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Abstract

Despite the growing prevalence of permit auctions, research has thus far not delineated firms’
abatement, bidding, and production strategies in conjunction with permit auctioning. To the
regulator, knowledge about the interrelationships among regulator levers for emissions control
and firm levers for compliance ig crucial given the goals of pollution control and a desired
increasing level of stringency in the stipulation of pollution limits. From a firm’s perspective,
decisions such ag the amount and type of investment in pollution abatement, permit bidding
strategy, and production level need to be made given a policy stipulation, the accompanying
cost of compliance with the policy, and the goal of profit-maximization. We model a three
stage game in an oligopoly - investment in abatement, followed by a share auction for permits
and finally, the production of cutput. We treat two scenariog in the end product market -
Independent Demands and Cournot Competition. In both scenarics we find that reducing the
number of available permits induces firms in a dirtier industry to a lesser extent than firms in a
cleaner industry to engage in abatement. In addition, abatement levels taper off with increasing
industry dirtiness levels. In the presence of competition, firms in a relatively clean industry can
indeed benefit from a reduction in the number of available permits. The modeling framework
emploved is not limited to our auction format choice. It iz general enough for the simultaneous
agsessment of emissions contrel and compliance strategies within the broad domain of permit

auctions.

1 Introduction

“Fimissions trading” refers to a market-based mechanism for emissions control that allows parties
to buy and sell permits for emisgions or credits for reductions in emissions of certain pollutants.
It differs from a traditional regulatory approach that relies solely on an agency, usually the gov-
ernment, to issue standards and specific directives on the amount by which emitters must reduce
their emissions, how they must do so, and the penalties for failure (National Round Table on the
Environment and the Economy (NRTEE), 2003). In an emissions trading program, emitters are

allocated or permitted a limited amount of emissions. The total number of permits corresponds to
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the overall emissions target of the covered sources. The fact that the target is less than “business
as usual” emissions creates permit scarcity, resulting in a market price for permits. Emitters are
responsible for ensuring that they hold sufficient permits to offset their emissiong; they have the
flexibility to cost-effectively administer compliance levers such as investment in abatement, pro-
curement of permits, and adjustment of output level.! The concept of emissions trading has grown
from a theoretical curiosity into a central idea in environmental regulation (Muller & Mestelman,
1998). The theory of emissions trading is well developed (Tietenberg, 2001) and attention hag now
shifted from whether tradable emissions schemes should be implemented to how they should be
implemented (Muller & Mestelman, 1998).

Auctions for emissions permits are prevalent and are implemented in various formats and under
diverse settings. As mandated by Title TV of the 1990 US Clean Air Act Amendments, the US
EPA has been conducting SO4 allowance auctions since 1993 in a phased program of restricting
emissions from fossil fuel-fired power plants. FEconomy-wide participants in the UK DEFRA? green-
house gas emissions trading scheme have voluntarily taken on a legally binding obligation to reduce
their emissions. The DEFRA conducted the world’s first multi-sector auction for CO4 allowances
in March 2002. The Chicago Climate FExchange (CCX) is a greenhouse gas emissions reduction
and trading pilot program for emission sources and offset projects in the United States, and for
offeet projects undertaken in Brazil. The CCX is a voluntary, self-regulatory exchange designed
and governed by its members. The CCX conducted the world’s first multi-national multi-sector
COs allowance auctions in September 2003. The auction formats employed in the aforementioned
programs are, however, distinct. The US EPA auctions for SO permits are sealed-bid discrimi-
natory price auctions, the UK DEFRA auction was in the descending clock format, and the CCX
auctions were held in two formats - sealed-bid average price and sealed-bid discriminatory price.

Despite the growing prevalence of permit auctions®, research has thus far not delineated firms’
abatement, bidding, and production strategies in conjunction with permit auctioning. Within the
ambit of permit auctions, the regulator has a number of levers which it can work with to ensure
that emissions remain within desired limits and that firms engage in adequate levels of abatement.
Levers include the auction format, the number of permits offered in the auction, penalties for
non-compliance, subsidies or tax breaks for investments in abatement by firms, the treatment
of unused allowances, and permit allocation across industries. Firms, on the other hand, can
comply with stipulated regulations by investing in pollution abatement, selecting the appropriate
type of investment (e.g., end-of-pipe or in-pipe, product or process based), varying production
levels, or purchasing permits. To the regulator, knowledge about the interrelationships among the
aforementioned levers is crucial given the goals of pollution control and a desired increasing level
of stringency in the stipulation of pollution limits. From a firm’s perspective, decisions such as the

amount and type of investment in pollution abatement, permit bidding strategy, and production

'"William Rogers, Technological Specialist - Environmental Strategies, Detroit Edison Co., corroborates that these

indeed constitute the levers that firms have (Personal correspondence, October 2003).
“Department for Environment, Food, and Rural Affairs.
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level need to be made given a policy stipulation, the accompanying cost of compliance with the
policy, and the goal of profit-maximization.

We model a three stage game in an oligopoly - investment in abatement, followed by an auction
for permits and finally, the production of output. We model the auction for permits as a sealed-bid
uniform price share auction where the bidders submit a schedule of prices for varying fractional
shares of the block of permits being auctioned and receive shares at a sale price that equates the
demand and supply of shares. We draw from the seminal work of Wilson (1979) for analysis of
the share auction. Though permits are sold in discrete units, the representation of the auction for
emissions permits as a share or divigible-good auction is apl since permits are homogeneous and
the total number of auctioned permits is generally large*. Typically, governments use a sealed-bid
auction to allocate multiple units of homogenous units such as treasury securities and emissions pet-
mits (Sunnevédg, 2001). However, there has been substantial debate on whether the discriminatory
price format or the uniform price format is superior (Bikhchandani & Huang (1989, 1993), Back
& Zender (1993), Daripa (2001), Wang & Zender (2002)). Our modeling choice of a uniform price
auction is driven by reasons of analytical tractability.” The modeling framework employed is, how-
ever, not limited to our auction format choice. It is general encugh for the simultaneous assessment
of emissions control and compliance strategies within the broad domain of permit auctions.

We treat two scenarios in the end product market - Independent Demands and Cournot Com-
petition. In the case of Independent Demands, firms do not compete for end customer demand
(e.g., if the firms serve distinct geographic regions). In the case of competition, firms compete for
end customer demand. In both cases, however, firms do compete for scarce emissions permits. In
both scenarios we find that reducing the number of available permits induces firms in a “dirtier”®
industry to a lesser extent than firms in a cleaner industry to engage in abatement. In addition,
abatement levels taper off with increasing industry dirtiness levels. In the presence of competition,
firms in a relatively clean industry can indeed benefit from a reduction in the number of avail-
able permits. Our findings are robust to changes in the modeling of abatement and the cost of
production.

To the best of our knowledge, ours is the first framework that provides for a simultaneous
assessment of emissions control and compliance strategies within the domain of permit auctions.
Concomitantly, we also contribute to auction theory by deriving an equilibrium bidding strategy
for a uniform-price share auction in which the (homogeneous) items have decreasing marginal
value. Lyon (1986) examines equilibrium properties of a range of auctions and other procedures
for allocating transferable permits. The focus is on transfer-neural” mechanisms that allocate
permits efficiently. Firm profits are associated with firm “types” with no modeling of production
relationships or abatement. Since early 1995, the MIT Center for Energy and Environmental Policy
Research (CEEPR) has contributed greatly to public understanding of emissions trading through its

4125,000-150,000 in EPA auctions of SO; permits (http://www.epa.gov/airmarkets/auctions/factsheet. himli).

Tt is worth mentioning that, because of analytical intractability, there are scarcely any existing results on the
characterization of equilibria in divisible good auctions (Hortagsu, 2002).

%We quantitatively describe “dirty” and “clean” in subsequent sections.

7Implying that no net revenue is generated for the seller.



definitive study of the implementation of the U.S. Acid Rain Program, including the EPA auctions
for SO, permits. Working papers published by the center are primarily empirical.® Laffont & Tirole
(1996a) study the impact of spot and futures markets for tradable pollution permits on potential
polluters’ compliance decizions. Polluters can buy permits, invest in pollution abatement, or else
stop production and source out. Stand alone spot markets induce excessive investment. The
introduetion of a futures market reduces this incentive to invest. They extend their analysis in a
closely related paper (Laffont & Tirole, 1996b) with the revised assumption that innovation is a
public good - inventicn of substitutes or pollution abatement devices can be used by all cther agents.
They find that options to pollute al a given striking price fare better than pcllution allowances
from a social welfare point of view. However, they treat the decision of investment in abatement,
as well as the choice between investment in abatement and production as binary when, in fact,
these exist ag continuua. In addition, they do not model permit auctions. Unold & Requate (2001)
propose a combination consisting of free permits and a menu of call options when there is imperfect
information about aggregate abatement costs co that the regulator can approximate the marginal
damage function. The authors, however, do not model permit auctions, nor do they explicitly
model abatement and production relationships. Sunnevag {2001) evaluates the pros and cons of
two competing permit auction designs - the standard ascending-clock auction and an ascending-
clack implementation of Vickrey pricing - where the allocation of permits has consequences on the
level of production as well as on market shares. The paper is understandably limited in analytical
findings and uses numerical approaches to provide insights.

The remainder of this paper is organized as follows. Section 2 describes the model. Sections 3
and 4 respectively treat the two end product market scenarics - Independent Demands and Cournot
Caompetition. Section 5 extends the analysis to situations when investments in abatement affect
the cost of production. Section 6 extends the analysis to a variation on the specification of the
emissions function. A numerical example is presented in Section 7, and implications for regulators
and firms are discussed in Section 8. We conclude and provide directions for future research in

Section 9.

2 The Model

We model the problem as a three stage game. In the first stage, each of the n > 2 firms decides
its abatement level D; from an investment g;(D;) in pollution mitigating innovations, where g;
(henceforth called the abatement function) is increasing in D;. In the second stage, firms bid
for emissions permits in a sealed-bid uniform price share auction. Each firm submits a sealed
tender specifying a schedule of prices bid for varying fractional shares of the available pollution
allowances. An alternative, equivalent format is a schedule that for each possible price, specifies the
share requested. The regulator then selects the sales price such that the total share requested by the
bidders matches the available supply (i.e., unity). Asin Wilson (1979), we assume that the number

of bidders is known beforehand by all participants to be n. Also, we only consider situations in which
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the bidders are symmetric, and where the optimal strategy is a symmetric subgame perfect Nash
equilibrium. The auction results in a share allocation vector s = (sq, $9,..., S,), or equivalently a
permit allocation vector 8 = (51, 52,...,0n). B=>.1, 5, is the total permissible pollution level,
where 3; = s;- B. Fach permit allows a firm to emit a unit of the pollutant. Each firm pays e
per emissions permit. In the third stage, firm ¢ produces cutput g; which results in a pollution
level 8;(ys, D;), and firms redeem their available allowances against their pollution levels. The unit
cost of production is ¢;. We consider two distinct demand situations. In the independent demands
case, each firm faces an independent, inverse demand function p; = h;(y:), where h; is decreasing
in y;. In the case of competition, the n firms compete in a Cournot fashion and face an inverse
total demand function P = H(Y) where Y =37 ; 4;, and H is decreasing in Y.

In practice, unused permits can be banked for future use or trade. Since we treat a single-period
problem, we assume a terminal or salvage value of u; to firm ¢ per unused permit. This value could
represent either the value of a permit in a secondary market or the net present value of benefits
accruing from future use of a permit left over at the end of the first period. We assume that the
penalty for not having the requisite number of permits to account for emissions is large encugh so
that non-compliance is deterred.” & (henceforth called the emissions function) is assumed to be
separable in y; and D;. In other words, 6; can be represented as 6; = f;(y;)— D; where f; (henceforth
called the Production Emissions (PE) function) is increasing in y;.'" The optimization problem
of each firm is: Maximize II; = pyy; + (8; — 0wy — gi(Dy) —efi — iy 4= 1,...,n; Subject to:
0; < B;, w, D; = 0. The constraint implies that each firm must have sufficient permits to account
for emissions. We proceed conventionally, by backward induction, to ascertain the subgame perfect
equilibria in the different stages of the game.

For the remainder of this paper we assume a linear emissions function €;(y;, D) = ay; — Dy
and linear downward sloping demand functions; p; = a; — b;y; in the independent demands case
and p=a — 52?:1 y; in the case of competition {«, a;, b, b > 0). We drop the subscript ¢ where

unambiguous, for notational and typographic convenience.

3 Independent Demands

We begin by analyzing the independent demands case. The optimization problem of a representative
firm in the third stage of the game, given abatement levels and a permit allocation vector is:
Mazimize y) D=(a—by)y+ (f—(ay — D))u—g(D) —ed — cy; Subject to: § <3,y > 0.

®According to the EPA Acid Rain Program 2001 Progress Report, a source that does not hold encugh allowances
in its unit account to cover its annual SO, emissions has “excess emissions” and must pay a $2000 (in 1990 dollars)
per-ton penalty. The $2000 penalty is adjusted annually for inflation, so the year 2001 penalty was §2774. Only two

firms were short by a total of 11 allowances to cover their emissions for the 2001 compliance year.
°Tn Section 6 we test the validity of our results with an emissions function in which the abatement level depends

upon the production output. The structural attributes of our pertinent results remain unchanged.



3.1 Output Subgame

Concavity of the profit function permits us to arrive at the optimal production quantity in the
third stage of the game. The profit-maximizing quantity is limited by imposition of the constraint
that emissions cannot exceed the number of permits available. The following proposition states

this formally.
==, In the thard stage, given abatement levels and a permit allocation

vector, the profit-maximizing quantity y* = min { =, #}

Proposition 1 Assume u <

Proof: See Appendix A.

(8+ D) can be interpreted as a measure of permissible pollution as a result of an abatement level

of 1) chosen in the first stage and 3 permits procured in the second stage. Since each production

unit results in a pollution level of a, (ﬁj;—D) represents the maximum production quantity that

keeps emissions within the allowable limit. (e + cu) can be interpreted as the marginal cost per

unit of production, which includes the variable cost ¢ and the “cpportunity cost” aw since salvage

value equal to aw ig lost as a result of producing one unit and emitting o units of pollutant. The

unconstrained profit-maximizing quantity is === which should not exceed (ﬁ%p). Hence the
resulting expression for y*. The assumption « < 2=< has a useful interpretation. The maximum

o
a—

incremental revenue that can be earned from the ownership of a permit is =¢. If u exceeds this

bound then there is no incentive to engage in production in the third stage and firms would trivially

salvage pollution permits.
The constraint on & can be re-written in terms of 3 since, when %

on @ is binding, and vice-versa. Denote 3 = w — D. Thus, when 3 < 3, the constraint on

< =572 the constraint

6 is binding. We now establish expressions for the optimal profit for the two cases viz., 8 < 3 and

B> B
Case (i) 8 < 3 (or equivalently, y* = %)

e = oD 2y - (22 - ) |u-gp) - s - 22
7%5% {a(a—c—cse)—?bD}ﬁJr a[(a—c)D—c;g(D)] —bDT "

O—C—Qu

Case (ii): g > A (or equivalently, y* = *—5-2*)

M = o= (g + 8 - (a5 - D) [u - g(D) -5
e
= § o) )

117, represents the subgame perfect equilibrium profit when the emissions constraint is binding,
IIf; is the subgame perfect equilibrium profit when the emissions constraint is not binding, and
P = lo — o(&=F2)|(=52) — [o(=5*) — Dlu — g(D) — c(*=F**) is a constant, given the

abatement level chosen in the first stage.




3.2 Auction Subgame

The assumption that firms are constrained in profit-maximization by the availability of emissions

implies that the optimization problem of a representative firm is:

Mazimize Iy M=(a—by)y+ (B —{ay — D))u—g(D) — e} — cy; Subject to: 6§ =73, y = %.
Since the emissions constraint binds, the marginal value of a permit is the shadow price cor-

responding to the emissions constraint. We construct a “marginal value function” »(8) using

equations (1) and (2). »(3) is the marginal revenue from a permit when 3 permits are held.

When 8 < 8,

2b ala—ec) — 20D
o) = —p+ [T
= g-—A3 (3)
When § > 4,
v(B) = wu (4)
_ rafa—c)—2bD % . .
Where ¢ = [==—7——] and A = =} are constants, given the abatement level chosen in the

first stage. Note that ¢ — A3 = u, and when 8 < 3, v(f3) > w. The case when # > 3, is trivial
because the emissions constraint does not bind and firms can therefore achieve unconstrained
profit-maximization. In other words, firms’ production decigions are unaffected by the availability
of permits. The value then placed on a permit is simply the salvage value which can be obtained in
the third stage of the game. We therefore assume for the remainder of the paper, that firms operate
in the region defined by 3; < 3; ¥¢ and that their beliefs are also restricted to this region. Hence
the value function is restricted to be v(8) = o — AB3. We can rewrite v(3) = [@ — %%D} — %ﬂ
[% — %}D] is the marginal value of a permit when the abatement level is I? and no permits
are held. As the number of permits held () increases we get closer to the unconstrained profit-
maximizing quantity. The marginal value of a permit therefore decreases; the decrease is captured
by the term %g .

Since our focus is on the constrained emissions permits case, 3 can be interpreted as a measure
of the extent to which emissions permits constrain profit maximization. A lower value of D drives 3
to be less than 8 and results in emissions permits being a stiffer constraint for profit maximization
in the third stage of the game. The condition 3 < 3 can be translated into an equivalent condition

for n. Lemma 1 chows that the subgame perfect equilibrium share is % % < f implies n >

ﬁ. In other words, the number of firms n is sufficiently large so that firms’ profit

maximization in the third stage of the game is constrained by the availability of permits.

Marginal Value Function

In auctions literature, the value placed by a bidder on the item(s) being auctioned is typically
specified exogenously or is assumed to be drawn from an exogenous distribution, rather than
derived explicitly from the eventual use of the item(s). In contrast, we derive a representative firm’s

marginal value function for permits from revenue and cost relationships and use it to establish a
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Figure 1: Marginal value of a permit, v(3,«), versus &

subgame perfect Nash equilibrium in the share auction. We elaborate on the properties of the
marginal value function since our main results hinge on its specification and behavior.

v(3,¢) decreases in ¢ which is the unit cost of production. w = fé < 0. For lower cost of
production, the contribution per production unit is higher and hence the higher value per emissions
permit. (83, D) decreases in D - the abatement level in the first stage. % = —2—2 < 0. For

higher abatement levels, emissions are lower and hence the lower corresponding value per emissions

permit. v(3,b) decreases in b - the price sensitivity of demand. 8[7)((9’85’6)] = —Q(i =D} 0. For higher
price sensitivity, the drop in price from an additional unit of production results in a lower value per
emissions permit. The dependence on v(3, a) on « - the coefficient in the PE function - is not so
straightforward. 8[959;2@)] = 4b(i+D) — (aa_c). This is > 0 when 4b(G+ D) > afa —¢), and < 0 when

4b(8 + D) < afa — ¢). We know that when 8 < 3, v(8) > u > 0; ie., —%}ﬁ + [@ﬂ} > 0,
or ala —¢) > 2b(8 + D). Thus, when % <a< %, we have w > 0, and when
a > %(ijD), we have i”fiﬁ')] < 0.1 TFigure 1'% shows the behavior of v(8, ) with respect to

«. In the range [QE’(fjc?), 4%?:;1)))], the benefit of expanded production possibility from additional

permits increases in &. But beyond this range, additional permits do not significantly expand the

preduction possibility because emissions per production unit are relatively high; for o > %,

additional permits yield decreasing value.

Asin Wilson (1979) we assume that no firm has any proprietary information about the demand,
emissions, and cost functions, and therefore, about the derived marginal value functions. Symmetry
implies that firms have a common marginal value function for permits. We can now work backwards
to the second stage where firms participate in a sealed-bid uniform price share auction for pollution
permits. Fach firm submits a sealed tender specifying a schedule of prices bid for varying fractional
shares of the block B of available pollution allowances. An alternative, equivalent format is a

schedule that for each possible price, specifies the share requested. The regulator then selects the

11%@ =0 when a = %@.
Y2Parameter values were a = 7,500, b = 5, ¢ = 10, D = 1000.



sales price such that the total chare requested by the bidders matches the available supply. Lemma

1 provides a very elegant and useful result.

Lemma 1 For the share auction i the second stage, it is an optimal strategy to submit a schedule
such that at each price e, the reguested number of permits is Ble) = (W)B.13 The

subgame perfect equilibrium price is e = %(a — }\%) , and the subgame perfect equilibrium number

of permits recetved by each firm is 57 = %.14

Proof: The proposed equilibrium satisfies n - g(e*) = B. We show that if the (n — 1) other bidders
submit the schedule (e} then it is optimal for the remaining bidder to also submit the same
schedule. Assume that the (n — 1) bidders submit the schedule g{e) and the remaining bidder

submits some schedule 7(e). The clearing price e* satisfies
7(e") =B —(n-1)p(e)

and the remaining bidder’s profit is

Doy de| - rle RS eB
L/O (0 —Az) z}—e-v‘(e) = {oz— ?)‘0 —e-[m}
2e*B e"B 2¢**B
= o J—2A] =1 ] ()
ne — AB nag — AB nog — AB

The function on the right hand side of equation (5) is concave in €* and is maximized with respect
to e® when

%0 B(no — AB) — 4\B%¢* —4B(no — AB)e" = 0; no # A\B
i.e., when e* = %(a — )\%). This is exactly the price that will result if the remaining bidder submits

the schedule 3(e). Therefore the optimal strategy is to submit a schedule such that at each price
1—2e/(ne—AB)
n—1

e, the requested number of permits is 8(e) = ( )JB. The subgame perfect equilibrium

price is e¢* = %(a — A%
: *_ B
firmis g ==. 1

We have, in fact, proved an important generalization of Wilson’s (1979) result. In Wilson (1979),

), and the subgame perfect equilibrium number of permits received by each

the value of a share is proportional to the share fraction. In other words, the value of a share is the
value of the entire block multiplied by the share fraction. But, in practice, it is more likely that the
marginal value of the item being auctioned decreases with the share fraction. Lemma 1 generalizes
Wilson's result to the case when the marginal value of the item being auctioned decreases linearly

with the share fraction.

3.3 Abatement Subgame

We can now work backwards to the first stage. Substituting the subgame perfect equilibrium permit

price and permit share from Lemma 1 into the profit function in equation (1), we have

bB? —¢)—2bD BB B
Ix = - + a(aca(a(a 20)2 - = ))23)1)}7
Y

Ctgﬂ2 [0 1% [0 1

Y3 Equivalently, the schedule for the fraction of total available permits is s(e) = (ﬂwl)
MThough this was the only subgame perfect equilibrium we could deduce, we do not guarantee uniqueness.
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Figure 2: Equilibrium abatement (I}*) versus o

L@ (a—c) D — ag(D)] — 6D?

Thus far we did not need to assume a specific form for the abatement function g(D). For the
remainder of this paper we assume an abatement function of the form ¢(D) = £D?, where £ > 0.

Such a specification implies that it is increasingly expensive to engage in abatement.'®

Thus,

T - ®+—MD2+(EEE>D+£(OL@ G

a2

Finally, we need to deduce the profit-maximizing abatement level. Propasition 2 shows that
the profit function in the first stage of the game, after incorporating the results from the third and

second stages, 1s concave in the abatement level.

b8

Proposition 2 The profit function II}. in (7) is concave in D. D* = Z(EvTaﬁch)(a’ —c— 22 uniquely

mazimizes 117,
Proof: See Appendix A.

Table 1 summarizes the subgame perfect equilibrium results for the independent demands case,
in terms of the parameters of our madel. The protagonists of our madel are the number of permits B
offered in the auction, the state of current technology (which defines the emissions & per production
unit), and the subgame perfect equilibrium values of investment D*, permit price e*, output y*,

and profit IIf,. Proposition 3 formally describes pertinent relationships among these elements.

Y*Kennedy (2002), and Parry & Toman (2002) model similar abatement functions.

10



Table 1: Equilibrium Results: Independent Demands

Symbol | Expression
Abatement D z(bTagaT)(a Lo %)
Permit Price e* ﬁz—)(& —e— %) _ zan
Permit Share B %
Output y* m(af07%)+%

Proposition 3

a. D" decreases linearly in B; e decreases linearly in B; ¢ increases linearly in B; II~ increases

convexly in B.

b. 3 ap such that D* increases in o for & < ap, and decreases in « for o« > ap; y* decreases in
ov; 1T}, decreases in .1
2
87T,
8B da

* * 2k
oD 0 e T

b 17
C. 8B fa ) 9B Oa ) 5B o <0 for v > E

Proof: See Appendix A.

The behavior of equilibrium abatement D", equilibrium permit price e*, equilibrium output
y", and equilibrium profit IIf, with respect to the total number of permits B, is intuitive. As the
total number of permits is increased, the equilibrium number of permits secured in the auction
by each firm increases - which expands the production possibility and results in an increase in
equilibrium output. The equilibrium permit price drops since the marginal value placed by firms
on permits decreases in the number of permits secured. And when more permits are secured, a
greater level of emissions is allowed, which diminishes the incentive to engage in abatement and
hence the equilibrium abatement drops.

Figures 2 and 3% depict the relationships proved in Proposition 3. Figure 2 shows how the
equilibrium abatement varies with the PE function parameter (a) for different values of the total
number of permits. The equilibrium abatement first increases in and thereafter tapers off with
respect to a. In addition, the equilibrium abatement is decreasingly influenced by variations in
the total number of permits. The behavior is counterintuitive for two reasons. Firstly, it might be
expected that when emissions are excescive, the incentive to engage in abatement should be greater.
Secondly, when emissions are excessive, reducing the number of available permits should induce

at least as much or more abatement than in the case when emissions are lower. This seemingly

2 bénZla_c)2 . . o
By = 251 (bifgajif (~)” Numerical studies suggest that 3 c. such that for a < av., %—a > 0, and for o > .,

%—i < 0. a. is, analytically, the positive real root of (a — c)n&?z® — 4bBE%z* — (a — c)bnéz® — 4b°Béz® — 26°B = 0.
1"The proposition as stated suffices to show that for large values of o the equilibrium profit iz decreagingly influenced

by variations in 5.
15Parameter values were a = 7,500, b =5, ¢ = 10, & = 200, £ = 0.65, n = 150.
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Figure 3: Equilibrium permit price (e*) versus o

counterintuitive behavior is related to the valuation of permits described in Figure 1. For higher!®
values of «, the benefit from the expanded production possibility decreasingly outweighs the cost
of permits. At an excessive emissions level, the production quantity is already limited. Expanding
the number of available permits or investing in abatement at a very high emissions level does not
yield as much benefit as when the emissions level is low. Knowledge about such behavior is crucial
if the regulator desires that firms engage in sufficient levels of abatement to enable an increasing
level of stringency in pollution norms.

Reducing the number of available permits induces firms in a dirtier industry to a lesser extent
than firms in a cleaner industry to engage in abatement. In addition, abatement levels taper off with
increasing industry dirtiness levels. Firms react to decreasing availability of permits by continually
decreasing output since the benefit of expanded production possibility as a result of investment in
abatement decreasingly outweighs the cost of abatement and permits.

The behavior of equilibrium permit price with respect to « is similar. At higher levels of « the
drop in permit price as a result of an increase in the number of available permite is less than when o
is low. And while equilibrium firm output and profit increase in the total number of permits, once
again, the influence of altering the total number of permits on equilibrium permit price becomes

decreasingly pronounced with increasing industry dirtiness levels.

4 Competition

In the case of competition, the optimization problem faced by a representative firm in the third
stage of the game is: Mazimize {y) 1= (a—bY)y+ (8 — (ay —D))u—g(D) — eB — cy; Subject to:
0<5,y=0.

16

i.e., For a > ap.

12



4.1 Output Subgame

Proposition 4 gives us the unconstrained subgame perfect equilibrium output when the firms com-

pete in a Cournct fashion.

Proposition 4 Assume u < % The unconstrained subgame perfect equaltbrium output in the

third stage of the game when firms compete in a Cournot fashion, is § = —“b?:?)“
{3

Proof: See Appendix A.

Again we choose to focus on the situation when the emissions constraint binds for all firms; i.e.,
{8+D) G—c—au
e < b(n+1)

5 applies.

A
G—c—ay

b(n+1)

when (or equivalently 8 < 3, where § = o ] — D), in which case Proposition

Proposition 5 Assume thal the emissions constraint binds for all firms. If the abatement level
chosen by each firm in the investment stage is symmetrically D, and the number of permits secured
by each firm in the auction stage is symmetrically 3, the subgame perfect equalibrium output of each

- - - - - D
firm in the third stage of the game when firms compete in a Cournot fashion, is y* = ﬁ%

Proof: See Appendix A.

We now establish expressions for the subgame perfect equilibrium profit for the two cases viz.,
< 5 and 3 > 6 Let Z denote the total cutput of all other firms.
Case (i): B8 < § (or equivalently, y* = %)

e = - br SRR+ [ (o2 -0 Jumaf) el
~ %ﬁer a(&—c—ael;b(2D+aZ)}ﬂ
. &[(dC)D@Q(aDQ)] bD(DwZ)} (8)
Case (il): 8 > 8 (or equivalently, y* = a—Tb((i—T;))
I, = {&—bn[ f)(n+1) } IAD(TL‘FI)} { —(a[ 5(n+1) ]—Dﬂu—g(D)—Eﬂ
b(n +1)
= U+ pu—e) o

4.2  Auction Subgame

ﬂg represents the subgame perfect equilibrium profit when the emissions constraint is binding,

&—c—au]

E(n+1)

ﬂ‘i; is the unconstrained subgame perfect equilibrium profit, and ¢ = |& — bn| [‘Z_(er%“} —

13



d—c—au] o _ fé—e—au] ; : ;
(a[m} D)u g(D) c[—a D) | is a constant, given the abatement level chosen in the first

stage. The marginal value function »(3) in the constrained competition case is:
When 3 < ﬁ ,

%  ola—c)—b(2D+ aZ)
v(B) = *gﬁ +1 2 }
Substituting Z = (n— 1)(%) from symmetric equilibria in the investment and auction stages,
we have
% . ala—c)—b2D + a(n — 1)(Z£2)]
v(f) = T2 +1 02 )
b(n + 1 ald — ) — b{n+ 1)D
LS PNEICRE R RS 2]
= 6—A8 (10)
When 8> 5,
v(B) = u (11)

Where ¢ = [%@M} and \ = B(—T;ti) are constants, given the abatement level chosen in
the first stage. Note that & — 5\5’ = u, and when § < ﬁu, v(3) > w. The marginal value function
in the Cournot competition case includes terms in n, the number of firms. With competition in
demands, the value of a permit decreases in the number of firms because the price, and hence the
contribution per production unit decreases. We now have a representative firm’s marginal value
function before the auction is entered into.

Lemma 2 For the share auction in the second stage, it is an optimal strategy to submit a schedule
such that at each price e, the requested number of permits is B(e) = (M)B The subgame
1

n—1
perfect equilibrium price is " = 5(6 — 5\%) , and the subgame perfect equilibrium number of permits

received by each firm is 37 = %.

Proof: See Appendix A.

Substituting the subgame perfect equilibrium permit price and permit share from Lemma 2 into

the profit function in equation (8), we have

(12)

2an

C 2 20212

e - (Z;n—;faz)DQ N (chn(& —c) — E;B(Sn — 1)) D4 Ban(a —c¢) — ZA)BQ(W, —1)

4.3 Abatement Subgame

We can now arrive at the profit-maximizing abatement level. Proposition 6 shows that the profit
function in the first stage of the game, after incorporating the results from the third and second
stages, is concave in the abatement level.

2an(&fc)733(3n71)

sie : T+ : . Py
Proposition 6 The profit function 115 in (12) is concave in D. D* = Py

unigquely

marimizes H*C.

14



x 10

L L L L L L
o 05 1 1.5 2 25 3 35

Figure 4: Equilibrium firm profit (ﬂg) versus B

Table 2: Equilibrium Results: Competition

Symbol | Expression
oy 2an{é—ec)—bB(3n—1)
Abatement D (i ta) A A
Permit Price o —sz(n—Q—l)z—Hlfaz[an(&—c)ﬂ—bB(n—O—l)]—Q—Qban(&—c)(n—l)
Saln(bntLa?)
Permit Share G B
n A
g 2an{d—c)—bB(3n—1) B
Qutput Y ton(bntia?) an
c b B2 (n+1)?—dafn{a—e)+2¢a B]hB(rn—1)—an(bi—d)]
Profit HC 16a%n?(bntéa?)

Proof: See Appendix A.

To ensure non-negative equilibrium values of abatement, permit price, output, and product
price, we assume that (a —¢) > E’B(Qsa—n;l). Table 2 summarizes the subgame perfect equilibrium
results for the case of competition, in terms of the parameters of our model. We again examine
the interactions among the number of permits B offered in the auction, the coefficient « in the PE
function, and the subgame perfect equilibrium values of investment ].5*, permit price €, output g*,

and profit ﬂ}} Proposition 7 formally describes pertinent relationships among these elements.

Proposition 7

a. D* decreases linearly in B; é* decreases linearly in B; 4* increases linearly in B; 3 Bﬂc such

that ﬂg increases in B for B <« Bflc’ and increases in B for B > Bﬁc_zo

b. 4 ax such that 2" increases in o for @ < a5, and decreases in a for a > a4 4" decreases in
D D oY

Of.21

20w, _ Zan(a—c)(gn—a—zﬁaz)

o ™ bb(n+1)2—82as(n—1)]"
21, _ bEB(3n—1)++/[BEB(3n—1) > +1benS (a—c)?

ap ZEn(a—c)

. Numerical studies suggest that 3 «; such that for o < as, %—i =0,
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Proof: See Appendix A.

Figures 4, 5, 6, and 7%° visually describe the relationships proved in Proposition 7. The behavior
of equilibrium abatement (D*), equilibrium permit price (¢*), and equilibrium output (§*), with
respect to the total number of permits (B) is intuitive and the explanation for the observed behavior
is similar to that described in Section 3. However, the behavior of f[*c with respect to B is not so
obvious. For low values of B, an increase in B results in an increase in equilibrium profit due to
a drop in equilibrium permit price and decrease in equilibrium abatement. But, beyond a point?*
the profit decreases in the total number of available permits. When the total number of available
permits ig large, firms® production “capacities” in the third stage of the game are expanded. In
the presence of competition, the price drops significantly, with an accompanying drop in profit.
Figure 5 shows how the equilibrium abatement varies with the PE function parameter (a) for
different values of the total number of permits. The equilibrium abatement first increases in and
thereafter tapers ofl with respect to . In addition, the equilibrium abatement is decreasingly
influenced by variations in the total number of permits. The explanation for such counterintuitive
behavior is similar to that detailed for the independent demands case in Section 3. As observable in

Figure 6, the equilibrium permit price is significantly influenced by variations in the total number

. arr* BIT* R .
and for o > ae, BBLQ < 0; and 3 ap such that for @ < ap, 5= >0, and for a > ap, 5= < 0. ae¢ is, analytically,

the positive real root of 2(a — ¢)é'na” — 43B52(n +1)z" +(a— c)lA)fn(n A QBng(n +1)%" + (4 — 0)32n2(n -
Da — b Bn(n+1)* = 0. ay is, analytically, the positive real oot of 4(4 — c)B&*nz” + [4(d — ¢)*én” — 8bB?¢*(n —
D]a* —2(a — c)bBén(Bn — 3)z° + 20°B¢(n + 1)%2” — 2(a — c)b*Bn’(n — 1)z 4+ b°B?n(n+ 1) = 0.

%The proposition as stated suffices to show that for large values of o the equilibrium output is decreasingly
influenced by variations in B. The behavior of I jointly with respect to B and « is analytically intractable and is

therefore treated numerically in the discussion that follows.
23Parameter values for Figure 4 were a = 7,500, o = 5, b = 0.075, ¢ = 10, w = 200, ¢ = 0.65, n = 150. Parameter

values for Figures 5, 6, and 7 were ¢ =7, 500, b= 0.075, ¢ = 10, u = 200, £ = 0.65, n = 150.
6., For B > By,
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Figure 6: Equilibrium permit price (€*) versus o

permits for very low values of . Firms’ capacities vary significantly with changes in the number
of available permits for very low values of o and, in the presence of competition, this translates
into a pronounced influence on product price and revenue, and hence on the valuation of permits
by firms.

The relationship of equilibrium profit with respect to o for varying values of the number of
available permits is therefore intricate. Figure 7 shows that the profit first increases in o, with the
curve corresponding to a smaller number of permits located above the curve corresponding to a
larger number of permits. The curves initially converge with increase in «, reflecting a decreasing
influence on equilibrium profit of altering the number of available permits. But with further increase
in « the order of the curves gets reversed and they separate out, reflecting an increasing influence
on equilibrium profit of varying the number of permits. When « is very low, firms’ capacities
are large; increasing the number of available permits further increases their capacities, which, in
the presence of competition, resulls in a significant drop in product price and an accompanying
drop in profit. As a increases, the effect of altering the number of available permits decreases and
the curves therefore converge. But with further increase in «, additional permite compensate for
shrinking capacity and begin to yield increasing benefit from the expanded production possibility;
firm profit, however, decreases in a.

The above delineation of the effects of competiticn in the end product market on equilibrium
outcomes is potentially insightful to both regulators as well as firms. In the presence of competition,
cleaner firms can benefit from a reduction in the number of available permits. And in the case of
competition too, reducing the number of available permits induces firms in a dirtier industry to a
lesser extent than firms in a cleaner industry to engage in abatement. Firms react to decreasing
availability of permits by continually decreasing output since the benefit of expanded produection
possibility ag a result of investment in abatement decreasingly outweighs the cost of abatement and

permits. Also, abatement levels taper off with increasing industry dirtiness levels.

17



Figure 7: Equilibrium firm profit (ﬁg) VErsus a

5 Abatement and the Cost of Production

Emissions abatement efforts can influence the cost of production either positively or negatively.
Pollution control R&D can result in the implementation of resource-efficient processing of materials,
translating into a decrease in unit production cost. On the other hand, stipulations on emission
levels could necessitate additional processing of materials to mitigate emissions, leading to an
increaze in unit production cost. We can incorporate such effects into our model by replacing the
constant unit cost of production ¢ with the function ¢ + pD where p € (—%, o0) is a constant and
D is the abatement level. Subsequent steps in the analysis are detailed in Appendix A. Subgame

perfect equilibrium results are presented in Tables 3 and 4.

Table 3: Equilibrium Results: Independent Demands

Symbol | Expression
* bB B
Abatement D mr)(a )

: : 1 BB pB
Permit Price e* SalbT pa T a—c—b+F)a—c-2=2 _f;_n)}
Permit Share a* %

* 1 e bB _pBy, B
Output Yy —T?éb?&gﬁ“ ))Ea )c ) %(R )22”;:(; ‘”]53)2
a“‘n(2ta+p)la—c)tan“(a—c) "+ +
Profit II%, 1ol oo £a] Z

Independent Demands

Figure 8%° shows how the equilibrium abatement level varies with the coefficient o for different
values of the total number of permits when abatement reduces the variable cost of production. We

again encounter counterintuitive behavior. It might be expected that an increase in the number of

BParameter values for Figure 8 were ¢ = 7,500, b =5, ¢ = 500, u = 200, ¢ = 6.5, p = —2.25, n = 150.
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Table 4: Equilibrium Results: Competition

Symbol | Expression
Abatermnent b* 2an(&fc)hfpochbB(3nfl)
X 4n(bntpotfa?) . . R
Permit Price é* —b®B(n+1)*+4ta’[an(b—c)—bB(nt+1)|4+2ban{d—c)(n—1)+pal2an(i—c)+paB—1bB]
8a?n(bn+po+ia?)

Permit Share B B

. 20:71(&—0)—,00:3—33(371—1) B
Output Y dan(bn+patia?) + an

. b2B2(n+1)2—da[n(i—c)+26aB][bB(r—1)—on(i—cd)|+paB[paB+dan(b—c)—20B(n—23)]
Profit & 16a%n?(bn+pa+Ea)

40 L 1 L 1 L 1 L

Figure 8 Equilibrium abatement (D*) versus o

available permits would always decrease the incentive to engage in abatement. However, as observ-
able in Figure 8, for large values of o the equilibrium abatement is greater when larger numbers
of permits are offered in the auction. Proposition & formally states this. When abatement reduces
the variable cost of production and « is large, there is a greater incentive to invest in abatement,
reduce the cost of production, and hence better exploit the expanded production capacity resulting

from a larger number of permits being secured in the auction.

Proposition 8 D* increases in B for o > max{f—j, %} when p < Q.

Proof: See Appendix A.

Figure 9%

demonstrates that the behavior of equilibrium permit price with respect to « for
different values of p is rather unpredictable for low values of . This is because of the interplay
among a number of factors. For low o, the production capacity is high; thus the relatively lower
value placed by firms on permits and the resulting low equilibrium permit price. Since production

capacity is high, there is a greater incentive to invest in abatement when p is negative, to bring down

% Parameter values for Figure 9 were & = 7,500, b = 5, ¢ = 500, v = 200, £ = 6.5, B = 150, 000, n = 150.
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Figure 9: Equilibrium permit price (e*) versus « for different values of p

the unit cost of production. But combined with the effect of firm output on revenue from sales, these
effects translate into a behavior that is contingent on parameter values. As o increases, the ordering
among the curves becomes more definite with equilibrium permit price increasing with decrease in
p. Permits and investment in abatement are the two components which define production capacity.
For large o, production capacity is low and well short of the (unconstrained) profit-maximizing
level. Since the cost reduction from investment in abatement applies to all production units, both
the incentive to invest as well as the value of permits as reflected in equilibrium permit price increase
as p decreases. Figure 22 in Appendix B shows that the equilibrium abatement decreases convexly
in p. The counterintuitive behaviors of equilibrium abatement and permit price tapering off in o,
persist. The behaviors of equilibrium permit price, firm cutput and firm profit with respect to o
for varying values of the total number of permits, are similar to those described in Section 3 (see
Figures 23, 24, 25, and 26 in Appendix B).

Competition

In the case of competition too the incentive to engage in abatement increases in the number of
available permits, for relatively large values of o (see Figure 27 in Appendix B). Proposition 9.a
formally states this. The equilibrium permit price is significantly influenced by variations in the
total number of permits for low values of o (see Figure 10°7) due to two main effects on the valuation
of permits by firms. Firstly, firms’ capacities vary significantly with changes in the total number
of permits for very low values of «o; competition significantly influences product price and revenue
from sales. Secondly, variations in the total number of permits for low values of « translate into
significant differences in the abatement levels chosen to offset the downward pressure on price.

In certain situations equilibrium firm ocutput behaves differently than what is observed in Section
4, running counter to the expectation that firm output would always decrease in «v. IMigure 29 in

Appendix B depicts such a situation. For low values of ¢, firms’ capacities are large and competition

“"Parameter values for Figure 10 were a = 7,500, b = 0.075, ¢ = 500, u = 200, £ = 6.5, p = —2.25, n. = 150.
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Figure 10: Equilibrium permit price (¢*) versus o

exerts downward pressure on product price. This drives firms to engage in abatement in order to
bring down the cost of production and exploit the large capacity. As « increases from a very low
value, firms invest more in abatement to expand the shrinking capacity and to reduce the cost of
production, which causes equilibrium firm output to increase in «v. However, with further increase in
«, firms’ capacities are forced further downward, product price increases, and optimal investments

in abatement no longer increase equilibrium output; equilibrium firm output decreases in a.

Proposition 9

a. D* increases in B for o > max/{ b(s‘z‘_l) , M} when p < 0.

b. It is possible that 3 a1, az € RT, such that when p < 0, §* increases in a for @ € (a, a2).%®

Proof: See Appendix A.

The behavior of equilibrium permit price with respect to « for different values of p is again
rather unpredictable for low values of . For higher values of o the ordering among the curves
corresponding to different values of p is similar to that in the independent demands case (see Figure
28 in Appendix B). Equilibrium firm profit (see Figure 30 in Appendix B) behaves in a manner

similar to that described in Section 4.

6 Specification of the Emissions Function

It might be argued that the extent of abatement could depend upon the volume of production.
It turns out that the structural attributes of our pertinent results hold even when abatement is

modeled as a function of cutput. We test the validity of cur results with an emissions funetion

28 s . e . ~ . . e
The proposition provides stronger than necessary conditions under which §* increases in a. The proposition

suffices to show that there exists situations in which " increases in .
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of the form 6 = (lcj_—op)y, where the abatement level p is chosen in the first stage of the game and

the cost of engaging in an abatement level of p is £u? (where & is a constant), implying that it

ag
(1+u)
presented in Tables?” 5 and 6. Analysis leading to the results is outlined in Appendix A. Deductions

is increasingly expensive to engage in abatement. We denote o = . Equilibrium results are
of behaviors are analytically intractable and hence graphical depictions are provided in Appendix
B. In the case of independent demands equilibrium permit price and output drop as the industry
gets dirtier. Equilibrium firm output decreases in response to decreasing availability of permits. In
Section 3, firm capacity was given by % where o had a fixed value and DD was the abatement
level chosen in the first stage of the game. A lower bound on firm capacity was therefore %
Here, firm capacity is given by % where o = ﬁ can be varied by altering u. Larger levels of
it are optimal when greater numbers of permits are available because the benefits from additional
capacity become increasingly significant and increasingly outweigh the costs of abatement. In the
emissions function used in Section 3, abatement does not impact capacity as significantly as it does
here. Equilibrium abatement, as before, tapers off as the industry gets dirtier.

In the case of competition, the behavior of equilibrium profit is similar to that observed in
Section 4. An increase in the number of permits increases the capacities of the firms and exerts
downward pressure on end product price and firm profitability. When the industry is clean, firm
capacities are large and lower levels of abatement are optimal when larger numbers of permits are
available, in contrast to the independent demands case. With competition, firms in a clean industry
can indeed benefit from a reduction in the number of available permits. Equilibrium permit price
and firm cutput show the same behavior ag before. The points of discontinuity in the graphs in

Figure 20 (Appendix B) correspond to zero abatement.

Table 5: Equilibrium Results: Independent Demands

Symbol | Expression
Abatement L ‘if;;gz)
Permit Price e* (””2—;0) — EBBrn
Permit Share - %

B
Output y* %7(1 L e
a—c a—c

Profit e %an__ 16fan’n’

7 A Numerical Example

We present a numerical example that elucidates pertinent results and corroborates our interpreta-
tions presented in previous sections. Parameter values chosen for the numerical example are listed
in the tables below. Results for the two scenarios - Independent Demands and Competition are

tabulated separately in Tables 7 and &.

29 Noa_ @ _ =3 oy or— 20 4}
In Table 5, & := i 4—[1+ E(REG) . In Table 6, & := e YR LT
apén

2B (n—1)+4Eagin
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Table 6: Equilibrium Results: Competition

Symbol | Expression
Bapn(i—c)—2bB*(n—1)

A%
Abatement H 2hB (n—1) - Eag n?
. . R (a—c) (?’H—l)bB
Permit Price e* =& T T aatn
Permit Share g* B
ke
Output 7 %
ce | Blame)  (n-1B? . Bagn(i—o)-2bB%(n—1)|2
Profit e 2an 2GR ¢l 26B2(n—1)+4fap2n? )

We first discuss the case when p = 0 (i.e., when investments in abatement does not affect the cost
of production). Under both demand scenarios, the equilibrium abatement level decreases when o is
increased from 2.5 to 12.5, running counter to the expectation that the abatement would be higher
when firms pollute more, given that pollution norms need to be met with in either cage. The output
levels for o = 12.5 are much lower than the output levels for o = 2.5, providing numerical evidence
that dirty firms decrease output instead of engaging in greater levels of abatement. Variations
in the number of available permits result in smaller variations in equilibrium abatement when
a = 12.5 than when o« = 2.5, again running counter to the expectation that reductions in the
number of available permits should result in greater changes in equilibrium abatement when « is
larger. Additionally, in the case of competition, equilibrium profit can increase with a reduction in
B; the equilibrium profit increases by about 3% when B is reduced from 200000 to 150000 when
a = 2.5. In both demand scenarios, equilibrium permit price decreases more rapidly with increase
in B for a = 2.5 than for oo = 12.5.

A negative value of p implies that investments in abatement cause a reduction in the cost of
production. When p = —2.25, and o = 12.5, equilibrium abatement, interestingly, decreases as
the number of available permits B is decreased, in both demand scenarios. The counterintuitive
behaviors of equilibrium abatement decreasing when « increases from 2.5 to 12.5, and of variations
in the number of available permits having a decreasing influence on abatement and permit price as
« increases, continue to be observed when p < 0. Equilibrium firm profit in the case of competition

increases by about 4.5% with a reduction in B from 200000 to 150000 when o = 2.5.

8 Implications

The regulator has a number of levers which it can work with to ensure that emissions remain within
acceptable limits and that firme engage in adequate levels of abatement. Levers include penalties
for non-compliance, the number of permits offered in the auction, emissions allowed per permit,
subsidies or tax breaks for investments in abatement by firms, the treatment of unused allowances,
and permit allocation across industries. Firms, on the other hand, can comply with stipulated
regulations by investing in pollution abatement, selecting the appropriate type of investment (e.g.,

end-of-pipe or in-pipe, product or process based), varying production levels, or purchasing permits.
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Table 7: Numerical Example: Independent Demands

(a=7500, b=5, =500, u=200, £&=6.5, n=150)

p=20

o B D* e* y* p* 1%

2.5 100000 1b5.25 74247 328.77 5&8536.16 1100284.63
2.5 150000 136.99 490.41 454.79 5226.03 1536986.30
2.5 200000 118.v2 238.36 580.82 4505.80 1969558.60
12.5 100000 41.23 257.35 56.63 7216.84  197772.06
12.5 150000 4041 246.71 83.23 T7083.83  290669.93
12.5 200000 39.60 236.07 109.83 6950.83 383576.51

p=-2.25

a B D e* y* p* Iz

2.5 100000 200.52 796.48 346.88 bH765.63 1190668.40
2.5 150000 191.41 533.01 476.56 H117.19 1634473.00
2.5 200000 182.20 269.53 606.25 4468.75 2079340.28
12.5 100000 47.12 26140 57.10 7214.48 200772.53
12.5 150000 4864 250.82 83.80 T7080.54 295031.64
12.5 200000 5017 240.24 110.68 6946.60 380320.18

Given our modeling choice and assumptions we can elaborate on some of the aforementioned levers.
The rest, though they merit attention, are beyond the scope of this paper and provide directions
for future research.

The findings in this paper can aid regulators in the understanding of how obgerved abatement
levels, permit prices, and industry output might result. The behaviors of these variables are intricate
and often run counter to intuitive expectations. For instance, a drop in permit price cannot be
simply associated with reductions in firms’ costs of compliance. The EPA Acid Rain Program
2001 Progress Report states that emissions reductions continue to cost less (to firms) than what
was anticipated when the Clean Air Act Amendments were enacted. The price of an allowance
was initially estimated at $500-1200/ton in 2001 dollars but actual prices have been significantly
lower than predicted. During 2001, SOz allowances ranged in price from $135 to $210/ton. The
EPA attributes the difference between estimated and actual prices to the reducing marginal cost
of compliance - the cost of reducing the next ton of pollutant emitted from the industry sector
- which is reflected in the price of an allowance. The model used in this paper is a fairly simple
repregentation of investment, permit bidding and allocation, and production. Yet the interplay
among the elements in the model renders the behavior of equilibrium outcomes intricate and often

counterintuitive. Our model suggests that equilibrium permit price can be low in a relatively dirty
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Table & Numerical Example: Competition

(a=7500, b=0.05, c=500, u=200, £=6.5, n=150)

p=20

o B D* &* g* p* T,

2.5 100000 104.07 03448 30820 5187.70 751838.61
2.5 150000 6519 756.62 426.08 4304.41 836727.70
2.5 200000 26.32 57877 543.86 3421.04 81244537
12.5 100000 39.10 262.95 56.46 7076.54 186083.83
12.5 150000 37.28 254.04 82.98 6877.63 265258.21
12.5 200000 3545 246.93 10950 6678.73 330178.50

p=-2.25

o B D &* g* P 11,

2.5 100000 139.90 0O75.70 322.63 5080.20 801537.84
9.5 150000 106,91 770.54 44276 4179.26 881724.85
9.5 200000 73.92 583.98 562.90 3278.24 844269.02
12.5 100000 44.92 266.85 56.93 7073.05 188020.75
12.5 150000 4540 925820 83.63 6872.76 260283.00
12.5 200000 4587 250.81 110.34 6672.48 344350.34

industry; because the benefit from expanded production possibility decreasingly cutweighs the costs
of production and permits, resulting in a decrease in the value placed on permits, a lower permit
price in the auction, and lower production levels. The EPA’s 2001 Progress Report also mentions
that most SO emissions occur in the Midwestern US - in the states of Ohio, Indiana, Pennsylvania,
Tlinois, Kentucky, Missouri, Tennessee, and West Virginia. Total power generation for these states,
however, dropped from 82,279 MWh (MegaWatt-hour) in the year ending March 2002, to 81,930
MWh in the year ending March 2003.°° While such anecdotal information is insufficient to make
categorical inferences and excludes a host of other factors, it does point toward the need for a better
theoretical understanding of equilibrium abatement, permit price, and industry cutput outcomes.

Given our modeling choice of a share auction, the regulator has at its discretion the choice of the
total number of permits to be offered at the auction. It might seem straightforward that reducing
the total number of permits will influence a dirtier industry to a greater extent than a cleaner one to
engage in abatement. However we find that reducing the number of available permits decreasingly
induces abatement for increasing industry dirtiness levels. Reductions in the number of available
permits mean that firms in a relatively dirty industry are progressively driven to lower and lower

output levels, and perhaps finally to extinction. While this augurs well for the environment, the

Lhttp:/ /www. eia. doe.gov/cneaf /electricity /epm /table!_6_a.html.
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combined impact of decreases in output and pollution levels on consumer welfare also needs to be
considered. Industry structure too influences equilibrium outcomes. Interestingly, in the case of
competition in the end product market, reducing the number of permits offered in the auction can
increase equilibrium firm profit if the industry is sufficiently clean. The regulator can then amicably
enforce reductions in the number of available permits. This is favorable from the viewpoint of a
regulator aiming to increase the level of stringency in pollution norms.

The paper presents a methodology by which firms can derive a marginal value function for
permits and translate the value for permits into optimal bidding strategies. In addition the modeling
effort provides a means for firms to deduce their optimal levels of abatement and output - principal
levers for compliance. An industry comprising dirty firms risks low optimal cutput levels if stringent
pollution norms are effected, given increasing marginal costs of abatement. Traditionally firms
lobby to roll back pollution standards because of the lingering belief that stricter environmental
regulations erode competitiveness (Michael Porter, 1995). But in a competitive setting, an excessive
number of permits is detrimental to firm profit in a relatively clean industry, because of large
capacities which bring down product price and firm profits.

Our model’s predictions can aid a regulator attempting to control a set of pollutants via permit
auctions, in choosing the pollutants to be controlled depending on the characteristics of the industry
in which the pollutants are generated. For example, if the regulator desires that firm profitability
should not be negatively affected as a result of stringency in pollution limits, it could target a
pollutant in a competitive, relatively clean industry. On the other hand if the regulator intends
to exclude a pollutant to the greatest extent possible (i.e., minimizing pollution) from discharge
streams in a dirty industry, it can enforce stringent pollution caps which will drive down output
levels. If a permit auctioning program is already in place, our results help in aiding a regulator in
deciphering reactions from firms which are manifested in permit prices. In literature, low permit
prices have been associated with low marginal cost of pollution control. But as per our model
permit prices can be low in a dirty industry since output levels are low and hence the demand for
pollution permits is low. If this is indeed the case and if the regulator desires that firm profitability
should not be significantly affected by the imposition of emissions norms, then perhaps a mecha-
nism other than the one modeled in our paper might be more appropriate. The applicability and
effectiveness of various emissions control mechanisms (e.g., different permit allocation methods)
to specific industry cleanliness levels and structures is beyond the scope of our paper but merits
further research. In addition, our paper does not exhaustively prescribe effective pollution control

maneuvers corresponding to different industry scenarios but we do provide a significant start.

9 Conclusion and Future Work

In this paper we modeled a three stage game in an cligopcly - investment in abatement, followed
by a “share” auction for permits and finally, the production of output. We treated two scenarios
in the end product market - Independent Demands and Cournot Competition. In both cases we

found that reducing the number of available permits induces firms in a dirtier industry to a lesser
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extent than firms in a cleaner industry to engage in abatement. In addition, abatement levels taper
off with increasing industry dirtiness levels. In the presence of competition, firms can benefit from
a reduction in the number of available permits provided the industry is sufficiently clean. Our
findings are potentially insightful to both regulators as well as firms, since many countries have
chosen auctioning as a means of allocating permits in their planned emissions trading programs, and
no research to date delineates the effects associated with permit auctioning and firms” abatement
and output decisions.

Several extensions to this work merit consideration in future research. Uncertainty can be in-
corporated in end product demand and hence in the valuation of permits by firms. Uncertainty
can also be introduced in beliefs about the cost structures of competitors or in the likelihood of
abatement resulting from investment efforts. Our analysis assumes that no firm has any proprietary
information on the valuation of permits. Even if no uncertainty is considered, a firm’s valuation
of permits could be private information and an extension to an auction with private values can
be undertaken. In practice, permits can be banked for future use and investments in abatement
yield emissions reductions across periods; an extension to multiple periods will therefore be very
insightful. The assumption of symmetry could be relaxed but given the very limited results in
divisible good auction theory due to analytical intractability, additional assumptions or modifica-
tions to the model are likely to be necessary. In practice, firms have grandfathered allowances in
addition to the allowances secured in the auction; we believe that our results will continue to hold
if the assumption that firms are constrained in profit-maximization by emissions stipulations is
maintained. Emissions permits are also exchanged in markets outside of auctions through brokered
trades, electronic screens, or direct trades between participants without an intermediary. Interac-
tions between permit auctions and exchange mechanisms are worth exploring. Permit auctions are
also conducted across industries and countries; additional intricacies in modeling and analysis will

provide for interesting findings.
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Appendix A: Analysis

Proof of Proposition 1:

The optimization problem in the third stage is:

Maximize y) D=(a—by)y+ (#—{ay — D))u—¢g(D) — el — cy; Subject to: § <3,y > 0.
Concavity of the profit function implies that § = {y : % = 0} is the unconstrained profit-
maximizing quantity.

dll o o G—c—au

—=a-— —au—¢ =

dy v Y %

The constraint @ < 3 implies ay — D < 3; l.e., y < %.

Concavity of II and the assumption that w < 2= imply that y* = min{%, %} is the

profit-maximizing quantity. 0

Proof of Proposition 2:

Il 2(b + £a?) (a c bB)

—< = = D4 (——=-—— 13

aD a? + a a o®n (13)

d*TI%, 2b+ £a?)

m - e Y (14)
dIl?

Implying that I1f; is concave in . —§ = 0 yields D" = Q(IJTagar)(G‘ —c— %), the profit-maximizing

abatement level. 1

Proof of Propasition 3.a:

. OD* ab <0 82D~ 0
L. = - =0.
OB 2an(b+&a?) 7 HB?
de* £b b d%e*
T LA, N,
Y8BT m(btéad) 2an o 9B?
* 2 2
A R S ek N N M
dB 2an(b+£a?)  an  2an{b+ £a?) B2
AT bB b = —e)ga? + EB
v, —¢ = —(a—c—— +(a c):(a L >0, since a > ¢+ au;
OB an 2an{b+£a?)  2an 2an(b + £a?)
B2, b2

= 0. 1
OB%  2a%n?(b+ a?) >

Proof of Proposition 3.b:

oD+ 1

da (b + fa?)?

i {—azgn(a —¢) + 26abB + nbla — c)}
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The numerator on the right hand side of the above equation is quadratic in & and has roots
_ BEBF/(b€B)2+btn2(a—c)?
o= .
Enla—c)

b B++/ (b€ B)2+bén%(a—c)>

The positive root is o = e 0 .
Thus, we have 3 >0 fora < bEB+\/(b§f()jj-j)E nz(a—c)Z’ and
o
8D* neola—c
< 0 for a > BB+ (LB HbEnta—c)? 1
Ao tnla—c)
L oy bB ca bB. B
ii. = — (a—e——)— —
da 2a’n(b+€a?)  (b+Ea)? an’  an
bB + 2Bta’ ca bB _ bB
=— - —c——) <0 —c>—. 1
20°n(b+&a?)  (b+&a?)? a=c cm)  sinee (a —¢) an
. Oy bB bB ca bB., Bla—-c)
e T 202n(b + £a) (a=e- cm) C2(b+£a?)? (a—e- cm) 2
b2 B* 2
=+ Bla — bB
——an la_c)éa — sa (a—c——)?<0. 1
2a%n(b + £a?) 2(b+ £a?)? an
Proof of Proposition 3.c:
82D b
i = >0. 1
" 9B da n{b+ £a?)?
d?e" b a b
= >0. 1
" 3B o n(b+ &a?)? T
9%y (b + 26a?) : 4o
_ - Ko
" 3B oa 2an(b + 50:2)2( e 2an(b + &a?)
2 2 2 4
:_(b + béa” + 28°a*) <0 1
2a%n(b + £a?)
O, (b + 3¢a®) » b°B 1 ¥’B
v, = — — 9 o=
" 3B da 2a0°n(b+ £a?)? (a—ejfa”+ an + 2am(b+ £a?) fada—c] aln
1

W3R . 42 Bto
o T

(@ —c)ga®(a® —b) +

<Oifa>\/§ I

 2a2n(b+ £a?)?

Proof of Proposition 4:
We show that if the other (n — 1) firms choose ¢, then it is also optimal for the remaining firm
to choose §. If the other {n — 1) firms choose #, the unconstrained optimization problem of the

~

remaining firm is Mazimize {y}H =(G—bln—1)0+y)y+(8—(ay— D))u—g(D)—eb —cy.

dIl - -

Iy = a—bn—-1)§—2by —au—c
d*11 -
— = —2b<0

dy? <

Implying that IT is concave in y and {y : % = 0} ig the unique profit-maximizing output. But
Y= T
the third stage of the game is § =

satisfies % = (. Therefore, the unconstrained subgame perfect equilibrium output in

d—c—au ]

b(nt+1) '
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Proof of Proposition 5:

The factor & ZD) corresponds to the “capacity” constraint on a representative firm’s production.
In absence of the constraint the subgame perfect equilibrium output would be g. Since firm profit
increases with output in the range [0, 7], each firm produces up to capacity in equilibrium; the

. T . . . _ B+D
resulting subgame perfect equilibrium output in the third stage is y* = =—=. 1

Proof of Lemma 2:

The proposed equilibrium satisfies n - 3(¢*) = B. We show that if the (n — 1) other bidders submit
the schedule $(e) then it is optimal for the remaining bidder to also submit the same schedule.
Assume that the (n — 1) bidders submit the schedule 3(e) and the remaining bidder submits some

schedule 7(e). The clearing price ¢ satisfies

7€) =B —(n—1)s(€)

and the remaining bidder’s profit is

GO T 22 |2 9B
& — Az dz}é*-v‘é* = (6z —X— S [
e @) = (635 o
2B . B 9642
P LN R
neg — AB ng — AB ng — AB

The function on the right hand side of equation (15) is concave in ¢* and is maximized with respect
to e* when
26B(né — AB) — 4AB?¢* — 4B(né — AB)&* =0; né £ \B

i.e., when ¢" = %(6 — 5\%) This is exactly the price that will result if the remaining bidder submits

the schedule 3(e). Therefore the optimal strategy is to submit a schedule such that at each price

1-2e/(né—3B)

e, the requested number of permits is 8(e) = ( JB. The subgame perfect equilibrium

n—1
price is &* = %(& — 3%), and the subgame perfect equilibrium number of permits received by each
firm is #* = %. 1
Proof of Proposition 6:
dity,  2D(bn+¢0®)  (2an(@ —c¢) —bB(3n 1)
= - + (16)
an a? 2an
Ply  2bn+£a?) -0 ()
an? a?

QQH(&*C)*EB(STL*].)
an(bn+ta?)

Implying that ﬂg is concave in D. % = 0 yields D* = , the profit-maximizing

abatement level. 1

Proof of Proposition 7.a:

aDh* b(3n — 1 82D
2D bl Oy
0B dn{bn + £a?) 0B
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08" B(n+1)% f 4bla’(n 1 1) . 52e

TR ! ,
OB 8a?n(bn + £a?) aB2

=0.

o 1 bBn-1)  bnida® b g
8B an  dan(bn+£a?)  dan(bn+a?) | OB2

iii.

=0. 1

Al BB(n+1)2 —2alnb(a —c)(n— 1) + 4bBéa(n — 1) — 28a’n(a — c)]
OB 8a2n2(bn + £a?)
The right hand side of the above equation ie > 0 if B <

iv.

2an(a—c)(bn—b—2ta”)

Th(niL) staiGnp 2nd < O

2an(i—c)(hn—b—26a®)
B> b[b(n+1)2—8a(n—1)]" i

Proof of Proposition T.b:

L 852: - QR(BnlJr ca?) {—fazn(& —c) + 335(371 — Lo+ l;nQ(& — c)}

The numerator in the right hand side of the above equation is quadratic in a and has roots

_ beBEn1)F /[ BB 1P 4ben® (4 —)?
2tn(d—c)

beB(3n— 1)+\/[b£B(3n 1))2+4bEnd (4— o

The positive root is o = (G0

~

*

b¢ B(an— 1+\/ [bEB(3n—1)]2+4bEn®(a—c)?

Tlrius, we have e >0fora < SEn (A=) , and
22 <0 for o > EBE=UVBBEn-UP ek g
da 2én(d—c)
. O —4B(bn+£a?) — (bn + 3¢a2)2an(ia — ¢) — bB(3n — 1)] + 2am(a — ¢)(bn + £0?)
11. = =
dar da?nbn 4 £a2)?
—62Bn? — 4Bg%a" — b*Bn — 3bBfa® — ¢o’nldala — ¢) — bB .
= z o i fo” —ganldald —c) ] < 0 since af@ —¢) > bB. 1
4oPn(bn + £a?)?

Proof of Proposition 7.c:

8D*  2¢al3n—1)
1. = =
OB da An{bn + £a?)?

g2 b(n+1)%abn + 2¢a”) . b2a(n+1) N
' 9Bda  da'n (bn + £a2)? n(bn + £a2)?

82% _32 2_b2 _38 2 24 2_5
il. y_ _ n r §;o: fo(iga n)<01fa> bgf. |
OB da 4oPn(bn — £o?)

Proof of Proposition &:

8D* a2 +-£) ‘p‘
5B 2(b+pa+ga 7 The right hand side is > 0 if for p < 0, E — = <0 ie,ifa > | | The
condition in Proposition 16 can be rewritten as £a® — |pla + b > 0; the left hand side i quadratic

. . v/ p2—dbE
inoand 18 > 0 when o > Pl 2’; and hence, when o > ‘g‘ |

Proof of Proposition 9.a:
oD* . pa+b(3n—1)

5 = inlmtpatidd) The right hand side is > 0 if for p < 0, |pla — b(3n — 1) > 0; ie., if
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a > %. The condition in Proposition 19 can be rewritten as £a2 — p|or+ bn > 0; the left hand

Ca o . Z_gh
side is quadratic in & and is > 0 when o > M@ and hence, when o > ‘gﬂ. 1

Proof of Proposition 9.b:

8@)* [4B£o®—(2n(a—c)—5pB)a+4bBnr] [Zan(d—e)—pBa—bB(3n—1)](bn+2pa+3¢a?) -
% - 4a2n(im+pcx+§a2) a 4a2n(fm+pa+§a2)2 . When P < 0’ bn —
2lplar 3607 > 0ifa < EVEZHEN 95 (a- ) p|BabB(3n-1) < Oifa < . Denote

aq

_ (Qn(&—c)+5\p\B)—\/(Qggg—c)-l-SMB)z—6463257@, ay — min{‘p‘—w/gg—:ﬂb&n bB(3n—1) }, and as —

* 2n(d—c)+|o| B

(n(@—o)+5/plB) Y/ Cnll o 1ololB) SRR 1t gy, a5 € RY, 4B —(2n(a—c)+5 p|B)a+4bBn < 0

for a0 € {ovg,x3); and if oy < ag < a3 when p < 0, we have

>0 fora € (o, 00). 1
a

Analysis for Section 6 - Independent Demands:
The optimization problem in the third stage is:

Maximize Iy M=(a—by)y+ (B —oy)u— glu) —eB — cy; Subject to: @ < 3,y > 0.

Proposition 10 Assume u < ===, In the third stage, given abatement levels and a permit alloca-

tion vector, the profit-marimizing quantity y* = min{%, g}

Proof: Identical to the proof of Proposition 1.

The constraint on @ can be re-written in terms of 3 since, when g < =57, the constraint

on @ is binding, and vice-versa. Denocte By = w. Thus, when 3 < By, the constraint on 6
is binding. We now establish expressions for the optimal profit for the two cases viz., 8 < 8y and
B> Bo.
Case (i): 8 < By (or equivalently, y* = g)
g8 g p

)+ B —al=) u—glp) —ef — (=)

(0% 83 83

I =

o bl

= 89 (18)
Case (ii): B > fy (or equivalently, y* = 2=5-o%)
My = o b(—gp—)| () + | f ~al—5—)|u
~g() —eB — o ———)
= Yo+ Bu—c¢) (19)

II7 represents the subgame perfect equilibrium profit when the emissions constraint is binding,
IIf; is the subgame perfect equilibrium profit when the emissions constraint is not binding, and
Yo = [a — (=52 ) (=52 ) — au(=522) — g(p) — c(=5*) is a constant, given the abatement
level chosen in the first stage. The“marginal value function” u(3) is:
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When 8 < 5,

= gy — )3 (20)
When 8 > £,

v(B) = u (21)

Where g = (‘%C) and A = 3—2 are constants, given the abatement level chosen in the first stage.

Note that og — My = u, and when 3 < B, v(3) > u. We now work backwards to the second stage

where firms participate in a sealed-bid uniform price share auction for pollution permits.

Lemma 3 For the share auction i the second stage, it is an optimal strategy to submit a schedule
such that at each price e, the requested number of permits is S(e) = (M)B.31 The
subgame perfect equilibrium price is e* = %(ao — /\g) , and the subgame perfect equilibrium number

of permits recetved by each firm is 57 = %.

Proof: Identical to the proof of Lemma 1.

Substituting the subgame perfect equilibrium permit price and permit share from Lemma 3 into

the profit function in equation (18), we have

Bla—¢)(1+ )

I = — & 22
c Saun Eu (22)
Proposition 11 The profit function 115, in (22) is concave in p and p* = Jig;;;) uniquely maxi-
mizes 11¢-.
Proof:
dil,  Bla—¢) 28 (23)
dp 2agn s
d°TI%
= 26 <0 24
Bla—c)

Implying that IIf is concave in . dgf =0 yields u* =
level. 1

oot the profit-maximizing abatement

Analysis for Section 6 - Competition:

In the case of competition, each firm faces the following profit maximization problem in the third
stage of the game: Mazimize 1y II= (4 —bY)y+ (8 — aylu — glp) — e — cy; Subject to: 6 < 8,
y = 0. Proposition 12 gives us the unconstrained subgame perfect equilibrium output when firms

compete in a Cournot fashion.

*IEquivalently, the schedule for the fraction of total available permits is s(e) = (ﬁﬂ,ﬂj{’—_wl)
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Proposition 12 Assume u < % The unconstrained subgame perfect equibibrium output in the

a—c—ou

third stage of the game when firms compete in a Cournot fashion, 15 § = Boil)
{3

Proof: Identical to the proof of Proposition 4.

Again we focus on the situation when the emissions constraint binds for all firms; i.e., when

g %?%‘1’)“ (or equivalently 3 < 50, where }éo = a[%}), in which case Proposition 13 applies.

Proposition 13 Assume that the emissions constraint binds for all firms. If the abatement level
chosen by each firm an the investment stage is symmetrically p, and the number of permits secured
by each firm in the auction stage is symmetrically 3, the subgame perfect equalibrium output of each

rm in € thrd stage o € game when firms compeie it a LOournot Jasnion, 18 Yy — =, wiere
n the third st th h te in a Cournot fashion, is y* = 2, wh

— a7
oY% J_1+g‘

Proof: Identical to the proof of Proposition 5.

We now establish expressions for the subgame perfect equilibrium profit for the two cases viz.,
g < 50 and 3 > Bg. Let Z denote the total output of all other firms.
Case (i): B < fo (or equivalently, y* = g)

= a8z + 5G4 - aCu gl - e o)

= —;ﬁﬂ (&cae)bz}ﬁ—g(#) (95)
Case (ii): 8 > fo (or equivalently, y* — W)
~gl) — e - c[‘%g(n‘f—ﬂ‘”ﬁ

= o+ Blu—e) (26)

ﬂg represents the subgame perfect equilibrium profit when the emissions constraint is binding,

il * - . - . N _ ~ _ o
{7 s the unconstrained subgame perfect equilibrium profit, and g = |& — bn| romerall L rowen

acauq [dc—au] _

[%] —glu) — c[ﬁ} is a constant, given the abatement level chosen in the first stage.
The marginal value function »(3) in the constrained competition case is:
When 3 < BO:
2b i—c—ae) —bZ
v(B) = ——=B+ ( ) }
o o
Substituting Z = (n — 1)(5) from symmetric equilibria in the investment and auction stages,
we have
bin+1) . (a—c)
v(B) = ———8+
o o
= G,— A8 (27)
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When 8 > Gy,

v(B) = u (28)

Where &g = @ and A = b(—?’rl) are constants, given the abatement level chosen in the first
stage. Note that g5 — 5\30 = u, and when g < 5’0, v(3) > u. We now have a representative firm’s

marginal value function before the auction is entered into.

Lemma 4 For the share auction n the second stage, it is an optimal strategy to submit a schedule

such that at each price e, the requested number of permits is 8(e) = (%)B. The subgame

~

perfect equilibrium price 4s é* %(&0 —x\%), and the subgame perfect eguilibrium number of permits

. . A o B
received by each firm is 8" = <.

Proof: Identical to the proof of Lemma 2.

Substituting the subgame perfect equilibrium permit price and permit share from Lemma 4 into

the profit function in equation (25), we have

Bagn{a —c)(1+ p) —bB3*(n — 1)(1 4 p)? B
202n?

e = e (29)

We can now arrive at the profit-maximizing abatement level. Proposition 14 shows that the
profit function in the first stage of the game, after incorporating the results from the third and

second stages, 1s concave in the abatement level.

__ Bagn(a—c)—26B2(n—1)

Proposition 14 The profit function ﬁg in (29) is concave in p. @F = B (n L) dEag P uniguely
n— ap‘n
mazimizes ﬁ*c
Proof:
diT;, Bagn(é —¢) — 26B2(n — 1)(1 + p)
= -2 30
i —bB%*(n —1)
= -2 <0 31
- 2 (31)

Bagn(a—e)—2bB%(n—1)

. A . dII* .
* oo Ak
Implymg that HC 18 concave 1n (. i 0 YIEIdS o= 7 2( )tag oinZ

the profit-maximizing

abatement level. 1

To ensure non-negative equilibrium values of abatement, permit price, output, and product price,
268

we assume that (@ —c) > 2.

Analysis for Section 5 - Independent Demands:
The optimization problem in the third stage is:

Mazimize iy D=(a—by)y+(8—(ay—D))u—g(D) —ef —(c+ pD)y; Subject to: § <8,y >0.
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—(etpD)

Proposition 15 Assume u < 2 . In the third stage, given abatement levels and o permit

a—(ctpD)—au g+D }

allocation vector, the profit-marimizing quantity y* = min{ 5 ,
Proof: Identical to the proof of Proposition 1.

< wleghioon

The constraint on ¢ can be re-written in terms of 3 since, when g ZD
constraint on 6 is binding, and vice-versa. Denote 8y = W — D. Thus, when 8 < S,

the constraint on ¢ is binding. We now establish expressions for the optimal profit for the two cases
ViZ'; 6 < 50 and ﬁ > 50.

. - . D
Case (i): 3 < By (or equivalently, y* = %)

e = oo 2 2+ (= (a22) =) u=gi0) —ep = = D) )
ala — (¢ — Qe) — aila —I(c — - 2
L b [elemtean) o %) folla= (e DID oD 007

a—(ct+pD)—au )

Case (ii): g > BO (or equivalently, y* = -

m o= a,—b(ai (c+2,c;D) au)}(a (c+2,c;)D) —au) N {ﬂ B (a(a (c+2,c;)D) fau) —Dﬂu
g(D) 68 (e 1 pp) T
= o+ Blu—e) (33)

17 represents the subgame perfect equilibrium profit when the emissions constraint is binding,

II7; is the subgame perfect equilibrium profit when the emissions constraint is not binding, and
a—(ct+pD)—au v a—(et+pD)—au a—(ct+pD)—au a—(ct+pD)—au
o = o b *HEERIER (SR (TG Dlu - g(D) - (e f pD) ()

2b 2b 2b 2b
is a constant, given the abatement level chosen in the first stage. The“marginal value function”
v(g) is:
When 3 < 3,
20 ala — (¢ + pD)) — 2bD
o(f) = —p+] 2 )
o o
= og— Af8 (34)
When § > 6o,
v(B) = u (35)

Where gy = [L@M} and A = % are constants, given the abatement level chosen in
the first stage. Note that oo — A3y = u, and when 8 < S, v(B) > u. We now work backwards to
the second stage where firms participate in a sealed-bid uniform price share auction for pollution

permits.
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Lemma 5 For the share auction i the second stage, it is an optimal strategy to submit a schedule
such that at each price e, the requested number of permits is 8(e) = (W)B.S2 The
subgame perfect equilibrium price is " = %(00 — /\%) , and the subgame perfect equilibrium number

of permals recewved by each form s §* = 2.

Proof: Identical to the proof of Lemma 1.

Substituting the subgame perfect equilibrium permit price and permit share from Lemma 5 into

the profit function in equation (32), we have

. bB? ala—(c+pD))—2bD bB B
Iy = =3 a(a—(c+pD)—a( 57 _a2n>)_2bD}%
alla — (e +pD))D — ag(D)] — bD?
Lalla (et pD)D ag(D) )
o'
b+ pa+a?) , (a ¢ bB pB) B
B a? D= a a o’n 2on D 2amn, la=c) (37)
Proposition 16 Assume p > —@. The profit function 11}, in (37) is concave in D and
D* = 2(b+p—g+5ar)(a —c— % — %) uniquely mazimizes 17
Proof:
dIl, 2b + pa + £0) (a ¢ bB (B )
= - D+|l—-———— —— 38
dD o " o o ao?n 2an (38)
d°TI; 2(b 2
dD? a?

(b+£a?) dII% b5 pB)
o )

Implying that IIf, is concavein Dif p > — .=y = Oyields D* = m(a—c— —

the profit-maximizing abatement level. §

To ensure non-negative equilibrium values of abatement, permit price, output, and product price

bB B
when p > 0, we assume that (@ —¢) > 2= + &-.

Analysis for Section 5 - Competition:

In the case of competition, each firm faces the following profit maximization problem in the third
stage of the game: Mazimize {y) 1= (a—bY)y+(8—(oy—D))u—g(D)—eB—(c+ pD)y; Subject
to: 8 < 3, y > 0. Proposition 17 gives us the unconstrained subgame perfect equilibrium output

when the firms compete in a Cournot fashion.

Proposition 17 Assume u < @. The unconstrained subgame perfect equilibrium output in
d—(ctpD)—au

the third stage of the game when firms compete in a Cournot fashion, sy = St )

1—2e/(nog—AR) )

n—1

*?Fquivalently, the schedule for the fraction of total available permits is s(e) = {
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Proof: Identical to the proof of Proposition 4.

Again we focus on the situation when the emissions constraint binds for all firms; i.e., when
(B+D) G—(ct+pD)—au &7(C+pD)7Q‘u}
a B(nt1) B(nr1)
Proposition 18 applies.

(or equivalently 3 < B0, where Gy = af — D), in which case

Proposition 18 Assume that the emissions constraint binds for all firms. If the abatement level
chosen by each firm in the investment stage is symmetrically D, and the number of permits secured
by each firm in the auction stage is symmetrically B, the subgame perfect equilibrium output of each

. . . . . 54D
firm in the third stage of the game when firms compete in a Cournot fashion, is y* — ——.

Proof: Identical to the proof of Proposition 5.

We now establish expressions for the subgame perfect equilibrium profit for the two cases viz.,

B < By and 8 > fy. Let Z denote the total output of all other firms.

Case (i): 8 < 5o (or equivalently, y* = %)
~ R s6+D,5+D g+D
e = |a—b(Z+ )| )+ 18— (o ) =D lu—g(D)—eB
fa% 2% o
g+D
—(e+ pD)(——)
a
b ala—(c+pD) —ae —b(2D +aZ
_ b [slalers)ed Sbeb o)
al(a — (c+pD))D — ag(D)] —bD(D + aZ)
5 (40)
o}
. b . « _ d—(ctpD)—au
Case (ii): 8 > By (or equivalently, y* = AT )
- - O D) — Q@ — Dy — Q@ — D) —
f, - {&—bn[a e+ pD) a”]} a_letpD) —au {ﬁ— (@[a (et pD) —au, —Dﬂu
b(n+1) b(n+1) b(n+1)
a—{c+pD)—au
(D) e (e pp) D 0
b(n+1)
= Yo+ Bu—e ()
ﬁé repregents the subgame perfect equilibrium profit when the emissions constraint is binding,
ﬂ‘[} iz the unconstrained subgame perfect equilibrium profit, and 150 = |a — én[%}
d—(etpD)—cuy d—(ctpD)—ou; o - d—(ct+pD)—auy - .
[—B(m-l) ] (a[—é(m—l) ] D)u g(D) — (e + pD)[—B(m-l) ] is a constant, given the

abatement level chosen in the first stage. The marginal value function u(8) in the constrained

competition cage is:
When 3 < 30,

39



Substituting Z = (n— 1)(%) from symmetric equilibria in the investment and auction stages,

we have
o) =~y et eD) —55219 +atn = DED),
_ _b(naj2r 1)ﬂ+ [a(&— (c+p1;22) “b(n+ 1)D]
Sy (42)
When 3 > f,
v(B) = u 5

Where 6, = [2léletpD) bintlD) opg § = b(—rjrl) are constants, given the abatement level

o

chosen in the first stage. Note that 55 — 5\5’0 = u, and when f < 5’0, v(3) > u. We now have a

representative firm’s marginal value function before the auction is entered into.

Lemma 6 For the share auction i the second stage, it is an optimal strateqy to submit a schedule

such that at each price e, the requested number of permits is 8(e) = (M)B. The subgame

n—1
perfect equilibrium price is €* = %(60 —;\%) , and the subgame perfect equilibrium number of permits
received by each firm is 3* = %.

Proof: Identical to the proof of Lemma 2.

Substituting the subgame perfect equilibrium permit price and permit share from Lemma 6 into

the profit function in equation (40), we have

M = _(fer po+ rfag)DQ . Yan(é —¢) — paB — bB(3n — 1) D
o 200

Jrch(& —¢)—bB*(n—1)

2e¥2n? (44)

We can now arrive at the profit-maximizing abatement level. Proposition 19 shows that the
profit function in the first stage of the game, after incorporating the results from the third and

second stages, is concave in the abatement level.

7 2 ~ ~
Proposition 19 Assume p > 7%. The profit function 11} in (44) is concave in D. D" =
2an(d—c)—paB—bB(3n—1)

uniquely mazimizes TI7.

4n(én+pa+£a2)
Proof:
Al _ _2(8n + par + §a2)D N 2om{é — ¢) — paB — bB(3n — 1) (45)
ap a’ 2an
d°1TY, o 2(bn + por + £a) (46)
dD? o2
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_(En—Q—EaQ) @ . . Ay 2an(é—c)—paB—bB(3n—1)
a 4D T 0 yields D" = dn(bn+pa+ta?) ’

Implying that ﬁg is concave in D if p >

the profit-maximizing abatement level. 1

To ensure non-negative equilibrium values of abatement, permit price, output, and product price,
bB(3n—1) , pB
+ 2n "

we assume that (& —¢) > ——
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Appendix B: Figures

Section 3%
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Figure 11: Equilibrium firm output (y*) versus o
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Figure 12: Equilibrium firm profit (II}5) versus «

**Parameter values for Figures 11 and 12 were a = 7,500, b =5, ¢ = 10, © = 200, £ = 0.65, n. = 130.
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Section 4%

Figure 13: Equilibrium firm output (§*) versus o

S“Parameter valuas for Figure 13 were a = 7,500, b = 0.075, ¢ = 10, w = 200, £ = 0.65, n = 130.
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Section 6 - Independent Demands™®
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Figure 15: Equilibrium permit price (e*) versus ag

**Parameter values for Figures 14, 15, 16, and 17 were ¢ = 7,500, b =5, ¢ = 10, & = 200, £ = 650000, r = 150.
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Figure 17: Equilibrium firm profit (II}) versus ag
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Section 6 - Competition®

025

Figure 18: Equilibrium abatement ({i") versus ag
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Figure 19: Equilibrium permit price (¢*) versus ag

**Parameter values for Figures 18, 19, 20, and 21 were a = 7, 500, b = 0.075, ¢ = 10, © = 200, & = 650000, n = 130.
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Figure 21: Equilibrium firm profit (ﬂé) VErsus oy

47



Section 5 - Independent Demands®”
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Figure 22: Equilibrium abatement (D*) versus « for different values of p
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Figure 23: Equilibrium abatement (D*) versus o when p > 0

*"Parameter values for Figure 22 were a = 7,500, b = 5, ¢ = 500, w = 200, £ = 6.5, B = 150,000, n = 150.
Parameter values for Figure 23 were @ = 7,500, b = 5, ¢ = 500, u = 200, & = 6.5, p = +2.25, n = 150. Parameter
values for Figures 24, 25, and 26 were ¢ = 7,500, b = 5, ¢ = 500, u = 200, £ = 6.5, p = —2.25, n = 150.
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Iigure 26: Equilibrium firm profit (IT},) versus o
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Section 5 - Competition™®
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Figure 27: Equilibrium abatement (D*) versus o
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Figure 28: Equilibrium permit price (") versus o for different values of p

*Parameter values for Figures 27, 29, and 30 were ¢ = 7,500, b = 0.075, ¢ = 500, u = 200, ¢ = 6.5, p = —2.25,
n = 150. Parameter values for Figure 28 were a = 7,500, b = 0.075, ¢ = 500, w = 200, £ = 6.5, B = 150,000, n = 150.
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Figure 30: Equilibrium firm profit (ﬁé) VErsus o
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Section 8%
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Figure 31: Equilibrium product price (p*) versus n (Independent Demands)
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Figure 32: Equilibrium product price (§*) versus n (Competition)

*Parameter values for Figure 31 were a = 7,500, b= 5, ¢ = 10, u = 200, ¢ = 0.65, @ = 5, B = 150, 000. Parameter
values for Figure 32 were ¢ = 7,500, b = 0.075, ¢ = 10, u = 200, £ = 0.65, « = 5, B = 150, 000.
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