue to the
observation or not (assuming he has not reached the time where he must make a terminal de-
cision, e.g., rotate the antenna). Depending on the observation-decision procedure and what
the operator observes, a terminal decision is made or the observation continues after the out-

put from the integrator is observed.

Referring to Figure 2, a fixed observation procedure is implemented in the following
manner. The antenna is fixed in position for a fixed time. The integrator is sampled at the
end of this fixed time and presented to the observer. He then makes his terminal decision on
whether the receiver input is due to SN or to N. If he decides the receiver input is due to SN
he makes the decision "A,'" otherwise, he makes the decision "B." The observer makes his
decision based on whether the integrator sampled output falls above or below a predetermined

cut level. This comparison or cut level is a function of the ratio WF A/WM’ where W_,, and

FA
WM are defined as follows: WFAis the loss incurred in an erroneous terminal decision of "A,"
l.e., saying "the input is due to SN'' when it is actually due to N. Similarly WM is the loss
incurred in erronously saying '"B" when the actual input is due to signal-plus-noise. The first

error is called a false alarm, the second error is a miss.

The predetermined nonsequential observation decision process is a fixed observation pro-
cedure in which the time of observation is a variable chosen by taking into account the quality
of the observation, the cost of the observation, the cost of terminal decision errors, and initial
information. Figure 3 depicts the observation decision process for the pfedetermined non-
sequential procedure. Everything is as in the fixed observation procedure discussed previously
except the observer has one other decision to make; that of choosing his observation length as

any length less than maximum allowed observation length.

To operate sequentially, the integrator output is sampled continuously. Based on what is
observed the observer decides on whether to continue the observation or to stop the observa-
tion and make a terminal decision. The operator decides whether to continue or not by com-
paring the integrator output with two ""decision boundaries." These ''decision boundaries' are
functions of the ratio WF A/WM and the available time remaining for the observation. Figure
4 depicts how the boundaries might look. The maximum available time corresponds to the
maximum time the antenna is pointed in one direction. As the available time in which to make
a terminal decision decreases, the "'decision boundaries' become closer and closer together
as one might intuitively suspect. If the output from the integrator crosses over the upper
boundary, the decision "A" is made. If the sampled output crosses over the lower boundary,
the decision "B'" is made. A sample point that remains in the center portion between the

decision boundaries indicates that the decision should be made to continue the observation.

5
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Note that the familiar sequential analysis of A. Wald (Reference 3) can be considered a
deferred-decision procedure in which the available time to make a terminal decision is un-
bounded. In this sequential procedure the decision boundaries are constant with respect to time

as shown in Figure 5.

A more rigorous and complete explanation of the ideas and concepts presented in this
brief introduction constitutes the major portion of this report. The use of the physical model
shown in Figure 1 is, of course, only one of many physical models that could have been

chosen to present the concepts of the observation-decision procedures we have discussed.

1.2 HISTORICAL BACKGROUND

Historically, the idea of sequential observationadecision procedures, i.e., an observation-
decision procedure where the length of the observation is not predetermined but depends on
the observations, dates back to at least 1929. H. F. Dodge and H. G. Roming (Reference 1)
used an observation-decision procedure where the decision to take another observation de-
pended on the outcome of the first observation. A terminal decision was made either after the
first observation or, if another observation was taken, after the second observation. Dodge
and Roming's procedure allowed for only two samples. Others recognized (Reference 2) that
multiple decisions on whether or not to continue the observation would reduce the average
observation time (or alternately the average number of samples) needed to reach a terminal
decision. A particular method of a sequential observation-decision procedure, the probability
ratio test, was developed by A. Wald and published in 1943 (Reference 3). This book, ""Sequen-
tial Analysis,' has been a major reason for the interest in sequential observation-decision

procedures.

1.3 OUTLINE OF THIS REPORT

Chapter 1 contains general introduction and explanation of the composition of an observation
decision procedure. Three types of observation decision procedures are introduced and the

notation and basic assumptions of the mathematical framework are given.

Chapter 2 is devoted to a study of nonsequential observation-decision procedures. Such a
study is contained in this work for two reasons. Nonsequential procedures form a nonoptimum
subclass of the more general sequential procedures and as such yield valuable bounds on various
parameters of interest in sequential procedures. The nonoptimum sequential procedures are
used as bounds because these problems can be solved analytically which is not true of most
deferred-decision problems (except for academic problems). Secondly, in many practical prob-
lems, a sequential procedure could not be implemented, because of the very nature of the

problem or because the added complexity of a sequential procedure would not be warranted.
9
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Chapter 3, entitled Sequential Observation-Decision Procedures, constitutes the main
topic of interest. A simple example is worked to acquaint the reader with the deferred-deci-
sion procedure. The decision boundaries for deferred decision are approximated and analytic‘
results are obtained for the continuous observation case, i.e., when the deéision on whether

or not to continue to observe can be made continuously.

Chapter 4 contains the numerical results of the theory given in Chapter 3. These results
were obtained using a digital computer. The computer programs are to be found in the
appendixes. A basis of comparison among the observation-decision procedures is presented.

The observation-decision procedures are then compared.

A summary and conclusions are presented in Chapter 5. We also discuss briefly some
future studies. This is done so that the reader can better judge the position of the work of

this present report in the continuing development of the theory of signal detectability.

1.4 INTRODUCTION TO NOTATION AND THE MATHEMATICAL TREATMENT OF OBSERVA-
TION-DECISION PROCEDURES
Much of the material presented in this section has been previously published in Cooley
Electronics Laboratory Technical Report No. 123, "Deferred Decision Theory' by the late
H. H. Goode, July 1961. It is presented here again in the interest of completeness and

continuity.

The sequential observation-decision procedure that we will examine will not be a contin-
uous procedure, that is, the decision on whether to terminate or continue the observation will
not be made continuously but rather in discrete steps. The continuous case is not feasible
mathematically or computationally within our present mathematical framework. The discrete
nature of the observation process, of course, does not imply that the actual observation is
discrete, but only that the decision on whether to continue or terminate is made in discrete
steps. The available number of decisions that can be made on whether to continue or terminate
the observation will be denoted by n. The word observation will now pertain to either one

discrete observation step or the total observation, the distinction made clear by context.

Consider an experiment in which the possible alternative causes are designated signal-
plus-noise (SN) or noise alone (N). If the observer decides the cause of the observation is SN
he responds "'A,'" otherwise his response is '"B." The possible alternative causes of the experi-
mental observation, SN and N, have a priori probabilities denoted P(SN) and 1 - P(SN), re-
spectively. The observer of the experiment observes a random variable y whose probability

distributions are: under the condition SN, f(y ISN), and under the condition N, f(y IN). The

11



observer can make two types of errors when a terminal decision is made. He can respond
"A" where N is the true condition or he can respond "B" when SN is the true condition. The
first error is called a false alarm (FA), the second error is called a miss (M). The losses

F A(n) and ;WM(n)’
respectively. The quality of a single observation in a sequential procedure we designate as d.

associated with making these two errors are known to the observer and are W

The reason for this notation will be obvious later. The cost of an observation of quality d is
denoted cd. In general, the density functions of the observed variate, the losses due to errors,

the quality of a single observation, and the cost single observation may all vary with n.

Under the above conditions the observer is to follow an observation-decision procedure
-which will maximize his expected value over the total observation, or alternately, minimize

his expected loss (in those cases where the two are equivalent).

The fact that so many parameters are allowed to vary in a fairly arbitrary (but known) man-
ner during a sequence of observations is a striking generalization drawn from standard sequen-
tial observation-decision procedures where these parameters all remain constant. This generali-
zation is possible because the number of observations is bounded above. For each specific
sequential problem, the general method of solution is that of successive iterations: a solution
is obtained for a single allowed deferral (i.e.,.one observation allowed), then two deferrals
allowed, then three and so forth. Thus each set of parameter values is absorbed into the solu-

tion one step at a time.

This paper will be explicitly limited to the stationary case, i.e., where the parameters of
the observation-decision problem are independent of n. This is done so that the new work may
be compared to the present literature on sequential procedures based on Wald's sequential
analysis. In conventional sequential analysis the number of allowable deferrals is either in-
finite or so large it has no essential effect. If a large allowable number of deferrals is to have
"no essential effect' then all essential variables must converge as the number of deferrals
approaches infinity. This convergence has indeed been shown for the stationary case (Reference
4). The question remains as to how quickly the process converges, Hopefully, the process con-
verges quickly enough so that it is economically feasible to do the computations involved by

high speed digital computers. This has been the case for the parameters we have chosen.

A transformation of P(SN), the a priori probability of SN, which allows one to obtain

more insight and intuitive feeling for deferred decision is the "log-odds-ratio"

L, LA n [T-l)(r%)ﬁﬂ'
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The probabilities of the causes, SN and N, before and after a single observation, are re-
lated by the familiar equation often called ""Bayes'Theorem.” Let P(SNly) be thea posteriori

(after observation, y) probability. ThenBayes' Theorem is

P(SN) f(y ISN)

P(SN) = 50 TN - L-PEN] Iy N (L.1)
This takes on a singularly simple form when expressed in log-odds-ratio.
P(SNly) _ P(SN) f(ylsN)
T-P@EN) ~T-PEN] fy ) (1.2)
L (basedony) = L + Qn(fgylsg}l))) (1.3)
This last term is the natural logarithm of the "likelihood ratio'
Uy) = £y lsN)/(y IN) (1.4)

This transformation is used so frequently in this work that it is singleu vui anu uueu Lemma 1.

Lemma 1. Let n be the allowable number of deferrals. If an observation y is taken and £(y)

denotes its likelihood ratio, then

Ln—l

= Ln + In L(y) (1.5)
This report concentrates on a simple, normal, stationary detection case of deferred deci-
sion. ''Simple and normal" means that the logarithm of the likelihood ratio of the observations
is normally distributed with known parameters under both noise and signal-plus-noise.
Further, the observation is discrete and the individual discrete observations are statistically
independent and of constant quality. The losses due to a terminal decision error are assumed

constant throughout time and the cost of an observation is positive and also constant in time.

The criterion for the optimum solution is "'maximize a linear utility' or "minimize an
expected loss." The expected loss of a terminal decision can be derived as follows:
If the value of the log-odds-ratio at the time of the terminal decision is L, then the corre-

sponding cause probabilities are

L

P(SN) = — - (1.6)
l1+e

P(N) = IL (.7
1+e

If the decision "B'" is made, the probability of error is the probability that SN was the cause.
If the decision A" is made the probability of error is the probability that N was the cause.

Thus we have

13



expected loss for "A' decision: WFA/(I + eL)

expected loss for ""B" decision: WMeL/(l + eL)

To minimize the expected loss one chooses the minimum of WF A / 1+ eL) and
WMeL / (1+ eL). This minimum is the loss due to the better terminal decision and is denoted
T(L).

In order to obtain a more symmetric form for the terminal loss function let W and A, be

defined by

2 1

Wﬂﬁ +WFA (1.8)

and A, = an(v;,FA> (1.9)
M

Then W, =5 (14689 (1.10)

and Wy, =%(1 + ¢80 (1.11)

Thus the risk for a terminal decision is

L

L -A A 4 L-4,

1 .

T(L) = min € % (1+e 0), '%(1 +e O) =Y-2V-1 *e min q€ , 1 (1.12)
1+e l+e

Clearly, the terminal decision "A" is made for L > AO and the terminal decision is "B'" for
L < AO. The possibility L = AO may be disposed of as the reader sees fit. Either an "A" or

"B'" decision or any random mixture of the two will result in the same loss, W/2.

L -A

T(L)=—e—L.%V—(1+e 9, L<a
l+e
A
1 W 0
= ) (1+e ), L2 AO (1.13)
1+e

A plot of the terminal loss curve is shown in Figure 6 for WM> WFA . For WM = WFA’ T(L)

is symmetric about L = 0.
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In order to evaluate "how good the detection is' in a detection situation involving signal,
noise, and a receiver, the receiver operating characteristic (ROC) is used (Reference 5). The
ROC is a graph of the relation between the probability of detection, P("A"[_SN), and the probability
of false alarm, P("A"IN). The parameter along the curve is the log-odds-ratio L. A single

curve applies to a fixed physical situation: signals-noise-receiver.

An ROC is called '"normal" if the curve can be parameterized by the normal probability

distribution as follows:
P("A"ISN) = (A +Vd),  when P("A"|N) = & (\)
where:

t 2
& (1) =-\,—-§n— Lo e*/2 4 (1.14)

Three normal ROC curves are plotted in Figure 7.

‘Normal ROC curves arise from the "normal case' in which the logarithm of the likelihood
ratio is normally distributed under one of the causes, i.e., SN or N. This is a one parameter

class of problems as demonstrated below.

Let y be the observation and let z = ¢ n[2(y)] the natural logarithm of the likelihood ratio
of y. The case we are discussing is where z is normally distributed with mean m and

. 2 "
variance o , say under condition N.

1 - -(z - m)2 '
f(z[N) = oo X0 |—— (1.15)

20

Since z is a transformation of y, the distribution of z is derived from that of y by direct
substitution, being careful to account for the change in the differential size. The variable z is

one dimensional. If y is one dimensional, then

#(z|SN) = [ y(z) ISN] % (1.16)
If y is multidimensional, then

£(zISN) = 1] y(z) ISN] J@) (1.17)
where J is the Jacobian of the transformation. In a similar manner we find that

f(zIN) = 1] y(z) IN] J(%) (1.18)

16
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Figure 7. Three normal ROC curves on linear paper with parameter d.
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Combining Equations 1.15 and 1.16 we have

f(y(z) ISN) f(z IN) _

f(z[SN) = ([y(z)] f(z IN)

f[ y(2) IN]
= e’ f(z IN)

1 -(z - m)Z
= Fan g &XP ) 5t 2

o
2,,2 2
=\/2_7170 exp['[z‘z(n;’Lo)] +m+32—-jl (1.19)
o

This is a probability density function. Its complete integral is unity.

+00 2
1= j f(z ISN)dz = exp [m L
- 2

This implies that m = LZ' Collecting all this together we note that the normality of z under
one condition forces it to be normal under the other condition. Both normal distributions

have a common variance, denoted by d.

For the normal case, in noise N the logarithm of the likelihood ratio is normal with mean
= -.5d and variance d with d > 0. In signal-plus-noise (SN), the expression ¢n[ {(y)] is normal
with mean = +.5d and variance d. The equations for the ROC for a single normal observation are
P("A"[SN) = & (A + Vd), when P("A"|N) =& (A). Figure 8 shows a family of such curves on
special paper! designed to simplify the presentation of these curves. The quantity d is

identified as the quality of a single observation and serves to index the ROC.

Let (Xl’ Xgy oo

process. Let the quality of X; be di and assume the X, are independent. Then the joint

, xn) be a series of n normal observations in an observation-decision

observation (Xl’ Koy oo e Xn) has a log-likelihood-ratio which is distributed normally and the

ROC of the joint observation is also normal. The detectability of the joint observation is

n n

). di . Zl di =nd, where n is the number of obser-

i=1 1=

vations and d is the quality of a single observation. In generaln<n where n is the
max max

When the di are all equal,then obviously

greatest number of allowed deferrals. We will use the notation D = nmaxd'

In a given problem the available quality, D, is specified. For discrete problems the
quality of a single observation, d, is also specified. The observed quality denoted Do’ is de-
termined by the solution of the observation-decision process. Using these ideas the three

types of observation-decision procedures canbe characterized as follows:

'No. 42, 453 of Codex Book Company, Norwood, Massachusetts.
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(i)  For a fixed observation procedure the observed D, is a constant, i.e., D, =D.

(ii) For a predetermined observation-decision procedure DO is a variable. For the
optimum procedures D0 will be a function of L, W, Ao, d, ¢, and D; where cd is

the cost of an observation of quantity d.

(iii) For a sequential procedure Do is a random variable. For the optimum procedures
(and most others, too) the distribution of Do will be a function of L, W, Ao’ d, c,
and D.

A physical meaning for the quality of an observation, d, can be given to the simple detec-
tion problem of a signal known exactly in added white Gaussian noise. This detection problem,
sometimes called the first problem (Reference 6) has been extensively studied in the literature.
For this problem d =—21\I—Iz-, where E is the energy of the signal and N0 is the noise power density

measured in watts per cycle per second.

Although this report deals exclusively with the normal case the results are useful in
situations where, strictly speaking, not all of the normal assumptions are met. In physical
problems we may never actually have the normal case. However, in many physical applications
the ROC is normal over the region of interest.. If one restricted himself to these regions then
we may use the results of this report as an approximation. The approximation depends on how

close the physical problem approaches the normal case.

Physically, for a normal ROC, we can relate the parameter d to the output signal-to-noise

ratio of our receiver, (S/N) . The available D will then correspond to a total or integrated

(S/N)O.

0

As shown previously a normal ROC implies that some monotone function of the observed
statistics under either conditions, SN or N, is normally distributed. We have parameterized
this situation by a variable d. The normalization is as shown in Figure 9. The mean of the

noise is at -%, the mean of the signal-plus-noise is a + g The variance of both is d, d > 0.

What does a signal-to-noise measurement of the output of receiver mean in terms of d?
To measure (S/ N)O we could perform the following series of experiments. The noise power of
the noise would be measured in the absence of the signal. This would merely be the variance
of our Gaussian noise distribution or d. Then we could look at a scope or meter with the signal

and noise present. We would observe the average amount that the signal's presence increases
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Figure 9. The distribution of the logarithm of the likelihood ratio for a normal ROC with parameter d in
N and SN,
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the scope or meter reading. This would be the separation of their means, or again, d. The

signal power then would be this voltage squared or dz. Thus our measurement would give
.

(S/N)0 =5 d.

From this we can conclude that for a normal ROC an available D = nmaxd =lisa (S N)0
of 0 db, provided we observe the entire observation. An available D = nmaxd =100 is a (S/ N)0
of 20 db, assuming a normal ROC. The sequential procedure is a trade between (S/ N)0 and a
shorter observation time. The increase in risk due to terminal decision errors which is due

to a smaller (S/ N)0 is balanced against a savings in risk due to a smaller observation cost.

As an aside, another viewpoint of an observation-decision procedure can be obtained by
considering what the ''state' of the observation-decision procedure is. The state of a physical
system can be defined as the specification of a minimum set of variables needed to predict the

future behavior of the system. Thus the state of an observation-decision procedure is

U = U(n; L; f(xISN), f(xIN), C, Wap W A)

The functions f(x |SN), f(x[N), C, W , and W for the stationary case, do not change for a

M
given total observation and so can be grouped under ''boundary conditions." Thus the state

description is given by L and n.

In addition to the ROC there are other measures useful in evaluating and describing an
observation-decision procedure. We will be interested in the risk functions, Gk( L), and the

average number of observations, ;k(L)'

The risk function, Gk(L)’ is the expected loss due to terminal decision errors and the ob-
servations costs. It is the combination of the information given by the ROC (error probabili-
ties) and the average number of observations each weighted by their respective costs. These
risk functions change with the available number of deferrals (n = 1 for nonsequential proce-
dures). The risk function for stage k is obtained by averaging the risk function for stage k - 1

over all possible observations, y.

The number of observations we designate as yk(L). For nonsequential procedures, k =1,
For a fixed observation procedure yl(L) is a constant determined outside of the observer's
control. For the optimum nonsequential . procedure yl(L) is a variable chosen before the ob-
servation decision process by the observer. For a sequential procedure yk(L) is a random
variable. In these processes we will be interested in the expected or average number of
observations,yk( L). The average number of observations is related to the conditional average

number of observations by
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L
e 1

7 (LN + —— 7, (LIN) (1.20)
l+e l+e

7,(L) =
These functions, *‘7k(LlSN) and 7k(L|N), will be obtained iteratively in the same manner that
the risk functions and ROC functions will be obtained. This iterative procedure is explained

in detail in Section 3.2.

The introduction given here is not meant to serve as a complete explanation of the con-
cepts involved in observation-decision procedures. It is meant to introduce the reader to the
notation and to present a brief outline of the remainder of the report. The physical model
used to explain some of the ideas involved is one of many that might have been used. We hope
that it gives the reader some notion of how this theory might be implemented in an actual

physical problem and possibly some intuitive feeling for the overall problem.
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2. NONSEQUENTIAL OBSERVATION-DECISION PROCEDURES
2.1 PRELIMINARY REMARKS

A nonsequential observation-decision procedure can be included in the class of sequen-
tial and deferred decision procedures as a nonoptimum procedure. Nonsequential processes
can also be considered as optimum processes resulting from some restrictions or side condi-
tions. Whenever the cost of observation is zero,then the optimum procedure for stationary
terminal losses is to observe as long as possible. This is a fixed observation-decision pro-
cedure. A somewhat similar action results from demanding that observations costs be
""prepaid'’ with no refunding for unused observation time. The standard approach of classical
statistics can be viewed as a general nonsequential observation-decision procedure in which
the observation length or quality is chosen independent of a priori odds. This constitutes a
nonoptimum observation-decision procedure under our definition of optimum (i.e., minimize
the average loss). The optimum procedure is to choose the length of the observation based on
Ao, W, D, L, and c. This is the predetermined nonsequential procedure.. These forms of
nonsequential processes have the advantage of being solvable analytically. In addition to
being of interest in themselves, they can serve as valuable sources of bounds on correspond-

ing functions for deferred decision.

In many physical situations nonsequential. procedures are the only procedures that can
be used in reaching a terminal decision. For example, if a decision is to be based on results
that can only be obtained by the purchase of equipment and man-hours beforehand, then we
are dealing with a nonsequential. problem. For these reasons the mathematical discussion of

observation-decision procedures begins with nonsequential procedures.

2.2 FIXED OBSERVATION-DECISION PROCEDURE

As stated previously, ina fixed observation process,the quality of the actual observation,
Do’ is equal to a fixed D. The value of D is fixed by the problem and is not under the control
of the observer. The object of an observation-decision process is to reach a terminal deci-
sion. The making of a terminal decision may result in an error. The expected loss due to
these errors is represented mathematically by T(L). Assume the complete observation costs
an amount C. Consider the relationship between T(L) and the 'look ahead" loss, i.e., the
expected loss if the observation is taken. If the cost of observation is zero then the expected
loss and terminal loss are qualitatively shown in Figure 10. The ROC is also shown. Since the
cost of observation is zero it always pays to take the observation. The expected loss, if an
observation is taken, is everywhere less than the terminal loss function. The ROC is a con-
tinuous curve extending from point (0,0) to point (1,1).
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Figure 10. The expected loss function and ROC curve for a fixed observation procedure with the
cost of observation zero,
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Suppose that the cost of observation C is greater than zero. The ook ahead'" loss
curve is everywhere raised by an amount C. In other words, the expected loss is now the
cost of the observation plus the loss that occurs because of errors in terminal decision. Refer-
ring to Figure 11 it is cleair that for certain a priori opinions (represented by initial log-
odds-ratio, L) the observation is not advantageous. This set of L's occurs for L < I'and
L> A. For these L's the observer's prior opinion is sufficiently strong that an observation
strong enough to correct it, if wrong, would cost more than is saved by the reduction of
errors. Thus the observation is never taken for this set of L's. The ROC is an arc and the
points (0, 0) and (1, 1). The extent of the arc is determined by the decision boundary points,
I'and A.

From the preceding discussion, the following two theorems occur as a logical consequence.
Theorem I: For C/W > .5, if one is allowed the option of taking the observation or not taking
the observation, the observation is not taken. This is true for all possible distributions of
observations.

Proof: The maximum of T(L) is T(AQ) = ,5W. Let RE(L) denote the risk due to terminal
decision errors. No matter how good an observation is available if C'>.5W, the total risk,
RE(L) + C, is not less than C. Thus RE(L) + C 2 T(L). This means that the total expected
loss if the observation is taken is greater than if no observation is taken, independent of the
quality, D, of the observation. Thus if the observer hés the option of observing or not, then
for C/W > 0.5 the observation is not taken.

Q.E.D.
Theorem II: Given any C/ W < 0.5, there isa minimum quality of normal observation neces-
sary to warrant observation.

Proof: For an observation to be advantageous, the risk based on the observation must be less

than the risk incurred by a decision based on prior information only. In symbols

RE(L) + C< T(L)

or

If we write the above equation in terms of normal observation statistics we have

—Ao -, 4
L) - [R(D) +¢] =Y. [lre _ 1+e [1 - P("A"4SN)] e _paniy |- ¢
E 2 -L -L L
l+e l+e l+e
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Figure 11, The expected loss function and ROC curve for a fixed observation procedure with the
cost of observation greater than zero.,
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%. ~1+e l+e . [I—P("A"ISN)] 1l+e

T(L) - [Ry(L) +C] = P("A"IN) | - C,

L

1+eL 1+e l+e

L>A
0

By routine calculation one finds that this quantity has a positive derivative for L < Ao and a
negative derivative for L > Ao for any ROC point except (0, 0) and (1, 1). Hence, there is a
single maximum at L = AO. In order to show that there is a minimum quality needed before an
observation is taken given that the C/W < 0.5 we need to show that when we take the maximum
difference between T(L) and RE(L) + C, thisdifference depends on the quality of the observa-

tion. Thus we write

max max

L ROC [T(L) - (Rg(L) +C)] = gg)é [T(A ) - (Rg(a) + C)}

0

- o [V—ZV (P("A"fSN) - P("A"IN))- c}

The quantities P("'A" |SN) and P("'A'"|N) are the probabilities of detection and false alarm re-
spectively. They depend on the quality of the observation Do' Thus no observation is warranted
unles P(""A"[SN) - P("A"[N) > 2WC for some ROC point. For decisions based on likelihood ratio
the ROC is convex; for normal observation as well as for any other symmetric observation
statistics this means the maximum of P(""A"fSN - P("A"IN) occurs on the negative diagonal,

P("A"|SN) + P("A"|N) = 1. To specialize this proof for the normal case,

max max

L ROC

[T(L) - [RE(L) + CH > 0=>&(5D)> .5 +%,

Thus the minimum quality is given by

=\ _ C
Q.E.D.

In words, Theorem I states that if the cost of the observation is too great then, roughly
speaking, no matter how much "information'" is obtained from this observation, this "informa-

tion' cannot make up, by a decrease in errors, the cost of the observation.

Theorem II states that for a given (C/W) < .5 ratio, there is a minimum amount of 'informa-
tion" needed in order to make it profitable to sample. The quantity (C/W) will turn out to be
a convenient parameter for the description of observation-decision procedure as might be

suspected from this theorem.

Both theorems apply to optimum nonsequential procedures and to deferred decision.

28



2.3 THE PREDETERMINED NONSEQUENTIAL OBSERVATION-DECISION PROCEDURE

The predetermined nonsequential procedure is a generalization of the fixed observation
procedure. In the predetermined nonsequential procedure, in contrast with a fixed procedure,
the observer chooses his observation length prior to the start of the observation. To optimize,
in the sense of minimum average loss, his observation-decision procedure he chooses the ob-
servation length based on all the information he has available before the start of the observa-
tion. This information includes the loss due to terminal decision errors, the quality of an
observation, the cost of the observation, and the a priori probability of the occurrence of a
signal. Mathematically, we represent these parameters by W and Ao’ Do’ cDo, and L, respec-

- tively. Thus basically we wish to determine the observation length, or alternately, the

quality of observation, Do’ in order to minimize the average loss for a total observation. We
wish to determine the quality of observation for minimum average loss as a function of W, AO,
C, and L.

In Section 2.3.1 we discuss the optimum predetermined procedure called the optimum non-
sequential procedure. The specific optimum nonsequential procedure examined is that of
normal observation statistics with ""continuous observation.”" By continuous observation we
mean that the observation length is a continuous variable, or alternately the observed quality
is a continuous variable. This is to be contrasfed with the discrete observation case in which
the observed quality is discrete; the observation quality can be chosen only in chunks or dis-
crete steps. The numerical calculations are done for the normal case. The specific choice of
distributions for the observed variate under noise and signal-plus-noise is made so as to ob-
tain concrete numerical results. The logic used in any specific problem is common to all
such problems. The differences in numerical answers occur because of the specific distribu-

tions chosen for the observed variate.

2.3.1 THE OPTIMUM NONSEQUENTIAL OBSERVATION-DECISION PROCEDURE FOR
NORMAL OBSERVATION STATISTICS WITH CONTINUOUS OBSERVATION. The basic problem
we have in optimizing the predetermined observation-decision procedure is the correct choice
of the observed quality, Do’ We say we have an optimum observation quality when the total
expected loss of the observation-decision procedure is minimized. This average loss is com-
posed of two parts: (1) the cost of the observation of quality D0 which is equal to cD0 and

(2) the loss due to terminal errors.

For a specific problem involving W, Ao’ c, Do’ and L, let us determine the '"contour graph

of the value of observation." This is a graph of Do’ the quality of an observation, vs. L
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(L represents our a priori opinion of the presence of a signal). The level curves or contours

of the graph are contours of constant value of observation, that is, the additional value (or
reduced loss) that will occur if the initial log-odds-ratio is L, and observations of quality DO

are taken compared to no observation taken. Each set of contours corresponds to a fixed W/c
ratio. In Figures 12 and 13 are shown two such graphs. Figure 12 is for the case W/c = 30 and
Figure 13 is for the case W/c = 100. The contour graph of the value of observation can be used to
explain the aspects of the optimum nonsequential procedure. The analytic derivation will be
given later in this section. The graphs are obtained by use of a computer program (see Ap-

pendix G).

Referring to Figure 12 let us examine in detail the predetermined observation-decision
procedure. Assume we have determined the cost, ¢, and the losses due to terminal errors, W.
For simplicity we will assume that AO =0, i.e., the loss due to a miss. Suppose that the
available quality is very large. That is we can, if we want, choose a very large observation
quality, Do' For a specific a priori log-odds-ratio L, say 1.0, we note the following. For a
very small observation quality, say D0 < .5, the value of observation is less than zero. This
means that our a priori opinion, represented by L = 1.0, is sufficiently strong that it does not
pay to buy the small amount of "observation information' represented by the observation

quality DO < 0.5.

In other words the cost for the amount of "information' we received from the observation
is too great. The decrease in terminal error loss is not great enough to warrant taking the
observation. This is shown on the contour graph of the value of observation by falling outside

of the zero value contour.

If we now increase the observed quality to 2.0, with L = 1.0, the value of observation is
approximately 10. This is for W/c = 30. As we let the observation quality increase we note
that we again fall outside the zero value contour. We are again paying too much for observa-

tion in relation to the amount we gain by a decrease in terminal decision error loss.

At some point along each L value there exists an optimum observation quality which
maximizes the value of the observation-decision procedure. This is represented by the dotted
line in Figures 12 and 13. This dotted line gives the optimum observed quality for a given L
value and a given W/c ratio. We note also that there exists a set of L values for which one
never intersects the zero value contour as the observation quality is increased. Roughly
speaking, we can say that the observer's prior opinion of the cause of the observation overrides

any "information' he can economically obtain by taking the observation.
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Notice that by Theorem II the zero value contour should not reach the origin of the
contour graph. The minimum D for a W/c = 30 is .028 and for a W/c = 100 this minimum D

is .0025. This minimum D is so small that it can't be seen in the plotsof Figures 12 and 13.

We are interested in the intersection of the dotted curve with the zero value contour.
These two points in L determine when we should take an observation if given the option of

observing or not. Let Pl and A, be the L values corresponding to the intersection of the dotted

1

line with the zero value contour. Further let Pl correspond to the smaller L value and Al
the larger L value. Then as a function of W/c we have that if our prior opinion, represented
by L, is such that L < I‘l or L> Al we will not observe if we have the option of observing or
not. If we do observe we know that the value of the observation will be less than zero

and in fact, less than if we did not observe at all.

As we decrease the ratio of the loss due to a terminal decision error to the cost of an
observation of quality one, the contour graph for the value of an observation ''shrinks."
Clearly, this agrees with one's intuition. The decrease in the W/c ratio can be viewed as an
increase in the cost of observing. Thus the cost of the "information' we receive from an ob-
servation on which to base a terminal decision is increasing. This means that the balance
between cost of "information' received and the decrease in loss due to terminal decision
errors is such that prior opinions tend to become more important. Thus if one is fairly
certain before the observation what the cause of the observation is, the observation will not
be profitable. Mathematically, we see this as a decrease in the interval between 1“1 and Al as
the W/c ratio decreases. This implies that the value contours "shrink' as the W/c ratio de-

creases.

The preceeding discussion is a heuristic explanation of the optimum nonsequential pro-
cedure. The analytic development of the problem, given below, will place these general ideas

on a rigorous mathematical foundation.

Repeating-, our basic problem is to determine the right observation quality, Do’ such that
the value of the observation is maximized. This is equivalent to minimizing the average loss.
Thus the procedure to determine the optimum observed quality is clear. We merely express
the value of the observation in terms of losses due to terminal errors, the cost of the observa-
tion, the quality of the observation, and the representation of our a priori probability of the
presence of a sjgnal. Having this expression we find the maximum of the value of the observa-
tion considering the observed quality as a continuous variable. The solution for the observed

quality in this equation is the desired answer.
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The minimum average risk for an immediate terminal decision, i.e., the observation is
not taken, is T(L).

T() = min {PENW ), POW g, | 2.1)
In terms of W, AO, and L this average risk is
A
0 L-A
T(L) =12V°1 *e min{e 0, 1} (2.2)
L
l+e

Equation 2.2 is the average risk for Do =0, i.e., an immediate terminal decision. The average

risk associated with an observation of nonzero quality D0 is easily seen to be

R(L, D)= P(SN\W,, P("B"|SN) + P()W ,, P("A" IN) +cD, (2.3)

FA

The average value, V, of observation is naturally defined as the amount to be gained by observ-

ing.
V(L, DO) = T(L) - R(L, DO) (2.4)

In Equations 2.1 through 2.4,we have indicated that the value function, the average risk function
for D0 > 0, and the terminal risk function T(L) are functions of only L and Do' (T(L) being a
trivial function of Do’) We have chosen to suppress the functional dependence of these functions
on the losses incurred in terminal decisions and observing costs. We do this because these
quantities are usually fixed in any given problem. The usual problem is how to operate if

given these constraints, i.e., W, AO, and c.

Continuing, we see that from Equation 2.4 that there results two functional forms for the
value function. There is a different functional form for V(L, Do) depending on whether L < AO

or L>A .
o}
For L < Ao we have for the value function

V(L, D) = T(L) - R(L, Dd)

= P(SN)W, . - {P(SN)WM P("B"ISN) + P(N)W_, P("A"|N) + ¢ DO}

M FA

= P(SN)W,, P("A"| SN) - P(W ,, P("A IN) - ¢ D,

L
€ AN 1 AN -

=— Wy, P("A" |SN) ~—— Wga P("A"|'N) c¢D, (2.5)

1+e". 1+e
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In like manner for L > AO the value function can be written

L
— e " "y 1 A " .
V(L,D ) = — W, P("B FSN) + T Wpa POBIN - ¢ D, (2.6)
1+e l+e

The conditional probabilities P(""A"'|SN), P("A"|N), P(""B"| SN), and P("B"|N) are uniquely

defined by the ROC (see Section 1.4). In this report we restrict ourselves to the so-called

"normal ROC." This means we can write the above conditional probabilities as follows.
P("A"|SN) = &(v) and P("B"|SN) = & (-v)

(2.7)
P("A"|N) = & (u) and P("B"|N) = &(-u)

3 (u) = j: ot dt = f: o x(izz)dt

For any fixed set {L, Do’ W, AO, c} one can manipulate u and v to maximize the value function,

where

V. This is a fixed-observation procedure. This has been studied at length (see, for example,

Reference 6). The well known results are that

v—u=s/lD020 (2.8a)
vl =2(L- ) (2.8b)
Solving for u and v we have
v DO L - AO
us—p5=+ ‘/30- : (2.92)
v D0 L- Ao
Ve 4 ‘/_ﬁo— (2.9p)

Equations 2.9a and 2.9b give the values of u and v which maximize the value of observation
for a fixed set { L, Do’ W, AO, c}. This is merely the solution of the familiar fixed-observa-
tion procedure expressed in terms of performance parameters. Equations 2.7, 2.8, and 2.9 stem
directly from the fact that a normal observation qualljity of DO implies that the logarithm of the
likelihood ratio is normally distributed with mean +2—0 and variance D0 in signal-plus-noise

. o) . . .
and with mean "o and variance D0 in noise alone.

Let us now consider the problem at hand; the determination of the optimum observation
quality. This observation quality results in the maximum value for observation and, as dis-
cussed previously, will depend on L, our opinion prior to the start of the observation of the

cause of the observation.
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We can express Equations 2.5 and 2.6 in normal parameters. Consider Equation 2.5, the

value of observation for L< AO. (The same logic applies to Equation 2.6 for L> Ao.)

V(L,D) = P(SN)W,, P("A" [SN) - P(YW , P('A"|N) - ¢ D, L A_ (2.5)

M FA

Expressing Equation 2.5, repeated above, in terms of normal parameters and W, Do’ and L, we

have, for L < AO, the following

V(LD)—W-“eo L-AO @()_@()-ZCDO.1+6L o
ol T 2 L |€ v u W A (2:10)
l+e “1+e ©

The observation is profitable when ever the value of observation is greater than zero, i.e.,

V(L, DO)ZO. This condition can be written

2cDo 14 L L—A0
A <e d(v) - d(w), L<A (2.11)
1+e ° °

‘The optimization in a predetermined observation-decision procedure occurs in the selec-
tion of the proper observed quality, Do’ so as to maximize the value function, V(L? Do). We
therefore look for a relatiye maximum of Equation 2.10 as a function of D0 (or equivalently
\/-Eo ) with W, Ao, and L fixed. We also restrict the observed quality to be greater than zero.

From Equations 2.9a.and 2.9b,, we first evaluate

L-A

ov_ _1 0 __-u ,
&D 2 "D 7D (2.12)
(0] (o) (0]
dgu 1 L_Ao_ -V o
avD,~ 27D, VD (2:13)

Using the results given in Equations 2,12 and 2.13 we now differentiate Equation 2.10 with re-

spect to \/"D_O which results in Equation 2.14.

A _
V(L,D,) Wire © [llB oy y ,riﬂvﬁﬂ_ P Porvel | (2.14)
avyD. 2 L VD D WL .

) 1+e o 1+e0

A necessary condition for a relative maximum for the value function is that the above expres-

sion equal zero. This is equivalent to

= -e e{Vu +¢(u)v, LA (2:15)
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By Equation 2.8b and from the definition of ¢(v) we have

olLmB0) ) - \2 2 ﬁr—e 2 o) - (2.16)

Hence Equation 2.15 for the relative maximum of V(L.,DO) becomes

2CDO, 1+ eL @(u)
w A 2

(v-u) (2.17)

We thus summarize the situation for L< Ao. The value of observation is positive when

2¢D L (L-a)

WO-“eA e  %o@) - a) 2.11)
(0]

l+e

And the value of observation has a relative maximum when

W°.1 e = o) (% g) | (2.17)
0]

The boundary value of L for L< Ao, which we denote by r‘l, for which the optimum choice
of the observation quality D0 would just break even with no observation and immediate terminal
decision, is given by the simultaneous solution of Equation 2.17 and the equality of Equation
2.11. This operation results in Equation 2.18. This simultaneous solution is, in terms of our
value contour graph, the intersection of the zero value contour and the dotted line. The dotted
line represents the optimum observation quality. The analytic formula is given by Equation

2.17 in implicit form.

2 50 - 2w = plu) (3 - 5) (2.1

or

®(v) v_2o(u
() 27 o)

(2.18)

N s

and from Equation 2.8b we have
v2 - u2 = 2».(1"—A0)

The calculations for L > AO have been rigorously carried through by the authors. These

calculations serve as a check on the calculations for L< AO since symmetry conditions imply
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that the same results should be obtained for L> AO as for L< Ao except for a change in signs
of u and v. These mechanical calculations do not contribute to the reader's understanding and

so we omit them. The results for L> AO are given below.
For L> AO the value of the observation is positive when

2¢D L
ol +e L-A
e < (-u)-e!LmB0) g(_y) (2.19)
1+e °

The value of the observation has a relative maximum when

- = 9(v) G - 5
W A 22 (2.20)
)
l1+e
The boundary value of L for L2 AO, denoted by Al, for which the optimum choice of the
observation quality Do would just break even with no observation is the simultaneous solution
of Equations 2.19 and 2.20. Note that Equation 2.20 is identical with Equation 2.17. This re-
sults in Equation 2.21 below. '
o (1) L 5(v) =) § - 3
(v 2 2

or

(2.21)

and from Equation 2.8b we have

v2 -u2 =2(A-A)
o
A comparison of Equations2.21 and 2.18 shows that the two equations are similar except for
all signs. Thus if a pair (ul, Vl)’ vy satisfies Equation 2.18 then (u2 ==V Vg = -ul)

satisfies Equation 2.21 and Vo> Uy,

The analytic determination of the contour graph of the value of the observation is, in
theory, completed. Equations 2.11and 2.17 are all that are needed to determine the contour
graphs. The actual graphs in Figures 12 and 13 were determined by use of a digital computer

(see Appendix G).
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Consider now the evaluation problem of determining how "'good' the decisions are for the
optimum nonsequential procedure. This evaluation is accomplished by determining the ROC

curve for the procedure. The analytic derivation follows.

In any predetermined nonsequential procedure there always exists a side condition on the
observation length. This side condition is that maximum allowable quality, D, is finite. The
observed quality, Do’ which we choose, in general may depend on the available quality D.. We
consider first the situation in which the available D is so large that this side condition is elimi-

nated. That is, DO may be chosen without reference to the available quality.

Assume further that our initial opinion of the cause of the input is such that we take the
observation. Mathematically this means that our initial L value is such that < L< Al. The

ROC for the optimum nonsequential procedure in parametric form is found as follows.

Equation 2.17 gives the relationship between the various parameters for the optimum non-
sequential procedure. Using their equation as a starting point take the reciprocal of both sides.
This operation results in Equation 2.22.

A

W o l+e® 1 2.22)

4cDO 1. eL v ¢(u)

By Equation 2.8a we have an expression for DO in terms of u and v. Combining this with Equa-

tion 2.16 we can write

A
~ 2 0 ¢(u)
2D0(1 + eL) = 2(v-u) (1 +e -‘Z;(T)) (2.23)

If we now multiply Equation 2.22 by Equation 2.23 we obtain the parametric representation of

the ROC. This is Equation 2.24.

A
Wil+e %) 1 o1 (2.24)
< <———> = 2(v -u) ¢(u)+ e o)

For any fixed set of costs and values Equation 2.14 is the parametric form of the ROC. Values of
uandvare restricted toa range given by the solutions of Equations 2.18 and 2.21. Equation 2.24
allows one to evaluate how good the terminal decisions are in an optimum nonsequential procedure.
The actual "operating point" on the ROC, i.e., the coordinates u and v, depend on L. Figure
14 depicts the ROC for the optimum nonsequential  procedure as a function of the %Vratio.
Notice that the ROC is constrained to an arc and the points (0, 0) and (1, 1). Figure 14 is
plotted on normal paper (see Section 1.4). This allows us to determine easily how close

our optimum nonsequential ROC approximates a normal ROC. (A normal ROC plots as a
straight line with a slope of one.)
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Figure 14, The ROC curves for the optimum nonsequential procedure for the continuous observation case
as a function of the W/c ratio.
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The boundary equations for L for which the observation is profitable can be found by using
Equations 2.18 and 2.21. Let (ul, Vl) be on the lower ROC boundary, i.e., (ul, vl) satisfies

Equation 2.18. The corresponding L value we denote by T.

1
V12 ul2
Fl =A0 oy (2.25)
where (ul,vl) satisfy ”
L er 1
i 4(v1—u1) . z (2.26)
0
1+e

In like manner on the upper ROC boundary (uz,vz) satisfies Equation 2.21 with the L value de-
noted by Al.
(2.27)

where (u2,v2) satisfy Equation 2.26.

This completes the discussion of the continuous observation predetermined nonsequential
procedure with large available quality. Perhaps the best summary of the predetermined pro-
cedure is the contour graph of the value of the observation shown in Figures 12 and 13. There
are certain other aspects of a predetermined observation procedure which we have not as yet
discussed. There remains the problem of a discrete observation problem in which the observa-
tion quality cannot be considered as a continuous parameter. And there is the situation in which

the condition of a finite allowable D affects the selection of Do'

Let us consider the latter problem first. This situation can be explained most easily by
reference to Figures 12 and 13. The contour graph of value shows clearly how the condition of
small available quality affects the selection of Do' If the available D, for a given L value, falls
below the dotted curve for the optimum Do’ then the observer chooses D0 equal to the available
D. Otherwise he chooses the optimum Do' The procedure maximizes his expected value for

the observation.

The discrete observation problem and the complications that arise by the discrete nature

of the observatidn quality are best illustrated by means of an example.
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2.3.2 AN EXAMPLE OF AN OPTIMUM . NONSEQUENTIAL PROCEDURE WITH DISCRETE
OBSERVATION. Consider the following example of a predetermined nonsequential procedure
with a %V ratio of 30 and Ao =0, i.e., the losses due to terminal errors are equal. Let the
quantization in the quality of observation be one. In other words the quality of an observation
may be chosen as D0 =1,2,3,.... Theaverageriskfunctionfor an observation quality Do is
found by combining the loss due to terminal decision errors with the cost of observing. In this

example, D  =nd =n, n = 1,2,3.....

Assuming normal observation statistics with the density function of the input in noise
'D \ N N . . . . DO
N(—ZQ,D0> and the density function of the input in signal-plus-noise N<-7-, D0,> we have for the
average risk

R(L, Do) e L -L D0 1 L Do Do

* = - = o — - c— —

R (L,Do) 30 T o) TS "3 + T & o3 T (2.28)
l+e 0] 1l1+e 0

R*(L, DO) is a normalized risk function. Equation 2.28 is plotted in Figure 15 for D0 =n,=0,1,
2, 3. Observe that the observed quality, Do’ for the optimum nonsequential procedure will
never exceed three. From the risk functions shown in Figure 15 it is also clear that if a D0 of
at least three is allowed, one will never use a -Do of one. The observation quality of one does
not decrease the errors in a terminal decision enough to make up for the cost of the observa-

tion. This result is due, of course, to the quantization of the observation quality.

The ROC for this procedure is shown in Figure 16. The ROC consists of two segments
corresponding to a D0 of two and of three. The quantization of D0 results in some L values
having a Do which is not unique. The ROC is discontinuous and P("A" [SN)' is not a single
valued function of the false alarm probability, P("A" IN). For these L's we have from Equa-
tions 2.8a and 2.8b

2 2
VitUy T w/Do=\/ 1d, 2L =vy -y (2.29)
Vo - Uy = Vn, d+d 2L=v2-u2 (2.30)
2 2 1 ’ 2 2 ‘
Thus
=2 (v, + (2.31)
Votly =i V1Y) y

On normal-normal coordinates there is a doubling back of the ROC at each discontinuity. For

the specific example of W/c = 30, P("A"/SN) is not a single valued function at L = 1.048.

If Equation 2.33 is calculated for W/c = 30, d = .25, and D, =nd forn = 0,1,2,...,15,

Table I is obtained. This is the same type of solution as obtained for W/c = 30
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Figure 16. The ROC curve for an optimum nonsequential procedure with normal observation statistics,

discrete observation case, with W/c = 30., AO = 0,,and d = 1.0,
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and d=1. The largest D0 will never exceed fourteen. If one is allowed a Do of 9 or more, one
will never take a Do of 8 or less. The optimum risk function for these parameters is shown in
Figure 17. The ROC is not included for this case but consists of a number of straight lines,
as before, where the discontinuities in L can be found by looking at the intersection of the risk
function with T(L) for D =ndforn=0,1,2,..., 15.

From the numerical examples presented it is clear what the effect of quantizing D0 pro-
duces. The ROC is no longer continuous and single valued. This implies that for a given L
the optimum Do may not be unique. The optimum observation quality is no longer unique for

every L value.

2.3.3 AN EXAMPLE OF AN OPTIMUM NONSEQUENTIAL PROCEDURE WITH CONTINU-
OUS OBSERVATION. Inillustration of the numerical results obtained in an optimum nonsequen-
tial procedure with continuous observations the following examples is considered. Assume the avail-
able D is large so that the choice of Do canbe made independent of the available D. Let the loss
FA’ M be 60. Further let the cost

of observation per unit change in Do be one. In terms of W and A, we have

due to a false alarm, W be 20 and the loss due to a miss, W

W_ W

R PR LU (2.32)
FA+WM
W
A =ﬂn|: FA} -1.0986 (2.33)
0 WM

The nonobserving terminal loss function, T(L), is given by Equation 1.3, as derived in Section
1.4.

1+eL
(1.3)
A
1 W o)
= T —2 (1 + e > , L> AO
l+e
The risk associated with an observation of quality D0 can be found using Equation 2.3.
R(L,D)) =P(SN) W, P("B"ISN) + P(N) W_, P("A"IN)+cD_ (2.3)
Rewriting Equation 2.3 in terms of AO and W and normal observations we have
L -A +A
R(L,D ) = £ = (1+e o) & (-v)+— .E(1+e 0) ®(u) + cD (2.34)
0 L2 , L 2 0
1+e 1+e
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In Figure 18, Equations 1.3 and 2.34 are plotted for W = 30, Ao = -1,0986, and ¢ = 1. In addi-
tion the risks due to terminal errors and the observation cost are plotted. This shows how
the total risk is composed of its two component parts. Notice that the risk due to error is
approximately constant as a function of L. This is also true for the symm'etric case as shown
in Figure 19. The risk due to terminal errors and observation costs are again plotted sep-
arately. The same general features of the risk function for any optimum nonsequential pro-
cedure are as indicated in Figures 18 andi 19. The most striking feature is that the terminal

error loss for a fixed W/c ratio is practically constant as a function of L.

~ 2.4 BOUNDS ON DEFERRED DECISION PARAMETERS BY USE OF OPTIMUM NON-

SEQUENTIAL PROCEDURES

Nonsequential procedures can be used to yield bounds on certain parameters of deferred-
decision procedures. This is possible because they represent nonoptimum deferred-decision
procedures. Since the expected risk for the optimum deferred-decision procedure is not
greater than the risk for any nonoptimum procedure, the point (in L) at which it agrees with
the ferminal risk function is at least as great as the point at which the nonoptimum procedure
agrees with the terminal risk curve. Thus .nonsequential procedures yield upper bounds on
risk and interior bounds on the decision boundary points. The importance of these bounds is

that they can be calculated analytically.

It is evident from the example presented in Section 2.3.2 that the minimum risk curve for
the optimum nonsequential procedure consists of segments of the various 'discrete observa-
tion risk functions,' i.e., the risk functions corresponding to Do =nd,n=1,2,... . Dueto
the quantization of DO the greatest L value of the intersection of T(L) with the individual risk
functions is not necessarily Al, the intersection of the D0 =1 X d observation risk function
and T(L). (This logic is valid for both L > A and L<A . We consider only L > AO.) This is
exactly equivalent to finding the greatest L value for which the value function is zero and
D0 =nd,n=1,2,... . This problem is solved graphically by use of the contour graph of the
value of the observation. Merely note on the D0 axis which values of Do are possible and then
find the corresponding L value for the value function level curve equal zero. The solution is

to choose the largest L value so obtained. We repeat that this L value may not correspond to

D0 =1X d. This is due to quantization of Do‘ These L values serve as an upper bound for the

general deferred decision boundary.

For a continuous normal observation with WM = 3WF A the graph of these L values, (A, I),
as a function of W/c is shown in Figure 20. Also shown in Figure 20 are the decision bound-

aries for the symmetric loss case. Note that the asymmetric decision boundaries are not a
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simple translation of the symmetric decision boundaries when they are plotted as a function of
W/c. If however, the decision boundaries are plotted as a function of D then the asymmetric
decision boundaries are a translation of the symmetric decision boundaries. This is shownin

Figure 21.

These results can also be obtained analytically. For continuous normal observations

(L> Ao) we solve Equations 2.11 and 2.17 simultaneously for L.

ZCDo 1+eL L-Ao
W A =e ®(v) - ®(u) (2.11)
o
1+e
2¢cD L
o l+e~ AN
Pk o3 w
1+e

This results in the same type of plots as obtained in Figures 20 and 21.

If we are not permitted to choose D0 on the basis of a priori odds, L, then one possible
solution is to use L = 0 and solve Equations 2.17 and 2.20 simultaneously. This results in
simpler expressions. For example, consider the symmetric loss, continuous, normal observa-
tion procedure. If we plot the difference of the A as obtained by using our initial odds informa-
tion and A as obtained by setting L = 0 (call this A = A¥) as a function of W/c, the two values

are "close' to each other. The difference (A - A*) is plotted in Figure 22 as a function of W/c.

The conclusion we can draw from this is that the effect of choosing D0 on the basis of L is
a "corner effect," i.e., the difference in the risk functions for the two procedures occur near
the intersection with the terminal loss function. If we compare a nonoptimum nonsequential
procedure and an optimum nonsequential procedure, using the Do of the nonoptimum procedure
equal to the DO of the optimum procedure, the differences in risk functions occur only in a

small L interval near the terminal loss curve.

As a means of furnishing an inner bound on the asymptotic deferred decision boundary,
i.e., DO- », the nonsequential procedure optimum for L =0 is, for many practical purposes,
as good as the general optimum nonsequential procedure. The advantage in using the non-

sequential procedure optimum for L = 0 is the less complicated equations which must be solved.

2.5 SUMMARY OF NONSEQUENTIAL OBSERVATION-DECISION PROCEDURES

The study of observation-decision procedures naturally begins with nonsequential. observa-

tion decision procedures. The logical extension of the familiar fixed observation-decision
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procedure is a procedure which is still nonsequential but where the observer may choose his
observation length before the start of the observation. This predetermined nonsequential
procedure is valuable not only as a means of furnishing bounds on sequential procedure per-

formance but also as a procedure previously not investigated (to the best of the authors'

knowledge).

In many physical problems a sequential observation-decision procedure cannot be imple-
mented. A sequential procedure might be too complicated equipment-wise or the very nature
of the problem might be such as to rule out sequential methods of observation and decision.
These situations are the natural environment in which to apply the optimum nonsequential

procedure discussed in this section.

The analytic derivation of the optimum nonsequential procedure has been given for the
stationary normal observation case. And although the particular numbers involved depend on
the distribution of the observed variate under noise and signal-plus-noisethe logic necessary
to solve the problem does not. The results of the optimum nonsequential procedure are best
sumrharized by means of the contour graph for the value of the observation (Figures 12 and 13).
This graph, which plots the available quality vs. the log-odds-ratio, L, has as level curves the
value of the observation. For a given available D the optimum observed quality, Do’ can

readily be found from this graph. The corresponding decision points (I, A) can then be found.
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3
SEQUENTIAL OBSERVATION-DECISION PROCEDURES

3.1 PRELIMINARY REMARKS

This section comprises the main part of this report. As explained in Section 1.1 one
may view a sequential procedure as a procedure in which many intermediate decisions may
be made before one terminal decision is reached. These intermediate decisions are: after
each single observation should one make a terminal decision or take another single observa-

tion. (Here we are assuming discrete observations.)

The particular sequential procedure we examine is called deferred decision. This is an
optimum procedure for the maximization of expected value. (Or alternately, the minimization
of expected loss, whenever the two are equivalent.) The available D is given as finite. With
this basic restriction and the other parameters of observation-decision process given the
problem is to determine the optimum procedure to minimize expected loss. The basic re-
striction of firite available D can be viewed as occurring in many ways. One such implementa-
tion is to consider a cost function which increases with time. This has been studied by T.
Curry, Reference 7. Our concern is not so much in justifying the restriction of a finite avail-
able D but to assume the condition because of its generality. Note that Wald's sequential

procedure and all nonsequential procedures are included as special cases in deferred decision.

3.2 METHOD OF SOLUTION AND AN ILLUSTRATIVE EXAMPLE

The method of solution is based on the following fact. The expected loss at any stage of
the observation-decision process is minimized by minimizing the expected loss considering
the process has started at the stage of the process where one is now. Readers familiar with
the terms of dynamic programming (Reference 8) will recognize this as the principle of

optimality.

Still another way to view this is to use the language of state variables. At each stage of a
discrete observation decision process the state of the procedure is given by a specification of
a certain minimum set of variables (see Section 1.4). The state of a system contains all the
information available to predict the future of the system. The important fact about the specifi-
cation of the state of a system or procedure is that future behavior depends only on the state
now and not on past behavior. The fact that one can specify the state of the process is the basic
idea in the method of solution of deferred decision. To optimize a deferred-decision process
we minimize the expected risk. From the minimization we obtain decision points in L. The

optimum procedure implies a unique set of decision points. Thus, basically we must find the
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risk function at each stage n. Minimization of this function then determines our optimum pro-
cedure. Clearly, since we know T(L), the terminal loss function, we start the process of solution
from T(L). We solve in an interactive manner the risk functions for n > 0. (We may start the

solution at any value of n for which the complete solution for smaller n is known.)
The parameters of the observation-decision process assumed known are:

(1) f(yISN)and £(yIN)

(2) w and WM’ i.e., W and A

(3) cd the cost of an observatlon of quality d
(4) the quality, D, of the total observation

In general these parameters are functions of the stage number, n, of the decision process.

For n = 0 our expected loss is trivial since n = 0 means no observations may be made,
and hence a terminal decision is called for. The expected loss, FO(L), is equal to the terminal

loss function T(L), since the cost of no samples is zero.

Consider next the case where there is one allowable deferral, i.e., D oax = D /d =1. For

(SN), let the transformed value be L_. If "y" is observed,

a given a priori probability of SN, P 1

1
the probability that SN is true is given by lemma 1, i.e.,

LO = L1 + n [L(y)]

The observer is now in the n = 0 state. No more observations are possible. The loss for any
"y'" is FO(LO) = FO(L1 + In[L(y)]). This loss must be averaged over all "y" to obtain the
expected loss for any observation, y. To this is added the cost of the observation. This is

Gl(L)’ the expected loss of deferring one decision.

+00
G, (L) = f F [L . Qn[ﬁ(y)]] f(y)dy + cd (3.1)

=00

f(y) is the probability distribution of ¢n[{(y)] and cd is the cost of a single observation of
quality d. f(y) may be written in terms of f(y|SN)and f(y|N)as

L
f(y) = —— - f(ylsN) + 1(yIN) (3.2)
1+e 1+e
Thus the optimum expected loss for n =1 is FI(L)'
Fl(L) = min[T(L), Gl(L)] (3.3)
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The intersections of T(L) and G, (L) are the decision boundary points I‘l and Al. Figure 23

¢

indicates the alternatives that may be taken for W__> W_ . and n =1.
M FA max

The optimum procedure may thus be solved iteratively by the following equations.

Ly = Ly + in[e)] | (3.4)
+0

Gk(L) = f_oo Fk-l [L + ﬂr{ﬂ(y)ﬂf(y)dy +cd (3.5)

Fk(L) = min [T(L), Gk(L)] (3.6)

Equations 3.4, 3.5, and 3.6 define the iterative process that can be used to determine the
risk functions, Fk(L), and the decision boundary points, (I‘k, Ak), for the optimum procedure.
Hand calculations are prohibitive except for academic problems. Numerical solutions must be

obtained by use of high speed digital computers. See Appendix I.

As an illustration of the calculations involved consider the following simple example.

Assume the following parameters of the observation-decision process are given.

(1 w_,=w, =1

FA M
(2) cost of a single observation = ¢
2
3

(3) f(YISN)—<8y+1> , 0<y<1
=0 , otherwise

fylN) =1 , 0<y<1
=0 , otherwise

(4) the problem is stationary.

The method of solution is to work the problem one stage at a time from the n = 0 stage.
The observation-decision problem is to observe '"y," decide, "A," "B," or "defer," or any a

priori opinion, L, quality of observation, and available D = nmaxd'

At stage n = 0, i.e., no possible deferrals, the expected loss is:

eL
T(L) = , L<A
1+eL 0
1
- L’ L>Ao
1+e

58



EXPECTED LOSS
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Figure 23, The optimum expected loss function as a function of the log-odds-ratio, L, for a deferred-
decision procedure in which WM > WF A
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where A = Qn(WFA/WM) = 0. For L > 0, the decision is ""A" and for L < 0, the decision is

"B." The expected loss is FO(L) = T(L).

At stage n = 1 we have the possibility of deciding "A," "B," or "defer" with the knowledge
that we have one deferral. If we defer we then apply the results of the n = 0 stage. At stage

n =1 we know Ll’ which represents our opinion of the cause of the observation and T(L).

We wish to compare the cost of deferring our decision with the terminal loss function T(L).
The expected loss if we defer our terminal decision is the average over all observations "y"

of the "look ahead' expected loss function, T(L), plus the cost of a single observation, c.

G,(L,) = F (L)f(y)dy +c = T(L ) f(y) dy + ¢ (3.7)
11[.ﬂxuy"Oy fallyoy

In the above equation LO represents the log-odds-ratio starting with a given log-odds-ratio L1

and having taken an observation "y," that is

LO = L, + {n[L(y)]

1
Further
eL1 1 1 | M
f(y) = — * (yIsN) + — * f(yIN) = —le L(y)+1}, 0<y<1 (3.8)
1 1
1+e 1+e 1+e
Thus
1 eL1 y) +1
G, (L)) = T|L, + {n [L(y)] dy + ¢ (3.9)
1'71 0 1 L
1
1+e
We note that
3
(ne(y)] = zfzn[gy—:ﬂ, 0<y<1 (3.10)

is between -{n9 and +{n9. If L1 is less than -£n9, the resultant L0 value will necessarily be
below zero and the decision will be B. One result of the internal consistency in the definition

of L is that

1 L1 ] L1
e ~ + n[L(y) e _
[ —F +ﬂn[£(y)]_.| f(y)dy =71 - T(Ll) (3.11)
Jo 14 1

e 1+e

60



Similarly, for L. greater than {n9, the resultant L0 value will always yield an "A' decision, and

1
the average of T(LO) is T(Ll).

Therefore, we partially conclude that

lLll >(n9, G, (L

11)

For |L1l < {n9, Lo may be of either sign and hence T(L) must be expressed by two equations.
Since T(L) has a different functional form for L < 0 and L > 0, the limits of integration on y

must be determined. For

-0 < LO <0=>-w<L_ +n[Ly)]<0

1

Simplifying above we have

L /2
3e . 1
—_—<y<1
8
L /4
3e . 1
And similarly for +w > L0 > 0 the limits of integration ony are 0 <y < I e— Thus
1 L L,
_ e ly) . 1+e “Ly)
Gy(Ly) = / | T L @
L/2 1+e Ly 1+e
1
3e -1
8
L1/2

3e -1

8 L1
+ 1 . 1+e ﬂ(y) dy e (312)
= Ly
0 1+e "LUy) 1+e

sgration, the above equation becomes

L1/2
G,(L,) = (c - .125) + .75 € (3.13)

L./2
1
1+e

‘I'ne optimum expected loss for n =1 is FI(L) = min [T(L), GI(L)]' To find the decision points

for n = 1, set G, (L) = T(L) and solve for L. Call the intersection points I‘l and A,. Since the

1 1
problem is symmetric about L = 0, we need solve only for the intersection of GI(L) and T(L)

for L > 0. Obviously Al < n9, and ]."1 = -Al. Therefore,
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F, (L) = £, L<-a
1+e
eL/2
=(c -.125) +.75 -A, <L<A
L’ 1 1
1+e
1
= , LA (3.14)
L’ 1
1+e

Without bothering the reader with details, we remark that the cost of observation, c, is
restricted to the range 0 < ¢ < .25, larger costs result in A1 = 0 and the whole decision proc-

ess collapses because observation is too expensive.

The expected loss if we defer with the possibility of two deferrals is G,(L). Gz'(L) is the

2
average over all observations of the expected loss function of the previous stage, Fl(L), plus
the cost of a unit observation. For |L2| > A1 + In9, G2(L2) = T(L2) + ¢, and we can foresee that
Az < A1 + {n9. Hence we are most concerned with lel < A1 + In9. As before, the limits of
int_egration for y must be determined since the functional form of Fl(L) is in three forms.
For -0 < L1 < Al,
L./2 A /2
3e e -1
1>2y> )
For —Al < L1 < Al,
L,/2 A /2 L.,/2 -A /2
1
3e e -1 v 3 e -1
8 y 8
For +0 > L1 > Alj
3eL2/2 e-Al/z »
>
8 2y2>0

Thus

1 L L a(Ly4y)

e 2ﬂ(y) 1+e 2ﬂ(y)
G,(L,) = dy + (c - .125)
2772 L2 Az
a(Lz,Al) 1+e “Ly) 1+e b(LZ’Al)
L /2 L blya) g
e 2 )2 |1 4e ) 1+e “1fy) . 1
+= dy + T . T dy + ¢ (3.15)
L1+e 0 1+e2£(y) 1+e2
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where:

L /2 A./2
_3de e -1
aly, &) = 8
and
Lk/ze—Ai/Z »
b(Ly, 4,) = 8

For |L|and A restricted to (0, ¢n3), the order of the limits of integration is proper; namely,

0 <a< b< 1. In this single example we shall assume c is sufficiently large so that A< {n3.

To evaluate G (L) and the other integrations that arise the following integrals are needed.

A

k-1
' L /2 -——
1 3 k/ 2
(1) / L(y)dy “3*tg¢ e
(Lk, K- 1)
n
3 T2 < k-l)
(2) (y)dy = ¢ sinh —5
3 W/ (A
(3) == e sinh \-——
4 2
b(L
A
/2. 3 ( k-1>
(4) / () “dy = i\
b(L
b(Lk’Ak ) L /2 -A /2
3 'k k-1 1
(5) dy = g e e -3
0
Using the above integrals GZ(L) is given by
L/2 Ay -A,/2
G,(L) = (c - .125) +‘—75L— 2(c - .125) sinh—l+ e 1 +§<
2 2 4
l1+e
and the optimum risk function F,(L) is
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(3.18)

(3.19)

(3.20)
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Fy(L) = = Lz-a,
1+e
L/2 A A -A_ /2
o 75 e ) . (_1) _3_(_1_) 1
= (c .1.25)+————L 2(c - .125) sinh 5] ta\g) e , -A2<L<A2
1+e
- L>A (3.22)
L’ -T2 ’
1+e
A2 is the solution of the equation Gz(Az) - T(Az) = 0. This process of solution can be general-
ized to the nth stage since Fn(L) = min [T(L), Gn(L)] and Gn(L) can be written in closed form.
L2
G (L) =(c -.125) + .75 K (3.23)
n L™n
1+e
where
A A\ -A /2
_ ‘ . n-l) ( n—l) n-1
Kn = 2(c - .125) s1nh< 5 )+ 75 5 Kn-l +e
and (3.24)
K1 =1
Thus
eL
Fn(L) = L’ L< 'An
1+e
L2
=(c - .125) +.75 K, -A <L<A (3.25)
n n n
1+e
1
- L’ L2a,
1+e

The decision points, :|:An, can be found in an iterative manner from Equation 3.26.

-3Kn + 9<Kn2 - 1) +16¢ (5 - 4c)
A_=20n Y (3.26)
Notice that to solve for Fn(L) one must solve for each previous Gk(L) and A k=1,2,3,...,

n - 1. For example the solution for the n = 5 deferred-decision problem inherently solves the
solution of the n = 0, 1, 2, 3, and 4 deferred-decision problem. (When we speak of the ''n equal

something' deferred-decision problem we are specifying the available D for the problem.)
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The risk function, Fn(L)’ and the determination of An depend on the cost of a unit observa-
tion, c. Inorder to evaluate an observation—decision procedure we use the ROC and the
average number of observations,y’ k(L). The method of solution for obtaining the ROC and the
average number of observations is the same as for the risk functions. The logical basis is

exactly the same.

Thus to solve for the ROC at the nth stage we work the problem step by step from n =0

stage to the n = n stage.

Stage n = 0:

For L < 0, the decision is "B". This implies the ROC is the point (0, 0). Similarly for
L > 0, the ROC is the point (1, 1). For L =0 either point is allowed.

Stage n =1:

At stage n = 1 we know L1 and Al. For L _<_-A1, the decision is "B". This implies that

ROC is the point (0, 0). For L > A, the ROC is the point (1, 1). For L in the open interval

1
(-Al, Al) the ROC is the average of the previous ROC averaged with respect to the density

function of the observation, "y."

Let P("A"|L, SN) at stage n = 1 be designated as yl(L) and P("A"lN, L) at stage n =1 be

designated as Xl(L)' Thus
L /2
3e 1 -1
y,(L)) = P(o> L _> 0[SN) = P|0 <y<=—F—|sN
a(Ll,O) a(Ll,O) . 'L1/2
y, (L) = f(ylSN)dy = Uy)dy =5 -5 € (3.27)
A L Jo 88
In a similar manner
L./2
3e L 1
xl(Ll) = P(+0 > L0> 0|N) =P0<y<—8- N
a(Ll,O) s L1/2
x,(L,) = f(yIN)dy = -2 + - e (3.28)
171 0 8 8

The complete ROC for n =1 is
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1
_9 3 L2
9L =g-ge
, ?Al <L< Al _ (3.29)
X '(L):-l+§eL/2
1 8 8
(1, 1) , L>A1

We note that the curved part of the ROC is an arc of the hyperbola

[9-8y,(L)] [1+8x,(L)] =9 (3.30)

Stage n = 2:

Using the same logic as used in stage n = 1 we can find the ROC for n = 2. We assume that

LZ’ A2 and Al are known. Omitting the details of the integrations, the ROC for n = 2 is

(0, 0) ’ L < -A

2
9 3. L/2
Vo) =g -ghye
, -4, < L< A, (3.31)
1,3, L2
xz(L) = -3 + 8 h1 e
(1: 1) ’ L2 Az
where
3 9 Ay/2
h1 =1 (A1/2) - sinh (A1/2) +e (3.3%)

As before the curved part of the ROC is an arc of the hyperbola

[0 - 8,(L)] [1 +8x,(L)] =9 b, ° (3.33)

Stage n = n:

Generalizing to the nth stage, in the same manner as above, we obtain the ROC for the nth

stage as
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n
9.8, L2
yn(L) "8 8 hn-l
, -An <L< An (3.34)
1,3, L2
xn(L) =-3t3 hn—l e
1, 1) , LA
where
A A A /2
200 0 (o), e
hn—hn_1 i\3 )" sinh 5) +e (3.35)
and
h =1
0
The curved part of the ROC is a hyperbola given by
2
[9 - 8yn(L)] [1+ 8xn(L)] = 9hn-1 (3.36)

The average number of observations, ?;(_L), can be obtained using the same logic as applied

to the determination of the risk functions and the ROC's. At stage n = 0, obviously, y_O(L) is

zero. Thus ?k(LISN) = 0 and ?k(LIN) = 0.

Stage n =1:
At stage n = 1 we know L1 and A,. Again the average number of observations is obvious.

"
yl(LISN) = ')/1(L|N) =1, -A <L<A

7_/1(L|SN) = ?1(L|N) =0, otherwise.

Stage n = 2:

At stage n = 2, we know L2,‘ Az, and Al. For ILZI > Az the decision is made immediately,

the average number of observations being zero. For —Az < L2 < Az at least one observation

will be made, the exact number being dependent on the observation. To compute the exact

(3.37)

average number of observations the y (LISN) and ¥ (LIN) of the preceding stage must be averaged

over the observation "y ."

a(LZ’Al) a(Lz,Al)

yz(LzlSN) -1 +f Y, (LISN) f(y/SN)dy =1 + 2(y)dy

b(Ly,A,) b(L,,A

1
2’ 1)
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-L

P ) Al
_1+4e 5 smh(z) —A2< L2<A2 (3.38)
7(Ly/N) = 1 +f 74 (L IN) £(y IN)dy =1 +f dy
b(Ly,4,) b(Ly,4,)
L A
3 2 - (71
=1 +Ze781nh<7>, -A2< L2<A2
7o(LISN) = 7,(LIN) = 0 , ILI>a,
(LISN) =1 +3 e 1/2 sinn fl) IL| < A (3.39)
72 R 2 ) 2 '
A
3 . L/2 1
L|N =1+~ 3 © smh(—z—) ) IL| < Az

Stage n = n:

- The solution for the nth stage can be now obtained iteratively. The average number of

observations is given by

v (LlsN) =y @M =0, ILlza
= _,.3 -L/2
Yn(LISN) =l+g3e77Q ., IL| < A (3.40)
~ _, .3 L/2
v (LN)=1+2e7%Q ., Ll<a
where
() omn ()
Qn = Qn—l )3t sinh 5 (3.41)
and
Q,=0

We have obtained closed form expressions for the risk function, the ROC, and the average
number of observations at any stage n. This is, in general, not possible except for some non-
statistical problems. However, this simple example does serve to exhibit the type calculations
common to deferred-decision problems. The parameter that has not yet been specified is c, the

cost of a single observation.
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The logarithm of the likelihood ratio of this example is bounded between -{n9 and +{n9.
The boundedness of ¢n[f(y)] limits the possible decisions that may be made at any stage n > 1.
For instance, if A, = 2 and L is less than A, - (n9 = -.2, then a single observation might

k k+1 k

lead toa '"B''decision Lk+1 + {n[L(y)] < -.2) or a continued decision, but could not lead to an

"A" decision ( + (n[0(y)] = 2). These anomalies in the possible decisions that can be made

L
have not been dilgclussed in this example. To take account of these anomalies the risk function
would have to be broken into more functional forms, which can be shown to be always less than
Zn, where n is the stage number. It was possible to limit the functional form of the risk func-
tion to that derived in the example by choosing the parameters of the problem correctly. In
particular the cost of single observation must be chosen large enough so that the decision

boundaries always satisfy A < a/2, where "'a'' is the bound on £n[{(y)].

The fact that anomalies occur in the decision space is a consequence only of the bounded-
ness of ¢n[ {(y)]. In a parallel study (Reference 9) of the application of deferred-decision

theory to the clipper crosscorrelator, these anomalies occur naturally in a physical problem.

In the present example if the cost of a single observation is such that .083 < ¢ < .25 then
the anomalies in decision space do not occur. For ¢ in this range we can solve for An’ Fn(L),

ROC, and :}/n(L) functions using the formulas derived.

Consider a cost of a single observation, ¢ =.1. Let us find the risk, ROC, and average
number of observation functions for n =1, 2, 3, and infinity. The solutions for n = 1, 2, and
3 are obtained from the formulas previously derived. To obtain the asymptotic functions, i.e.,

n = o0, we use the recursion formulas and set n = n - 1 and solve.
For n = © we have:

(1) The risk function is

eL
FOO(L) = T , L< A
l1+e
1
= 1 , L> Aoo
1+e

(2) The ROC function is
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(0, 0) , L<-A

0
P("'A"|SN) = yOO(L) = +—2— - .29506 e_L/2
, -A <L<A (3.43)
1 +L/2 o o
P("A"|N) =x (L)=-= +.29506 e
0 8
The curved part of the ROC is a hyperbola given by
[9 - 8yoo(L)] [1+ SXOO(L)] = 5,56 (3.44)
(3) The average of number of observations is
- eL -~ 1 = 1
VOO(L) = T ')/w(LISN) + T, ')/OO(LIN) =1 +.5268 m, lL‘ < Aoo
1+e 1+e
=0 , otherwise (3.45)

(4) The decision point Aoo is

A =.900
©

The graphs in Figures 24, 25, 26, 27, and 28 depict the solutions for n = 1, 2, 3 andw. Figure
24 is a graph of the risk functions. Figure 25 depicts the decision boundary as a function of
the available D, D = nmaxd' Although we speak of the decision ""boundary'' and draw a smooth
curve through the points, only the points for n =1, 2, . . . have meaning. Figure 26 is a graph
of the average number of observations. Figures27and28 are graphs of the ROC functions.
Figure 27 is drawn with linear paper, Figure 28 is drawn on normal normal paper. Figure 28
shows how close the problem is to a normal observation problem. (A normal observation

ROC would plot as a straight line with slope one on normal normal paper.)

3.3 DEFERRED-DECISION, CONTINUOUS OBSERVATION CASE

The method of solution presented in Section 3.1 can be implemented into a computing
algorithm (see Section 4.1). For any given set of parameters one can use this computing
algorithm to obtain the deferred-decision procedure. In this sense the algorithm solves any
discrete observation- decision procedure. More analysis is possible if we assume a continuous
observation and certain symmetries. These assumptions allow the analysis to become more
specific. However, it is fairly obvious that the basic logic used is not tied to the assumptions
of symmetry and continuity of observations. These assumptions are needed to obtain numerical
answers and more detailed analysis. The solving of the more restricted problem is important

because many aspects of the solution are common to less restrictive problems.
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Figure 26. The average number of observations for the illustrative example as a
function of L depicting the solutions for nmax =1, 2, 3, and 0,
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Figure 27. The ROC curves for the illustrative example plotted on linear paper.
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Figure 28. The ROC curves for the illustrative example plotted on normal coordinates.
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Consider the heuristic physical model introduced in Section 1.1 shown again in Figure 29.
Assume the input to the receiver is SN. The mechanism for making a decision consists of
observing the output display and observing when the sampled output crosses from the continue
portion of the scope into a terminal region. The observer receives information at times de-
pending on the sampling clock. Suppose we increase the sampling clock's rate of sampling.
The decision points become closer and closer and finally merge into a continuous curve as the
sampling clock's interval approaches zerb, i.e., as D0 becomes continuous. This decision

boundary that results from continuous observation we call the standard form, S(DO, W/e).

Using this concept of continuous observation one can derive analytic expressions for
S(DO, W/c) and the risk function for the available D unbounded and d asymptotically small.
The assumption of mirror symmetry of the observation statistics is needed for the analysis.

The following two lemmas and one theorem are the basis of the analytic results.

Let u(x) be defined as the mean value of (x) and P(x) the probability of (x). Let P(x, y) be
the joint probability and P(x|y) be the conditional probability of x given y.

Lemma 2: The expected time to go from 0 to +L when u(¢n[L(y)]) = zu is % tanh (%)

Proof:

The expected time to go from 0 to +L is

1143 e
E[tlfor 0 - £L] = E[' distance ]

'mean value of motion''

E[t|for 0 - L] =

el

P(mean = +u, at L) +_£u P(mean = -u, at L)
-L -L
T P(mean = +u, at -L) + = P(mean = -u, at -L)

Now

L _P(mean = +u|at L)
" P(mean = -ulat L)

And

P(at +L) = .5, by symmetry of the origin and mirror
symmetry of observation statistics.

1 we have
L
1+e

Since probability of error at L boundary is

1

P(mean = +u, at L) =% T
1+e
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Figure 29. A heuristic physical model of a deferred-decision problem,
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P(mean = -u, at L) =% 1 T
1+e
Similarly,
1 eL
P(mean = -u, at -L) = 3 I
1+e
P(mean =u, at -L) =—;— 1 I
l1+e
Hence,
L L
L L 1 L -1 L L
B0 ~2+L] =25 - 2 —F =7 ° L=a-tanh(—?:) (3.46)
l+e 1+e 1+e Q.E.D

Lemma 3: If the expected time to go from 0 to +L is given by t(L), then the expected time to

go from L, to +L,, where L, < L,, is t(LZ) - t(L

1 2 1 72 1)'

Proof: Let E[t|0 - £L,] = t(L

2] 2)'
Consider the following routes from 0 to +L

2
(1) 0-—+L1 -—+L2
(2) 0~ +L1 - -L2
(3) 0~ -L1 - +L2
(4) 0~-L - -L,

The expected value for the first leg of these routes is t(Ll) so long as it is a first passage

and we consider a path from 0 to -Ll, and then to +L1 as a path from 0 to -L1 only. Similarly,

any route from 0 to —Ll which reaches +L1 first is a route to +L1 and not -L1. The time for

the second leg of routes 1 and 2 together and 3 and 4 together, are equal and are the desired

time. Hence

-L, - zL E[t{+L, -~ L
() -t )+E[tl Ly =Ly + [t]+ ;= %L
2 1 2
Since symmetry of motion means,
E[t|+L; = +L,] = E[t|-L; = L]

we have
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EﬁlLl»iL ] =t(L,) - t(L (3.47)

1)
Q.E.D.

2 2

Theorem 3: The asymptotic decision boundary for an optimum sequential procedure with sym-
metric losses, mirror symmetric observation statistics, independent observations, and con-

tinuous observation, satisfies the equation’

., . _Wu
A% + sinh Ak = e (3.48)

where

W = loss due to an erroneous decision.

u = |u(en[L(y)]) for a single observation.

¢ = cost of a single observation.

1 A By lemma 2 and lemma 3,
1+e

Efo_of: The probability of error corresponding to L = A is
the average duration of observation is
n = t(A) - t(L)
where |
t(x) = x/u tanh (x/2)

Thus the risk for the continue region, with boundaries A > 0 and initial log-odds-ratio of L is

G(L; &) = —— + S [A tanh (8/2) - L tanh (L/2)] (3.49)
1+e
We note that
G(L; L) = I = risk for immediate

1+e termination.

Thus for |L| < A, G(L, A) < G(L, L) and one continues the observation. To minimize G(L; A)

we note that

In our discussion the * refers to continuous observation and the '*sub «'' refers to the
available D being unbounded.
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A

= (—1—%—)-2 [3—‘; (A + sinh A) - } (3.50)

2¢
uw
minimum for G(L; A) at A = A*OO where

The expression (A + sinh A) - 1 runs a course of <0, 0, > 0 so there is a single relative

A* 4 sinh ax =W (3.51)
0 0 ¢
Q.E.D
Corollary: For normal observations statistics
d d
== AX i x =22
u=g and A ot sinh A w = 4o (3.52)

Observe that A*Oo is chosen at a relative minimum of the risk function. For A near A*oo
we can write
(A - ax )

G(L; a* ) —-—T,——“L ol (3.53)

0
. - . AX
G(L; A) = G(L; A 00) + aA*w

This can be useful in finding the sensitivity of G(L; A) to an erroneous choice of A*Oo.

Theorem 3 can be used to obtain an analytic expression for the risk function under the

conditions, of course, stated there. This expression is used in the proof of Theorem 3 and is

G(L; 8) = — V4 & [A tanh () - L tanh (%)} (3.54)
1+e

The first term of G(L; A) represents the risk due to terminal decision errors. The second
term is due to the observation cost. Equation 3.54 is the analytic expression for the asymptotic
risk function for continuous observation, mirror symmetric observation statistics, independent
observations, and Symmetric losses. For normal sampling the risk function reduces to that

given by Eq. 3.55.

A 2 2

G(L; 4A) = 1 :Ve + 2(19 [A tanh <é> - L tanh <£>:| (3.55)

This expression will be used in a comparison of the determination of AOO obtained from the

computer algorithm. See Section 4.2,

The analysis of the continuous observation case given here is essentially static in nature.

We have assumed that the available D is unbounded. This allows one to use a method of solution
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which cannot be used in problems where the available D is finite. The utility of these asymp-
totic solutions is that they furnish bounds on the optimum nonstatic problem and they serve to
establish, in a practical sense, what available D constitutes an "‘unbounded available D.'"" That

is, a D of 10 is for many practical purposes, equivalent to a D of infinity.

The detailed analysis and numerical examples have assumed certain symmetries. Three
symmetries are involved. The risks WM aﬁd WF A are assumed equal. The observation
statistics are normal and hence the distributions of £n[£(y)] are mirror images of each other
about {n[£(y)] = 0, and the resultant optimum decision boundaries (in L) are symmetric, i.e.,

mirror images of each other about L = 0.

For nonsequential observation-decision procedures the inequality of risk poses no special
problem, and is equivalent, boundary-wise, to a shift in the initial L (as a function of D). Specif-

ically, the boundary between the two terminal decision points is at L = Ao’ where

AO = ﬁn(WFA/WM)

The resultant performance probabilities are related to the probabilities of L + £n[{(y)] exceed-
ing Ao or not, which, of course, is equivalent to ¢n[£(y)] exceeding (A0 - L) or not. One might
conjecture that in sequential procedures with mirror symmetry on the n[£(y)] distributions,
one would obtain mirror symmetric optimum boundaries about L = AO. Theorem 4 shows this

does not occur by showing that the conjecture fails for n = 1.

Theorem 4: For nondegenerate sequential observations, the optimum decision boundary points

I“1 and Al are equidistant from AO if and only if AO = 0.

Proof: At n =1, the risk function based on observing is

L
W. e WFA
G, (L) = - P{ﬁn[ﬂ(y)] <A, - L|SN:I + T P{Qn[ﬂ(y)] >4 - LIN} +C  (3.56)

1+e l+e

at Al’ the terminal decision is ''yes,'" or ''A,'" and the terminal risk is

w
T(A,) = —n (3.57)
1 A
1
1+e
at Fl, the terminal decision is ''no,'" or ''B,'' and the terminal risk is
r r.-A
WMe 1 WFAe 1o
T(T,) = = (3.58)
1 r r
1 1
1+e 1+e



At the boundaries, G and T are equal. Setting Gl(Al) = T(A,) yields

P

-+~ = X P[ﬁn (L] <4, -4, lSN]

+ ‘ P[ﬂn[ﬂ(y)] > AO - AIINJ +C (3.59)

l1+e

This can be written as

C 1 Al-AO ‘ l
W C < 1-e P[ﬂn[ﬂ(y)] < AO - Al SN-J - Pln[(y)] > AO - Al N
FA l1+e 1

(3.59)

Similarly, from Gl(l‘l) = T(I',) we have

1)

== . P[ﬂn[ﬂ(y)] >A -T, lSI{l

+ F? P[]ln[ﬂ(y)] > Ao - I"IIN:| +C (3.60)

l1+e

Rewriting we have

c _¢ 1 AO_FIPQ °y)] > A I“IN] P|tn[l(y)] <A - T, |sN
Wen T, "€ n[e(y)] > A, - Ty IN| - PenfL(y)] <A - T
1+e (3.60)

Mirror symmetry on the ¢n[{(y)]distribution means that Equation 3.60 can be written

C e °

A -T
- T <1 e © 1) P{ﬂn[ﬁ(y)] < I‘1 - AOlSN} - Pl}n[ﬁ(y)] > I‘l - AOIN] (3.61)
e

Comparing 3.59 and 3.61, it is obvious that for Ao =0, if A is a solution for Equation 3.59, I“1 = -Al
is a solution for 3.61. Conversely, if 1“1 and Al are symmetric about AO, i.e., Ao - I‘l = Al - Ao,
then the bracketed qualities in these equations are equal. In order that both hold simultaneously

the multipliers of the conditional probability in SN must be equal

82



A -T r A
e ° 1<1+e1>=1+e1 (3.62)

From the assumed symmetry, Ao =.5(a, +T,), so

1 1
.5/&1-.51“1 Fl Al
e 1+e =1+e
2 cosh (.5P1) = 2 cosh (.5A1) (3.63)
Thus if Al and Pl are symmetric about AO, either Al = 1“1 and no observation occurs or Al =
-I'_ andA_=0.
1 0

Q.E.D.

3.4 DEFERRED-DECISION, DISCRETE-OBSERVATION CASE

For any specific set of parameters the discrete-observation deferred-decision procedure
is solvable by use of the computing algorithm given in Appendix I. Using the algorithm it is
possible to find the deferred-decision boundaries and the risk functions assuming normal
obsefvations, stationarity, and symmetric costs. Assuming a continuous observation the
deferred-decision procedure can be found analytically. This analytic formulation also assumes
an unbounded available D. We would like to answer the question of how the discrete observation

problem and the continuous observation problem relate to each other for large available D.

We would like to present a nonrigorous argument that admittedly has some weak parts,
but which has helped us materially in understanding optimum decision boundaries. The mathe-
matical formulation of all the observation-decision procedures we have discussed is from the
Bayesian point of view. We base all our logical construction on utility functions. In particular
we are interested in minimizing the expected loss of the observation-decision procedure.
Whether we have a discrete observation or a continuous observation it is clear that the balance
between observation cost and improved performance is the same for a given set of parameters.
This implies that the L value where we terminate the observation should be the same whether
we have a discrete observation case or a continuous observation case. In other words, the
mathematical formulation specifies a certain balance between observation cost and terminal
decision error probability in terms of average loss. In order for this balance to be realized
the decision boundary is adjusted accordingly so that the terminate L value is the same for

the discrete and continuous cases.

Consider the decision boundary that results for a continuous deferred-decision problem.

We call this decision boundary the standard form. What effect does the discrete nature of the
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observation have on this standard form for the decision boundary assuming all other param-

eters are equal?

The discreteness of the observation means mathematically that the mean value of the loga-
rithm of the likelihood ratios in noise and in signal-plus-noise are finite, i.e., u(ﬂu[ﬂ(y)” N)
and u(tn[£(y) [3N) are finite. We expect as the '"mean motions,"" u(¢n[¢(y)] fSN) and p(¢n[2(y)]|N),
become small the results of the discrete case would approach those of the continuous observation

case.

By the arguments presented previously we expect that all deferred-decision procedures
with the same _CVZ ratio will, on the average, possess the same terminate L value. If the observa-
tion is continuous we expect to be able to obtain this terminate L value exactly by placing our
decision boundary at the terminate L value. However, if we have a discrete observation then the
discreteness of the observation causes the observation procedure not to terminate on the decision
boundary itself but rather on a L value greater than the decision boundary. In order to terminate
on the same L value as for a continuous observation case we have to place the decision boundary
inside the standard form. The amount inside depends on the '"mean motions,'' i.e., the dis-

creteness of the observation,

Consider the state of an observation-decision procedure being just inside, say, the upper
decision boundary. Assufne the condition is signal-plus-noise. On the average, the next
observation will drive the L value of the previous stage over the upper boundary. The average
amount that the L variate exceeds the decision boundary we denote as &, ''the average excess
over.'"" The average excess over the decision boundary is a function of the mean motion only.
It depends on the coarseness of the observation. The average excess over is the connecting
link between the analysis of the continuous and the numerical results of the discrete case. The

logical extension of these ideas implies the following relationship.

A(D, d, W/c) = S(D_, W/c) - &(d) (3.64)

A(DO, d, W/c) is the actual decision boundary,
S(Do’ W/¢) is the standard form decision boundary

£(d) is the average excess over.

This heuristic explanation of the connection between a continuous and discrete observation
can be "'experimentally verified'' using a Monte Carlo technique on a high speed digital com-
puter. The method is to sample randomly a normal distribution with a known mean and standard

deviation. The sampled values are then added until they exceed a preset cut level. The amount
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of excess over the cut level is directly related to the average excess over the boundary. The

precise definition of the average excess over the boundary is

A-L
£(d) szn:(E (e t))

where A is the actual decision boundary,

Lt is the terminate L value.

From our previous discussion the average excess over should be a function of the mean
motion only. For normal observations u(¢n[¢(y)] |SN)= ’p(!ln[ﬂ(y)] | N)‘ = % £(d) should be inde-
pendent of the initial log-odds-ratio, L, and the value of the decision boundary, A. Computer

results verify these conclusions.

The results of the Monte Carlo experiment are summarized in Figures 30 and 31. Figure
30 is a plot of £(d) vs. Vd for different initial L values. This graph shows that £(d) is a function
of d only and does not depend on the initial L value (provided the initial L value is a standard
deviation or more removed from the decision boundary). This graph assumes a constant
decision boundary as a function of the available D. Figure 31 shows the same relation between
S(DO, W/c) and A(Do, d, W/c) holds true for the nonconstant decision boundary, i.e., the

deferred decision boundary for small available D.

In Figure 30 the assumption is that the truncation of observation procedure does not
affect the decision boundaries. In Figure 31 the deferred decision boundaries for a d = .25,
W/c = 30, and - 14 were read into the computer. The Monte Carlo simulation was then
run. The results indicate that £(d) for the static boundaries is approximately the same as for

the changing boundaries for the same mean motions.

Equation 3.64 can be verified in another way. Consider two different mean motions for the
same W/c ratio. Then we can write

D D _
A ld, = 0-Ad= 0
n\'l n nl2 n

max ma.

= |£(d1) - £(d,) (3.65)

In Equation 3.65 we can determine all the quantities numerically by use of a computer. The

results serve as a further verification of Equation 3.64.

The average excess over the boundary is the connecting link between the analytical formu-
lating of the continuous observation case and the numerical results of the discrete observation
case. In practice, we are generally interested in the discrete observation case. Thus £(d)
allows us to use the analytic formulation of the continuous case to determine the decision

boundaries for the discrete without resorting to a numerical solution.
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Figure 30. The average excess over the decision boundary for constant boundaries in L as a function of the
available quality for four initial L values.
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Figure 31. The average excess over the deferred decision boundary for two initial L values. Alsoshown

is the deferred decision boundary for W/c = 30., A 0 = 0., d = .25 up to an including nmax = 14,
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4
NUMERICAL RESULTS AND COMPARISON OF OBSERVATION-DECISION PROCEDURES

4.1 NUMERICAL RESULTS FOR DEFERRED-DECISION PROCEDURES

The value of (W/c) for a deferred-decision procedure is the parameter by which we com-
pare different deferred-decision problems. For the numerical solutions we assume a station-
ary, symmetric, and independent observajcioﬁs. Using W/c as a parameter numerical results

were obtained for a limited number of deferred-decision problems.

The numerical solutions were obtained by using a high speed digital computer programmed
to solve the iterative equations derived in Section 3.1. Let us review the basic operational
equations used to find the deferred-decision boundaries, the average number of observations,

and the ROC.

The operational equations used to find the decision boundaries are basically the iterative
equations needed to find the risk functions. At any stage of decision, with n possible deferrals

remaining, and a future procedure known it is possible to compute the risk function, Fk(L).

L) = T(L) , LerorL2A

(4.1)
= Fk_l[Lwn[@(y)]](y) dy +¢, T <L<Ag

(5,8

solving for the intersection of Fk(L) and T(L).

are the decision points in L at stage n =k. The optimum decision boundary is found by

To evaluate the performance of a decision procedure the average number of observations
and ROC functions are used. The measure that leads to a detectability measure is the proba-
bility of a terminal ""A" decision, given that with n deferrals possible, log-odds-ratio is Ln.
The specific functions of L which describes the ROC at stage k we designate as yk( L) and

x (L).

W
Define:

yk(L) = P(terminal decision is ”A"lLk=L, condition is SN)
x (L) = P(terminal decision is "A"|Lk=L, condition is N)

The basic iterative equations for the ROC are

Y, (L) =0 , LI (4.2)

o[ - ol@[teN ay, T <L<a,
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(Equation 4.2 continued.)

=1 ,  L2ag (4.2)
xk(L) =0 , L<T

=%, [L + Qn[!l(y)} (yN)dy , L <L<A (4.3)

=1 ,  L2a

For the average number of observations we have the following operational equations.

7k(L|SN) = average number of observations under the condition SN,
given that there are k deferrals possible and the a priori

log odds ratio is Lk'

7K(L|N) = average number of observations under the condition N,
given that there are k deferrals possible and the a priori

log-odds-ratio is L, .

k
Thus we have
Vk(LlSN) =0 , , LT orL24
» (4.4)
=1+] vk_l[L+.¢n[ﬂ(yE|lSN] f(ylsN)dy, I <L<a,
% (LIN) =0 , LST orLzA
_ (4.5)
=1+Jr 4 [L + ﬂn[ﬂ(ymN] f(ylNdy , I <L< A

The computing algorithms which solve these iterative equations for the assumptions
stated previously are given in Appendix B. The risk functions and optimum decision bounda-
ries for deferred-decision procedures for two W/c ratios are shown in Figures 32 through 38.

These were obtained by use of the computer program given in Appendix A.

Figures 32 and 33 are plots of the deferred-decision normalized risk functions for W/c = 30,
AO =0, and d = 1.0, .25. The normalization is to set the loss due to errors equal to one, i.e.,
W = 1. The risk curves for d = 1.0 and d = .25 are only slightly different if one examines the
risk function for the same D in the continue region one finds that the risk functions for d = 1.0
are slightly greater than for d =.25. This, of course, is due to the greater quantization in D.
Or in other words, the risk for the procedure in which one can decide more often whether to
make a terminal decision or not is clearly no greater than the risk for the procedure where

one is not able to make this decision as often.
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Figures 34 and 35 are plots of the normalized risk functions for W/é =100, Ao =0, and
d = 1.0, .25. A comparison with W/c = 30 and the same d indicates how the smaller cost of a
single observation affects the decision boundary. For W normalized to unity a W/ ratio of 30
is a larger unit cost than a W/c ratio of 100. The effect of this smaller single observation
cost is clearly evident. The risk, at the same D, is smaller. Intuitively, this is what we ex-
pect. The comparison for different d's at a W/c ratio of 100 is as before for a W/c ratio of 30.

The risk for the larger unit d is slightly higher in the continue region.

Other characteristics of the deferred-decision risk functions are evident from these graphs.
k(L), with T(L) intersect each

other at a very shallow angle. This means that for any given stage of decision the specification

Notice that the intersection of the various stage risk function, G

of the decision boundary points are not critical. The risk near the boundary is a smooth

function of the log-odds-ratio, L.

From the risk function we obtain the decision boundary points by solving Gk(L) = T(L) for
k =1,2,3,... . The decision boundary, which is really a set of discrete points, is plotted as a
function of the available D with the available D increasing to the left. It is often helpful to
interpret the same axis, as a time axis increasing to the right. However, it should be noted

that the observation-decision process does not.necessarily have to run uniformly in time.

The deferred-decision boundaries in Figure 36 are shown for a W/c = 100, AO =0, and a
d = 1.0 and .25. For purposes of discussion consider W normalized to one. Thus the cost per
sample for W/c = 100 is .01 d. This graph of the decision boundaries shows the effect of the
quantization in d we discussed in Section 3.4 on the average excess over the boundary. The
standard form for the decision boundary is the outer bound on the discrete-observation de-
ferred-decision problem. As we decrease the value of d we expect to approach the standard
form. This is shown in Figure 36. The boundary for a d = .25 is outside that of the boundary
for d = 1. The separation between the two decision boundaries is approximately constant. This,
of course, follows from the fact that the average excess over the boundary, £(d), is a function

only of d.

Figure 37 depicts the deferred—decisioh boundaries for a W/c = 30, AO =0, and d=1, .25,
and .04. The decision boundary labeled de = .04 was not obtained using normal observation
statistics, Instead a binomial distribution was used to simulate the normal deferred-decision
problem. The probabilities of the binomial problem were picked to simulate a W/c = 30 for the
normal problem. This simulation is discussed further in Section 4.3. Note again the character-
istics discussed previously. The boundaries "move out'" in L as d becomes smaller and the

separation between decision boundaries for different d's remains fairly constant for all L.
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In Figure 38 we plot the decision boundaries for d = .25 with W/c = 560, 100, and 30. We
note that as W/c increases the decision boundaries "move out' in L. This can be viewed in two
ways. Consider first that our losses, W, are normalized to one. Then larger and larger W/e
ratios imply a smaller single observation cost. Thus as we increase our single observation
cost we expect our boundaries to "move in' in L toward L = 0. Alternately, suppose we
normalize the single observation cost c to unity. Increasing W/c ratios signify increasing
error losses. Increasing error losses indicate the necessity for better quality decisions

which are accomplished by "moving out" the decision boundaries in L.

For normal observation statistics an increase in available D can be related directly to
the output signal-to-noise ratio of the receiver. A doubling of available D is an increase of
3 db in (S/ N)o. (See Section 1.4.) The larger the available D, the larger (S/ N)O provided the
observer uses the entire D available. In a sequential process the entire available D is not al-
ways used. Instead one balances the greater increase in errors due to erroneous terminal de-
cisions against a savings in observation cost. The (S/N)0 actually used is equal to D0 for a
normal ROC. (The detection procedure assumes the condition, either SN or N, is stationary

throughout the observation.)

Physically, an available D = N ox d of 4, for a normal ROC, is a (S/ N)O of 6 db. Thus the
plots of the decision boundary could be read as the decision boundary plotted against the inte-

grated (S/ N)o in db, again, strictly speaking, only for a normal ROC.

Referring to the risk function plots consider the shape of the risk function as the available
D becomes larger. The risk curves tend to flatten out, as the available D increases. When the
decision boundary also flattens out the risk due to terminals errors will be fairly constant as
a function of L. The bow in the risk curve is thus mainly due to the cost of the average number

of observations.

Figures 39 and 40 are plots of the conditional average number of observations for W/c = 30,
AO =0, and d = 1. For symmetric losses and mirror symmetric observation statistics the
conditional average number of observations, Vk( L/SN) and 57k(I_,/N), are mirror symmetric
about L = 0. Figure 41 is a plot of the average number of observations, i.e.,

L
V(D) = £ FALIN + — 7, (LY (3.63)

1+e

The ROC for this caée is given in Figure 42 on normal-normal paper. The use of the
average number of observations and the ROC can be viewed as an alternate way of presenting

the risk associated with a deferred-decision procedure. The ROC represents errors due to
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Figure 39. The conditional average number of observations for a deferred-decision procedure for the condi-
tion SN as a function of L with W/¢ = 30., A0= 0., and d = 1.0.
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Figure 40. The conditional average number of observations for a deferred-decision procedure for the condi-
tion N as a function of L with W/c = 30., A0= 0., and d = 1.0,
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Figure 41, The average number of observations for a deferred-decision procedure as a function of L with
W/c = 30., A0='0., and d = 1.0.
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Figure 42. The ROC curve for a deferred-decision procedure for the signal 6 db below the expected size
signal. The expected signal quality is d = 1 and the parameters are W/c = 30, and A 0 0.
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Figure 43. The ROC curve for a deferred-decision procedure on normal coordinates with parameters

W/c = 30., A0= 0., and d = 1.0,
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Figure 44. The average number of observations for the signal 6 db below the expected size signal as a function
of L. The expected signal quality is d = 1 with W/c = 30. and AO = 0.
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wrong terminal decisions. If we multiply the average occurrence of error by the loss asso-
ciated with these errors we obtain the risk due to errors. In like manner if we multiply the
average number of observations by the cost of a single observation we obtain the cost due to

the observation. The sum of these two costs or risks is just the total risk we obtain by taking
expected values as discussed previously (see Section 3.1). The ROC and average number of
observations are useful in that they break up the total risk into its component parts; the part
due to terminal. decision error and the pafrt due to observation cost. The evaluation of any
decision process can thus be determined by finding the ROC and the average number of observa-
tions for the particular procedure in question and comparing these ROC's and average number

of observations with the optimum procedure.

For example, suppose we design our receiver to work on decision boundaries for W/c¢ = 30
and a d = 1. The ROC and average number of observations are given in Figures 41 and 42 for
the optimum receiver. However, suppose instead of receiving a d = 1 on each single observa-
tion we received only a d = .25, The performance for this "6 dobelow expected signal' (one
quarter in power), is given by the ROC in Figure 43 and 7k(L) function in Figure 44. It is
possible to determine the total risk as explained before. By examination of the ROC and )7k( L)
functions we can evaluate the performance of this receiver compared to a receiver designed
for ad =.25 and W/c = 30.

The various risk functions, optimum boundary plots, ROC functions, and average number
of observations are presented to exhibit what the "typical" properties are of the various
functions discussed. The general features discussed here are representative of the same

functions with different parameters.

4,2 APPROXIMATE METHODS FOR THE DETERMINATION OF THE ASYMPTOTIC DFECTSION

BOUNDARY, Aoo

A.Wald (Reference 3) was able to develop formulae for the determination of the asymptotic
decision boundary, Aw, given that u [!Zn (ﬂ(y))] was small and the error probabilities, P("'B" |SN)
and P("A"[N). Basically Wald chose a point of operation on the ROC and from this determined
AQo by minimization of the average number of observations. His point of view was to specify
the error probabilities P("'B'"|SN) and P("'A" [N) and then obtain Aoo, irrespective of error costs,
observation costs, and a priori probabilities, by minimizing the average number of observa-

tions.

The point of view taken in this paper is Bayesian. Our procedure is to assume knowledge

of the error costs, the observation costs, and a priori probabilities and from these determine
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the ROC, the average number of observations, and decision points which minimize the expected
risk. In a physical problem the determination of the error costs, the observation costs, and
the a priori probabilities must be obtained by physical measurements, prior experience of
others familiar with the problem, etc. For the same physical problem the costs and proba-
bilities assigned by one designer may differ from those of a different designer. This is per-
fectly acceptable from the Bayesian poiqt of view. Each receiver designer is trying to mini-
mize his expected risk based on his ownb opinion of what the costs and probabilities are. Al-
though for some readers this may be an unacceptable point of view, for analysis to be appli-

cable to the physical world it is a reasonable philosophy.

This viewpoint is basically different from that of Wald. It is the point of view taken by an
"internal' operator who is trying to maximize a utility function. Internal measures are sub-
jective and are computed by averaging external measures using subjective probabilities.

The words "'external' and "internal' refer to the evaluation that are used in the decision proc-
ess. An internal evaluation is a comparison with the procedure which maximizes some utility
function since maximizing a utility function is, by definition, optimum internally. An external
evaluation is an evaluation, irrespective of costs and subjective measures, determining only
the error probabilities, P("B"iSN) and P("A" IN). In practice, we operate internally and eval-

uate externally.

The first approximate method for determination of A00 has been presented in Theorem 3.

This is given by

A% + sinh A = ‘;lz (3.48)

For normal observation statistics u = d/2 and Equation 3.48 becomes

A* + sinh A* - Wd (3.52)
0 o 4c

The assumptions inherent in Equation 3.52 are continuous observation, symmetric losses, in-

dependent observations, stationarity, and unbounded available D.

An alternate derivation of the above formula can be made using Wald's approximations
for the average number of observations, or in Wald's terminology, the average sample number,
ASN. This derivation also obtains the general form for the ROC for any unbounded sequential

procedure.

The expected loss of a sequential decision process with the assumptions of Equation 3.52

can be written as
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L
E[loss] = |:e T P(""B'""[SN) + ILP(”A"|N):, w

1+e 1+e
eL 1
+|— 7(LIsN) +—1 7(LIN) | ¢ (4.6)
1+e 1+e

where:
P("B"[SN) is the probability of a miss
P("A"|N) is the probability of a false alarm
w is the loss due to an error

c is the cost of a single observation.

The two conditional average number of observations, 7(L|SN) and 7(LIN), can be written

approximately, (Reference 3), as

7(LIsN) =2 {P(BISN)Qn [% + [1-P("B"ISN)]tn %’I@]} (4.7)

7(LIN) =%{[1-p('vAv'lN)]enm—%f%} + P("A"[N)n I_IDP(Z,‘?I;'.PQN)H (4.8)

Let us simplify the notation by defining @ and Bas
a=P("A"|N) (4.9)
B= P("B"ISN) (4.10)

Using the above substitutions the expression for expected loss is

E[ loss] = ILWB+-2§ [BQn(l—B_Z>+ (1_5)Qn(1(;—6>}

l+e

1 2c 1-a a
+ 1+eLWoz = [(l-a) ﬂn<—6—> +0Q log(l—_éﬁ (4.11)

To operate in an optimum manner internally, we wish to minimize the expected loss. There-
fore differentiate Equation 4.11 with respect to @ and fand set the resulting two equations

equal to zero.

0E _ 1 W+ eL . 2¢ [-I—B_E - la;ﬂ +—1L°2—§ [ﬂn(—é—) + Iln(l—Of—B)] =0 (4.12)
da |, L L d l+e
1+e l+e
L L
IE _ e e 20[ (1-0&) (1-3)] 1 20.[1-0!__ a} -0
— = W+ =2 tn(==) - n[=5)] - == = (4.13)
8 1L 1L d B a 1oL AL B 1-F
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Let

_1-B
a == (4.14)
and
b=t (4.15)
1-a ’
Equations 4.12 and 4.13 can be written
wd -I{1 1
—2-6-(?na—!2nb+e (B_§> (4.16)
-‘%’% =lna-{nb+ e+L(a-b) (4.17)
Subtracting the above equations and eliminating the eL terms we obtain Equation 4.18.
Wd_ .3\ ,2_b
—26 = Qn<b> + b 2 (4.18)

For a single valued solution, since Wd/2c is fixed, the left-hand side of Equation 4.18 is a

constant. This implies that a/b is constant.

Let
2
a/b = a (4.19)
Then it follows from the definitions of a and b that
(L)L)
a, —( AN (4.20)
Simplifying the above we obtain
2
(ao —l)aB+a+B=1 (4.21)

Equation 4.21 is the equation for the ROC for the sequential decision procedure in which the
available D is unbounded, i.e., a sequential procedure with constant decision boundaries. a, is

the solution of Equation 4.22.

-V%(-i = Qn(a 2‘) va -t (4.22)
. c o o a
Since o
aa
L_ "o -
e _—1-5 (4.23)
Then
I-B\
lna = Qn(—-—-g +L (4.24)
o} a



But by definition the left-hand side of Equation 4.24 is Aoo. Thus, substituting in Equation 4.22

we have

A -A
¥=2A re P-e @ (4.25)
c %)
Simplifying, we obtain
wd .
I Aoo + sinh (Aoo) (3.52)

Summarizing, if one is given symmetric values and costs and independent normal observa-
tions of quality d, then to run a sequential observation-decision procedure, one derives (by as-

suming small spill over) the asymptotic boundary values from

A +sinh A _Wd (3.52)
0 o 4c

The asympotic ROC for this sequential procedure is approximated by the hyperbolas

RGAOO'1> “ﬂ] HGAOO’1> B 1} =92A°° (4.26)

For initial logarithmic odds L, and |L| < A, the operating point on the ROC is

A +L
e © -1
P( A IN) =qQ =2—A—— (4.27)
0
e -1
2A A -L
e Oo—e ©
P("A"|SN) = 1-8= 5 (4.28)
e oo—1

If |IL|> AOO then no observations should be taken and a terminal decision is made immediately.

The total probability of an error (for |L|< A)is

eL 1 1 1
P(error) = T B+ To= = (4.29)

1+e 1+e 0

Notice that this expression is independent of L. The average number of observations is

L

= 7(LISN) +

1 2 L
y(L) = L?(LIN) =318, - L (4.30)

1+e l+e )
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(Equation 4.30 continued.)

A
2 <) L
=4 [Aootanh< 5] " L tanh (2)j|

The expected loss or risk is found by adding Equations 4.29 and 4.30 multiplied by the approp-

riate cost. This risk is given in Equation 4.31.

(4.31)

This risk is extremely "flat" as a function of L.

For example assume W/c = 300. By Equation 4.22 we find that A0 = 140 which in turn im-
plies that Aoo =(n AO = 4,925, Thus, the risk is given by Equation 4.31 as

L
_ 150 139 e -1
R(L) = l:-1-4—1 + (4.925) 'f:ﬁ' - L—L—jl 2c
e +1
eL-l
= |:5.919 - L }20 (4.32)
L
e +1
2eL
T(L) = 75(1- |1- 2¢c (4.33)
1+e

Equations 4.32 and 4.33 are plotted in Figure 45.

As a further example consider a comparison of the standard form asymptotic boundary,

A:o , obtained by using Equation 3.55

G(L;A) = 2

N Zc[Atanh (A> - Ltanh (E)] (3.55)
A 3 3
1+e

and a determination of AOO obtained from the computer algorithm (see Appendix A). G(L;A)
given by Equation 3.55 is the risk as a function L for a sequential observation-decision pro-
cedure with constant decision boundaries at #Aand |L|< A. Consider the terminal risk

function for A> 0.

(4.34)

The difference between G(L;A) and T(L) we denote as D(L) and is given by

Y L W A
=GlL4) - = 2 =]- —=+2 4,35
D(L) = G(L;A) - T(L) (1+eL +2c L tanh(z) - I +2¢ Atanh@) ( )
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Let W/c = 30. D(L) evaluated for these parameters is the following

L
D(L) = | 15HHe =D 5940 (4.36)
15 L
e +1

If D(L) is plotted as a function of L, the graph of Figure 46 is obtained. The L value for which
D(L) is zero is Ao’g for this set of parameters. From Figure 46 this occurs for AO’; = 2.33.
The average excess over the boundary for a d = .25 is approximately .27 (see Figure 30). Thus
the "actual boundary, AOO, we expect to obtain from a numerical solution on the computer is

A00 = A:‘o - £ (d=.25) =2.06. The computer results for W/c = 30 and d = .25 give a Aoo of 2.03

which compares favorably with the analytic results obtained by use of Theorem 3 and £(d).

The computer algorithm obviously does not obtain AOO since the program must be termi-
nated for economic reasons. The value of AOO obtained from the computer can be improved by
using the previous An's to predict Aoo. One method of doing this is by a sequence-to-sequence
transformation (Reference 9). This is a method by which a limit to a slowly convergent se-
quence may be obtained by assuming a type of convergence. For example, if we assume a
logé.rithmic type of convergence we use a sequence to sequence transformation given by the
following formula
%8 ) )

n n-1"""n+l
-A

Bin"3a-a
n n-

(4.37)

1 Tn+l

A value of AOo =2.05 is obtained as a possible better value of AOO. Note that the answer ob-
tained by a sequence to sequence transformation is not necessarily the limit of the sequence

in the ordinary sense of the word.

4.3 INNER AND OUTER BOUNDS FOR THE DEFERRED-DECISION BOUNDARY

The decision procedure for deferred decision is based on knowing the decision boundary
for the specific parameters of interest. We have not been able to obtain an analytic expression
for the decision boundary. Our method of solution is to use a computing algorithm to solve
the problem iteratively. Although we cannot obtain an analytic expression for the entire de-
ferred-decision boundary we have obtained an analytic expression for the deferred decision
boundary for large n and d small. It is also possible to obtain fairly good inner and outer

bounds on the deferred-decision boundary.
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The optimum nonsequential risk function and the asymptoticl sequential risk function con-
stitute upper and lower bounds on the deferred-decision risk function. From the risk function
one can easily determine the bounds on An as a function of W/¢; + An being the decision points
at stage n for the deferred-decision procedure. The equations for the decision boundaries as
determined by the optimum nonsequential procedure and the Wald sequential procedure have

been previously derived.

As shown in Section 2.3.1 the intersection of Equation 2.17 and 2.20 serves an inner
bound on An. The Wald sequential approximation gives Equation 3.52 as an outer bound on An.
This again assumes symmetric losses, normal and independent observations, and stationarity.

Figure 47 is a plot of the inner and outer bounds on An as a function of W/c.

As an example of how well the risk functions of the optimum sequential procedure and the
Wald sequential procedure bound the deferred-decision risk function consider the following
parameter values for the observation-decision process. Let W/c = 300, AO =0, and assume
normal observation statistics. For these parameters we obtain the plot given in Figure 48.
Thi_s is a plot of the two risk functions. The deferred-decision risk functions lie somewhere
between the two risk functions plotted in Figure 48. TableIl. below breaks the total risk into
its two component parts; that due to errors and that due to observation costs. Note that for
the Wald sequential procedure the risk due to‘errors is almost constant as a function of L, as

mentioned previously.

Optimum Nonsequential Procedure Wald Sequential Procedure
[RiSk Due to [Totalil [Risk Due tc} Total]
— Errors Risk —~ Errors Risk

L 7(L) . - L %L - .

0 16.0 6.66 22.66 0 9.7 2.14 11.84
+1.00 12.2 8.25 20.45 + .94 8.8 2.12 10.92
+2.33 11.0 7.29 18.29 +1.99 6.7 2.13 8.80
+2.80 9.0 7.19 16.19 +2.20 6.2 2.14 8.34

+2.94 4.4 2.14 6.54
+4.60 0.7 2.12 2.84

Table II. The expected risk decomposed into the terminal error loss and the observation cost
for the optimum nonsequential procedure and the Wald sequential procedure for W/c = 300,
and A 0 = 0.

l”Asymptotic sequential” procedure means the sequential procedure with constant decision
boundaries, i.e., the Wald procedure.
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The use of Equation 3.52 as an upper bound on the deferred-decision boundary assumes an
unbounded available D. To investigate the asymptotic behavior of the deferred-decision
boundaries we would like to allow n = Do/d to be "large." The determination of what a large
n is dependent upon the results. We would like to know how large n must be to be considered
effectively infinity, practically speaking. Economically it is prohibitive to study the asymptotic
behavior by use of the computer programs developed for the normal deferred decision problem.
However, if one studies a problem in which u[ﬁn[@ (y)]] ,i.e., the ""mean motion," takes on only
two possible values (one under each condition) the computing costs are reduced by orders of
magnitudes. Physically this problem is that of a symmetric clipper crosscorrelator. We call
this the "rapid probe'' approximation to the normal deferred-decision problem. Its use is in

"'probing' the asymptotic behavior of normal deferred-decision procedures economically.

The justification for using a distribution other than normal to approximate the asymptotic
normal problem has been given by Wald (Reference 3) and Blackwell and Girschick (Reference
11). The formulas developed by Wald and Blackwell and Girschick for the average number of
observations have one thing in common. The only quantity that is explicitly connected with
the sampled distribution of log-likelihood-ratio is the mean motion, u[¢n[¢(y)]]. Thus it seems
reasonable that if one has any type of distribution of ¢n[£(y)] where the mean motions are
small compared to the separation of the boundaries that, by the central limit theorem, for
large number of observations, the distribution of ¢n[ £(y)] at termination will approximate a
normal distribution of ¢n[¢(y)]. Thus, for starting a priori odds, L, away from the boundaries
one would expect to obtain a good approximation to a normal distribution at termination for
small mean motion. For a priori odds close to the boundaries, the justification for using

various distributions of ¢n[¢(y)]is not as clear.

For the rapid probe we have, from Blackwell and Girschick (Reference 11), the solution
for the asymptotic boundaries of a binomial distribution. This solution assumes that the mean

motions under each condition are equal, as in our case.

If y = 1 with probability p in SN and 1-p in N, while y = 0 with probability 1-p in SNand p
in N, then

tn[(y=1] = tn (If’-p)

tn[e(y=0))= ﬂn(lp-p) - ‘“(%)

hence
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plenfe(yllsN]) = p-(1-p) ﬂn(-l-?—>

p
ulenfe(y)ISN] = (2p-1) !Zn(l—_—l-)> (4.38)
while
ulenfe(y)IN] = -(2p-1) ﬂ“(%v) (4.39)

We say the "equivalent normal quality" is de, found by equating mean log-likelihood-ratios
= 2(2p- P
de = 2(2p-1) !Zn<1_p>

Using a rapid probe to study the asymptotic behavior of a normal deferred-decision pro-
cedure we obtain the asymptotic decision boundary shown in Figure 49 as a function of W/c.
The plot of the asymptotic boundary as obtained analytically from Blackwell and Girschick is
shown in Figure 49. This serves as a verification for the computer program in the rapid

probe approximation. The computer program used in the rapid probe is given in Appendix C.

Although we do not know the deferred-decision boundary analytically we have presented
bounds on the boundary. These bounds are summarized in Figure 49 along with two computer
determined "asymptotic' boundaries. The computer determined asymptotic boundaries were

the boundaries determined at D = 10.

4.4 COMPARISON OF SEQUENTIAL AND NONSEQUENTIAL OBSERVATION-DECISION PRO-

CEDURES

We wish to make a comparison between the sequential and nonsequential observation-de-
cision procedures we have discussed in this report. The nonsequential procedures discussed
were the fixed observation procedure and the optimum nonsequential observation-decision pro-
cedure. The sequential procedures examined were the optimum sequential procedure (deferred
decision), and the Wald sequential procedure with an abrupt termination. We have basically
four different observation-decision procedures we can compare. There exists many combina-
tions of possible comparisons. We wish to find the most meaningful of these combinations

and also a meaningful basis for comparison.

The standard approach in the past has been to compare the fixed observation procedure
and the Wald sequential procedure. The basis of comparison, in our opinion, was not com-
pletely fair to the fixed observer. The comparison was made by assuming first that both the

fixed observer and the Wald sequential observer operate at the same ROC point, that is, the
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error probabilities for a terminal decision are equal. With this assumption the average number
of observations for the two processes are compared. The usual rule of thumb is that the sequen-
tial procedure saves about 50 percent in the average number of observations taken. However,

if we take the point of view that we will compare the total expected risk of the fixed observa-
tion-decision procedure and the Wald sequential procedure we have some interesting results.

The most striking result is that the fixed observer does not operate at the same ROC point as

the sequential observer. In other words, starting with the same set of parameters W/c, L, and
D, and using the Bayesian philosophy of minimizing an expected risk function, the fixed ob-
server and the sequential observer do not have the same error probabilities. If the fixed ob-
server is forced to operate with the same error probabilities as the sequential observer, he is

being unduly penalized.

An illustration by use of a numerical example will point out the characteristics discussed
above of a comparison between sequential and nonsequential observation-decision procedures.
Consider the optimum nonsequential and optimum sequential observation-decision procedure
for W/c =30, D =10, and d = .25. For L =0 we obtain the figures shown in Table III. The
third column in Table III labeled ""matched ROC, nonsequential procedure,' is the risk if we
force the nonsequential observer to work at the same error probabilities as that of the opti-
mum sequential observer. Note that the average number of observations for the nonsequential
observer is approximately double that of the optimum sequential observer in this case. Suppose
that instead of forcing the nonsequential observer to operate at the same ROC point we allow

him to operate in an optimum manner in accordance with observation-decision parameters given,

Optimum Sequential Optimum Nonsequential Matched ROC,

Procedure Procedure Nonsequential
(Deferred Decision) Procedure

Normalized risk

due to errors .1025 1707 .1025
Normalized risk

due to obser. .1200 1207 .2150
y(d) 3.60 3.62 6.45
Normalized Ex-

pected risk 2225 2914 3175
ROC Point (.1025, .8975) (.1707, .8293) (.1025, .89175)

Table III. The comparison of deferred-decison (optimum sequential procedure) and the optimum nonsequential

procedure for W/c = 30., AO =0,d=.25D=10,and L = 0.
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i.e., Wc =30, D =10,d =.25, and L = 0. In this situation we obtain the figures presented in
column two labeled "optimum nonsequential procedure." These figures represent the various
risks or expected losses the nonsequential observer incurs in operating in an optimum manner.
If we compare the average number of observations for this procedure and that of the optimum
sequential procedure we see that they are approximately equal. The error probabilities, how-
ever, for the optimum nonsequential observer are greater, i.e., the optimum procedure for

the nonsequential observer to follow is not to operate at the same ROC point but to incur larger
error probabilities while keeping the average number of observations about equal to that of the

optimum sequential observer.

Thus to make a meaningful comparison between sequential and nonsequential observation-
decision procedures we will compare the optimum sequential procedure (deferred-decision)
and the optimum nonsequential procedure which we discussed in Chapter 2. Obviously a com-
parison of deferred-decision and a fixed observation procedure is not meaningful since the
fixed procedure can be made as poor, in the sense of expected risk, as we wish by choosing the

available D large.

The general aspects of a comparison between deferred-decision and the optimum nonse-
quential procedure are readily evident by use of a numerical example. Assume the observation

decision procedure parameters are W/c =30, A; =0, d = .25 and L = 0.

If we plot the average number of observations and the probability of a correct decision as
a function of the available D we obtain Figures 50 and 51. Shown in Figure 50 are the average
number of observations for four observation-decision procedures —the fixed, the optimum
nonsequential, the Wald sequential with abrupt truncation, and deferred-decision procedure.
The same four observation-decision procedures are plotted in Figure 51. The Wald sequential
procedure with abrupt truncation used decision boundaries that are the asymptotic boundaries

of the deferred decision procedure.

The following generalities can be made by referring to Figures50and 51. For small avail-
able D the error probabilities for all observation-decision procedures are approximately equal.
The differences in the expected loss for the various procedures for small available D occurs
in the risk due to the average number of observations. However, at large available D just the
opposite occurs. The average number of observations for everything except the fixed pro-
cedure are approximately equal. The savings for deferred decision occurs because of better
decisions, i.e., less terminal decision errors. Thus, we see that one cannot make a simple
statement like "'you save 25 percent in the average number of observations and 20 percent in
better decisions using deferred decision." The savings in expected loss and where it occurs,

i.e., in better decisions or fewer observations, depends on the available D.
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Figure 50. The average observed quality plotted against the available quality for a fixed observation procedure,
an optimum nonsequential procedure, a truncated Wald sequential procedure, and a deferred-decision procedure
with parameters W/c = 30.,d = .25, and L = 0,
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Figure 51. The probability of a correct terminal decision plotted against the available quality for a fixed observa-
tion procedure, an optimum nonsequential procedure, a truncated Wald sequential procedure, and a deferred-decision
procedure with parameters W/c = 30.,d = .25, and L = 0,
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The same graphs shown in Figures 50 and 51 for L # 0 exhibit the same general aspects

discussed above.

Referring again to Figures 50 and 51 we notice the performance of the Wald sequential pro-
cedure with abrupt truncation is very close to that of deferred decision. Deferred decision is
optimum. The Wald sequential procedure with abruptvtruncation will never be better than de-
ferred decision. This can be seen in Fig. 52 where the risk of the abrupt truncation procedure
is shown for different values of the decision boundary along with the risk for deferred decision.
For different available D the optimum abrupt truncation procedure has different decision
boundaries. If one could obtain an expression relating the decision boundaries to the available
D for the abrupt truncation procedure one would have a sequential proceduring more easily
implemented than deferred decision with a performance close to that of deferred decision.
Even without this expression the different abrupt truncation procedures are so close to each
other that one can come close to the optimum procedure by educated guessing at the value for

the decision boundary.

In summary we have the following rules of thumb in comparing sequential and nonsequen-
tial observation-decision procedures. For small available D all procedures are practically the
same with respect to error. The differences in risk occur because the average number of
observations for deferred decvision is smaller. For large available D the average number of
observations for all procedures (except fixed observation, of course) are practically the same.

The differences in risk occur because deferred decision makes better decisions.
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5
FUTURE STUDIES, SUMMARY, AND CONCLUSIONS

5.1 FUTURE STUDIES AND GENERALIZATIONS OF PRESENT SOLUTION FOR DEFERRED
DECISION

The observation-decision procedure we have examined called deferred decision has been
shown to be the optimum sequential observation-decision procedure. This observation decision-
procedure has implicitly assumed a simple signal hypothesis. In a physical problem this is a
simplification of the actual situation. The received signal, in general, will be from a composite
signal hypothesis. There will be at best slight changes in one or more of the observed param-
eters, e.g., the phase of the signal might be a random variable. Mathemetically this is a change
in the probability density functions of one or more of the observed variables with each succeed-
ing observation. This, of course, means that the likelihood ratio of the observation is a function

of the observed parameters and the number of observations that have been taken.

The above discussion indicates the course of our future studies. We wish to apply the ideas
of deferred decision to the composite signal hypothesis case. This has been completed for the
case of a signal known except for phase and a signal known except for amplitude where the
initial opinion of the amplitude is distributed according to

k -cs -.5bs2
e e

f(s) = As (5.1)

This distribution includes the Gaussian, truncated Gaussian, Rayleigh distributions, and Pearson
Type III as special cases. The basic idea which allows one to solve the composite signal prob-
lem economically is the following: the distribution of the parameters of which one has only
statistical knowledge of is closed, i.e., the distribution of the signal parameter after an obser-
vation is the same type as the distribution before the observation was taken. We assume we can
use an infinite memory if need be. The fact that the distributions of one or more of the signal
parameters are closed allows one to remember only a finite set of variables with the same

state of knowledge as an infinite memory allows. We have been able to reduce the dimension-

ality of the problem without any loss of information.

In the process of making an optimum decision for a composite signal hypothesis. re-bevalua-
tions of the probability distribution functions for the signal parameters are made. This
continual "updating' of the probability distribution functions is not the primary goal of the
observation decision process. The primary goal is to make optimum decisions about the nature
of the physical cause of input to our receiver. The re-evaluation of the probability distribution

functions is sometimes termed "adaptation' or "learning."
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5.2. SUMMARY AND CONCLUSIONS OF OBSERVATION-DECISION PROCEDURES

In this report we have examined various observation-decision procedures. The usual ob-
servation-decision procedure discussed in the literature, in connection with detection theory,
is the fixed observation procedure. In a fixed observation procedure the observer observes
for a given quality after which a terminal decision is made. This procedure is the simplest
process in making a terminal decision. However, the expected risk associated with this pro-

cedure may be very large in comparison with other types of decision procedures.

The general nonsequential observation-decision procedure is a fixed procédure with the
observation quality a variable chosen by the observer before the observation begins. This pro-

cedure is optimized by choosing the correct quality to observe.

The optimum observation-decision procedure, in the sense of minimum expected risk, is
the process called deferred decision. This process includes nonsequential procedures and
nonoptimum sequential procedures as special cases, e.g., the familiar Wald sequential pro-
cedure. The quality of the observation in a sequential process is a random variable. The op-
timization of the procedure is accomplished by determining the correct decision boundary

points for which a terminal decision is made.

Although the approach in this report has been from the Bayesian viewpoint, the standard
statistical approach may be considered within our present framework. Standard or objective
statistical tests are usually nonsequential observation-decision procedures. The length or
quality 6f the observation is determined independent of L, the a priori log-odds-ratio. Thus

these tests are, in general, nonoptimum procedures.

The study of optimum nonsequential observation-decision procedures is included in this
report for two reasons. First, these procedures are of interest in themselves. In many prac-
tical situations they are the only observation-decision procedures that are possible. Also the
added complexity of a sequential process may not be warranted. Second, these processes are
useful as bounds for deferred decision. The optimum nonsequential procedure is completely

analytically determined whereas deferred decision is not (except for some academic problems).

The results of the optimum nonsequential procedure are best summarized by means of Fig-
ure 13. This is a plot of the available quality versus the a priori log-odds-ratio with the
value of a decision as a parameter. This graph depicts the manner of how to choose the ob-

servation quality for a given set {L, W, c} so as to optimize the observation-decision procedure.

The greater part of this report has dealt with deferred decision. The method of solution

was not restrictive to any special distributions on the observed variate or to the assumptions
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of stationarity and symmetry. These assumptions were made to obtain more specific results.

The basis for the method of solution is the so-called "principle of optimality" (Reference 8).

The determination of the standard form for the deferred-decision boundary points is found
analytically in the asymptotic portion of the decision boundary. and assumes a continuous ob-
servation. The discreteness of the observation causes an average excess to "spill over' the
decision boundary. This average excess over the decision boundary connects the computer re-
sults used in determining the decision boundary and the analytic results obtained by assuming
a continuous observation in the asymptotic portion of the decision boundary. The same re-
lationship which connects the standard form and the computer results for large available D is

also valid for small available D.

The comparisons among the various observation-decision procedures are given in Section
4.4, The results of the comparisons are that one should compare on the basis of the total ex-
pected risk. The standard approach of forcing the nonsequential observer to operate with the
same error probabilities as the sequential observer gives the sequential observer an unfair
advantage. Deferred decision is the optimum procedure. For small available D all procedures
are essentially the same with regards to the risk due to errors. The differences in risk occur
because of the average number of observations. For large available D the average number of
observations for all proce'dures (except the fixed observation procedure) are practically the
same. The difference in risk occurs because deferred decision, on the average, makes better

decisions.
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Appendix A

THE COMPUTER PROGRAM FOR THE DETERMINATION OF DEFERRED-
DECISION BOUNDARIES

Included in this appendix is the computer program used to obtain the deferred decision
boundary points. The computer programs were all written in an algebraic source language
developed at The University of Michigan called the Michigan Algorithm Decoder (MAD). Any-
one familiar with any of the various computer source languages should be able to follow the

programs included here.

A general block diagram of each computer program is presented, followed by a detailed

block diagram for those interested in the details of programs.

The computer program for the deferred decision boundary points assumes normal obser-
vations, stationarity, equal error losses, and independence of observations. The program is
written in such a manner as to take advantage of these assumptions and cannot be easily general-

ized to less restrictive problems. This was done for economic reasons.

The following are notes to help explain the various symbols that are used in the block dia-

grams.

(1) The A(1) to A(50) are used in all Stieltjes integrations of functions with respect to the
normal distribution function. The value of A(k) is given by A(k) = E{XI.OZ k-.02<
3(x) < .02 k}.

(2) FO.is "old expected risk function."

FNL is "new expected risk function."
The "new expected risk function" is computed from the "old expected risk function"
by averaging with respect to the normal distribution function.

(3) LTSN and LTN are the new values of L-in SN and N, respectively. The latter are found
taking the old value of L and temporarily assuming the observation had the Rth value
(normal, with mean .5D and standard deviation DP). (KSN, KN) and (CSN, CN) are the
integer and fractional parts of (LTSN, LTN) used for interpolation in the computation
of the risk functions. They are computed once and stored. D1 is a linear subscript to
calculate for the computer where to store these constants (for faster operation).

(4) The computation of expected risk functions (integrals) is the main part of this program.
The two conditional risk functions in SN and N are combined to form G. This risk
function is then compared with the terminal risk function to find the decision boundary.
For the risk function in N the integrand is called DGN and the sum GN. For the risk
function in SN the integrand is called DGSN and the sum GSN.
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Appendix B

THE COMPUTER PROGRAM FOR THE DETERMINATION OF THE ROC AND
AVERAGE NUMBER OF OBSERVATION FUNCTIONS
This appendix presents the program used to determine the ROC and average number of
observations for the deferred-decision procedure. A general block diagram is presented fol-
lowed by a detailed block diagram of the computer program. As in the computer program for
the deferred decision boundary points use is made of the assumptions of symmetry and station-
arity to speed up the program. The program cannot be easily generalized to less restrictive

problems.

The following are notes that help to explain the various quantities that are indicated in the

block diagrams.

(1) The A(1) to A(50) are used in all Stieltjes integrations of functions with respect to the '
normal distribution function. The A's are given by A(k) = E{xl.OZk - .02 < ¥(x) < .02 k}.

(2) TEND is an integer corresponding to ten times D.

(3) POSNA is "probability old given SN of A"

PONA is "'probability old given N of A

NOSN is "(average) number (of obserx}ations) old given SN

NON is "(average) number (of observations) old given N

The functions being computed have the second letter N for "new.” This iteration tech-
nique computes four '"new' functions from the values of the four '"old" functions.

(4) LTSN is the new value of L if one had started at the old value L(I) and (temporarily)
assumed that the observation had the Rth value (normal, with mean .5D and standard
deviation DP). TENLT is ten times LTSN, separately identified because it is used
several times. This will be used for table look up and interpolation, all tables stored
in .1 steps in L. The K and C values are the integer and fractional parts of TENLT.
TENLT = K+ C, O < C < 1. These interpolation constants are stored and used re-
peatedly in the computation of the ROC an\d average number of observations.

(5) The computation of the expected values (integrals) involves computation of the inte-

grand, summation, and normalization of the final sum. The key is

Name of Function Name of Sum Name of Integrand
PNSNA ROCSN DROCSN
PNNA ROCN DROCN
NNSN ASNSN DASNSN
NNN ASNN DASNN
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Appendix C
THE COMPUTER PROGRAM FOR THE RAPID PROBE
The computer program for the binomial approximation to the normal case, called the

rapid probe, combines the computer programs presented in Appendixes A and B into a single,
very efficient program. The reason for the increased efficiency is that the integrations of the
risk functions, the ROC functions, and the average number of observation functions are re-
placed by exact formulae. The exact value of the decision boundary is quantized depending
on the initial a priori odds. For convenience we interpolate to obtain a smooth value for the
decision boundary. In this sense, the decision boundary is not an exact value. All other for-

mulae calculated by this program are exact.

The numbers used in the formulae for obtaining the new functions from the old functions

depend on the W/ ¢ ratio we wish to simulate by the binomial approximation.

The following are notes that help to explain the various symbols that are used in the block

diagrams.

(1) S1 and S2 are the expected risk function in SN and N, respectively. S3 and S4 are the
average number of observations in SN and N, respectively.

(2) The computations of risk functions and average number of observations are made for
L> Ao only since these functions are symmetric about AO.

(3) I4 and I5 are the values of likelihood ratio in SN andN, respectively. The functions T1,
T2, T3, T4, are the temporary functions corresponding to S1, S2, S3, and S4, respec-
tively.

(4) Delta is the "upper" decision boundary. The "lower' decision boundary is the negative
of Delta.

Appendix D

THE COMPUTER PROGRAM FOR THE DETERMINATION OF THE
AVERAGE EXCESS OVER THE DECISION BOUNDARY

The Monte Carlo simulation was performed using a high speed digital computer (IBM 704).
The Monte Carlo simulation presented here can be used for any boundary points since these
boundary points are read in as data. The computer program is given in block diagram form

followed by a detailed block diagram.

The following are notes to help explain the various symbols that are used in the block

diagrams.
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(1) TRUNC is the truncation value on the number of samples that terminates any specific
run if the addition of the random samples for this number of samples did not exceed
the preset cut level (boundary).

(2) DC and MC are the sample counters for the upper and lower boundary. D(I) and M(I)
store the density function for the sample values.

(3) XO and XU are the accumulated excess over the preset cut level and T is the random

variable that is obtained from a normal distribution.

Appendix E

ERROR ANALYSIS OF THE COMPUTER PROGRAM FOR THE DETERMINATION
OF THE DEFERRED-DECISION BOUNDARIES

There are two basic sources of error in the computer programs used for finding the de-
ferred decision boundary points. One source of error is in the approximation of the probability
density functions of N and SN by discrete density functions. The other main source of error
arises in the interpolation of the various functions that must be integrated. The interpolationis
necessary because the various continuous functions must be approximated by a finite set of

numbers. There are in addition other random computer errors.

The analysis here is given in two parts. The first section is not, strictly speaking, an
analysis but only presents evidence of the size of errors and its comparative value. An actual

analysis is too complicated. The second part is an analysis of the interpolation error.

The error we examine is the error in the risk function since the risk function is the basic
function from which the decision boundaries are calculated. In order to determine the nature of
an acceptable error, a normalization is made on the error found in a risk function. I the error in
a risk function is so large that the cost of observing, i.e., 1/W, is comparable to the error,then
the risk function is meaningless. The normalization is to compare the error to the cost of ob-

servation for a single observation.

We feel that an error of 10 percent or less of the cost for a single observation is an ac-
ceptable error. This is because a 10 percent change in the cost of observation affects the de-
cision boundary points by 2 to 3 percent. In view of the fact that the a priori estimate of SN
and N and the determination of W is an estimate this seems to be a reasonable error. Figure
Elis a graph of T(L) - G35(L) for a W/c = 30 depicting a 10 percent change in the cost of a
single observation. Figure E1 also shows what this means in terms of the decision boundary

oint.
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Further evidence that an error of 10 percent of cost is acceptable can be seen by an exam-
ination of the risk functions. If at stage n = 24 the cost of a single observation is increased by
10 percent, the percentage difference in the risk functions after 11 stages is less than one per-
cent. This is again true for W/c = 30. The greatest error in the risk function occurs away
from the decision boundary at L. = 0. On the decision boundary the percentage difference in

the risk functions after 11 stages is less than .2 percent.

Roughly speaking the change in the risk function accumulates as n times the cost of a
single observation around L = 0, where n is the allowable number of deferrals. This can be
seen from the fact that if the decision boundary cannot be reached by u[u(£(y))], i.e., when the
mean motion of the distribution, is in n steps then the result is as if the boundary was not
present and the risk error accumulates for n stages. However, if the decision boundary can be
"reached" by the mean motion of the distribution then the amount of the cost of observing added
to the risk function, for these L's, is less than n times the cost of a single observation. The
boundary acts to wash out the effects of errors in the risk functions due to an apparent change
in the cost of a single observation. This explains, roughly speaking, why the risk function con-

tain very little error for L's near the boundary due to an apparent change in the observation

cost.
Since the analytic form for Gl(L) is readily obtained the difference T(L) - GI(L) can be
found as
1 eL
T(L) - G,(L) = P(B/N) - P(B/SN) - cost
1 L L
1+e , 1+e
1 (-L+.5d\ e _[-L-.5d
] Lq:( : ) L¢< a )-cost (E-1)
1+e 1+e

The quantity T(L) - Gl(L) from the computer solution can be compared with the analytic
solution to find the magnitude of the error in the risk function due to two causes; the inte-
gration technique and the assumption that T(L) is linear over the increment in L, in this

case .1 steps in L.

The assumption that T(L) is linear over a .1 change in L introduces not more than a 1.5

percent error.

The first numerical results obtained for the risk function for deferred decision employed
the use of ordinary Riemann integration. In the interest of both computing time and integration

error all the Riemann integrations were converted to Stieltjes integrations in subsequent programs.
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The normal distribution function was approximated by the use of 50 values, each value repre-
senting 2 percent probability. The error due to approximating the continuous distribution

function by a discrete distribution of 50 values can be determined as follows.

The integral we wish to consider is the average of a function with respect to a normal

density function. This integral is approximated by a sum of 50 values.
+ 00 +00 50
J G(L) £(y) dy = f GL)AF(G) = ) G(E) X .02 (E-2)
- -0 i=1

The €i are chosen to represent 2 percent of the area under the normal probability density

function. If G(L) is assumed linear over each AL interval we have

error per interval = .02(a1§i +b) -f(ax +b) ®(x)dx

= a,,.ozﬁi -fx ® (x) dx (E-3)
d 1 (x - m)*
where ®(x) = 5 €Xp |- ——5— |-
210 20

Let us scale the x axis so that m = 0 and o =1. Now

fx ®(x) dx = ®(x)
§i

Thus |error |i =a l:gf) <I>(xi) + (I)(XHI)] for the ith interval. We therefore chose

§, =50 [o(x) - ox, ;)]

to eliminate the linear error term.

These éi are the "mean" values of the normal r.v. in each 2% interval, since

1
f X &(x) dx
%1
§=—x
1
f $(x) dx
X.
i-1
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The error introduced by the Stieltjes integration is approximately 1 percent as determined
by comparing the computer solution for T(L) - GI(L) with the analytic solution for T(L) - GI(L)'
This error occurs for each stage. However, since the curvature of the risk function becomes

less and less this error will decrease as the stage number, n, increases.

The interpolation error is due to a linear interpolation of the risk function. The curvature
of the risk function is not large, however, and allows linear interpolation to be satisfactory. To
obtain a bound on this error consider the correlation due to the second difference (i.e., the
quadratic term). If a function, f(x), is expanded by use of differences obtained from the tabular

values we have

(E-4)

f(x) =f(a) +k- 0 +k(k'1)5 k(k - 1)

(o Oy t—gr— (k- 2)0

3+...

where: k= (x - a)/AL

Gk = kth difference

"a'" is the value of x at the tabulated points. The greatest value of k = .5 is obtained at
the midpoint of an interval. Therefore, the maximum error due to neglecting the quadratic
term is

k(k - 1)
< 0 =
lerror| < 57 9 125 52

Forad=.25 andv—cV = 30 this is an error of less than .000125 or 5 percent of the sampling

cost.

The sum of all errors discussed is less than 10 percent of the sampling cost. Since the
error values discussed were upper bounds, the actual error would be expected to be less
than this. The refinement of numerical procedures is a never ending process. There are ob-
vious ways of reducing the computing errors still further, e.g., the use of quadratic or cubic
interpolation. However, there is a balance between meaningful results and timé spent and

exact results and time spent.
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Appendix F
THE ERROR ANALYSIS COMPUTER PROGRAM

Included in this appendix is the error analysis computer program used to determine some
of the conclusions we made in Appendix E. The program is highly specialized and was written
for the express purpose of investigating the sources of errors in the program described in

Appendix A.

Appendix G

THE COMPUTER PROGRAM FOR THE DETERMINATION OF THE VALUE CONTOURS
FOR THE OPTIMUM NONSEQUENTIAL DECISION PROCEDURE

The contour graph of the value of the observation for a predetermined observation-decision
procedure is found numerically using the following computing algorithm. This graph presents
the information of a predetermined procedure in a convenient form and serves to describe

the properties of a predetermined procedure graphically.
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READ IN
DATA

COMPUTE AND
STORE TI(L)

COMPUTE MEAN
MOTIONS

COMPUTE LIKELIHOOD
RATIOS AND
INTERPOLATION CONSTANTS

INTEGRATION OF SUBSTITUTION OF
RISK FUNCTIONS NEW RISK FUNCTION

COMPUTATION OF
DECISION BOUNDARIES

PRINT OUT OF
RISK FUNCTIONS AND
DECISION BOUNDARIES

CONVERGENCE NO
CHECK

§ YES

Figure A.1. The general block diagram for computation of the
deferred-decision boundary points.
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READ IN DATA

& DO PRELIMINARY -
CALCULATIONS

\
COMPUTE & STORE
T(L)

A
COMPUTE & STORE
ROC 8 AVERAGE NUMBER

OF OBSERVATIONS FOR
N=I

\
COMPUTE NEW L's
FROM PREVIOUS L's
AND MEAN MOTION

A

COMPUTE THE
ROC & AVE. NO. OF
OBSERVATIONS |

FUNCTIONS DO FOR ALL
L IN CONTINUE
COMPUTE THE REGION

A

RISK FUNCTION

PRINT QUT THE SUBSITUTE "NEW"
ROC, AVE. NO. OF ROC, ETC. FUNCTIONS
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