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ABSTRACT

The first problem in the theory of signal detectability deals
with‘the decision between two alternative responses, corresponding
to two possible classes of causes of an observation. When the goal
of a decision process is to achieve the highest quality of terminal
decision, the Receiver Operating Characteristic curve (ROC curve)
contains all of the information necessary for the evaluation of the
decision process. This present work introduces the ROC charac-
ter, which is isomorphic to the ROC curve.

The formal development is based on two key facts. The first
is the fundamental theorem: if £(X) is the likelihood ratio of an
observation, then the likelihood ratio of £ is { itself. The second
is the main theorem on ROC characters: each ROC character is iso-
morphic to a univariate probability distribution that possesses a
moment generating function. The character convolution theorem
and the character addition theorem follow directly from these.

Families of ROC curves are developed from the main theorem
on ROC characters. The normal, binormal, Q-table, power, and
several discrete families of ROC curve have appeared in the litera-
ture. The new families include the Pearson type III, Fisher-Tippett

doubly exponential, H-type, Poisson, and the regular conics.

iii



Additional families are generated from these by use of the meta-
static relation, and the convolution and addition theorems.

ROC curves contain information about the performance
of other two-cause decisions besides the two-response decision.
Several are considered that are used in the testing of htiman per-
ception; namely, the symmetric forced choice decision, type II
decisions, the rating scale procedure, and the analysis of a de-

cision based on the reports of multiple observers.
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FOREWORD

This report contains foundational work in signal detection
theory. The primary purpose of the work was to provide a tech-
nique for cataloging performance curves of detection-decision de-
vices, and to expound upon properties of specific performance
curves. Its usefulness lies in the exhaustive detailing, which the
author hopes will provide detection theory researchers with both
insight and detailed information about performance curves they

encounter.
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CHAPTER I

INTRODUCTION

The theory of-signal detectability has grown up in
an interdisciplinary way, combining parts of the traditional fields of
mathematics, pnysics, engineering, physiology, and psychology.
The skeleton on which the theory is built is the mathematics of
decision theory. The analytic description of the observation and per-
ception, the interferences and the cause-effect relationships are drawn
chiefly from physics and physiology. The subsequent realization of deci-
sion mechanisms is part of engineering when the realization is in hard-
ware, part of psychology when one is dealing with a human or animal
decision mechanism, and falls to other specialties when the realization
is a computer program or a finite automaton. The evaluation cf the perfor-
mance of the decision mechanism has similarly fallen to various fields,

depending upon the application.

This present work concentrates on models for the third
aspect, evaluation of detectability. Consideration is restricted to those
situations where decision quality is the sole goal of the decision device,
and the sole consideration in the evaluation. In the past, evaluation
models have come principally from problems in electrical engineering.
Yet the theory is applicable to any information process involving both
observation and subsequent (binary) decision. Today's applications

involve such diverse areas as radar, sonar, and digital communications;
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the psychophysics of human and animal perception; information retrieval
and medical diagnoses by machines. One major purpose of this present
work is to furnish a variety of evaluation models. A second major
purpose is to develop sufficient mathematical structure to form a

basis for classification of these models, and to form a basis for the
generation of additional models. It is hoped that this work will be useful
to those making mathematical analyses of detection devices by specifying
the parameters that must be determined. It is hoped that it will be

useful to those experimenters with performance data, that it will help
classify the data and indicate appropriate models. For the mathematically
inclined this paper develops a special L2 funetion called the ROC charac-
ter, that is one-to-one with the graphical presentation, the ROC curve.

I hope those in communications sciences witﬁ a broad interest in observa-
tion-decision procedures will be able to learn what information an ROC
curve furnishes, and what information it omits.

We shall concentrate on the simplest of all observation-
decision problems -- the two-by-two problem. This work is directly
applicable to the two-by—E1 (rating) problem; however, no generalization
to finite higher order decision problems will be made. 1n the two-by-two
problem, it is assumed that two alternative decisions may be made,
corresponding to two mutually exhaustive and exclusive classes of causes.
In order to make any sensible decision a given cause (such as a specific
signal) must belong to one class or the other, and not transfer back and

forth. This is the reason for the word "exclusive.' The assumption



"exhaustive' means that no other cause than those listed in the two classes
can occur.

This present work will deal principally with three subjects:
(1) the ROC curve, (2) the likelihood ratio and related functions, and
(3) a new function, m(z) , called the ROC character. In this first
chapter the basic relations between the ROC curve an.d the 1ikelihbod_
ratio will be reviewed and the proof given for the fundamental theorem:
"The likelihood ratio of the likelihood ratio is the likelihood ratio. "
This theorem has been known and used by several specialists in the
field, but apparently has not previously been rigorously established.
In Chapter II thé ROC character will be formally introduced and it will
be shown that it contains information that is unavailable in the 1ikeliﬁood
ratio itself. Even further it will be shown that the likelihood ratio and
the ROC character contain the two complementary and separate aspects
of detection; namely, that likelihood ratio is relevant to the design of
the decision device and that the ROC character is relevant to its perfor-
mance. In Chapter III the ROC character will be used to establish a
basis of classification of types of ROC curves. The primary analytic
result in Chapter III is that the class of all ROC characters corresponds
to the class of probability functions that ére sufficiently smooth and
concentrated to have moment generating functions. This correspondence
yields the set of classical ROC curves.

Most of the ROC models available heretofore have come
from radar detection problems. In Chapter IV these few are collected

and analyzed in terms of their ROC character. Chapters V. VI and VII



each treat at length one broad class of ROC, the algebraic, the truncated

normal, and the binormal. Chapter VIII develops the Convolution
Theorem for ROC characters, and the Fisher-Tippett ROC character,
both arising in cases of multiple observations. Chapter IX presenté

the ROC character Addition Theorem, and two double parameter charac-
ters, the Pearson Type III, and the H-type. Chapter X is devoted to

discussion of selected topics that have arisen in the literature.

1.1 Review of Detection Theory

The procedure that will be followed in this section has
two gross steps. First, the graph called the receiver operating charac-
teristic (ROC) will be introduced and used to evaluate detection per-
formance. Secondly, a specific function of observation called the
"likelihood ratio" will be introduced and it will be explained why
optimum detection is based on likelihood ratio.

There are many proofs that the likelihood ratio for de-
tection problems is optimum. The most common proofs are based on
specific definitions of optimum, such as "maximum expected value, "
"minimum loss," or '"Neyman-Pearson test.' The proof used here
has been chosen to emphasize what is well known, but really unknown
to many -- that the optimumness of likelihood ratio does not require
that any specific quantity be maximized or minimized. All that is
required is that decision quality is the goal and that the definition of

decision quality reflects a preference for correct decisions over mistakes.



At this point, we must begin to introduce formal notation in

order to be specific, and to be able to manipulate mathematically certain
rather simple quantities. Many types of notation might be used, all of
which appear in decision theory and detection theory. One might choose
to emphasize the generality of the work by using abstract notation. I
have chosen to utilize the notation common in radar and sonar signal
detection, in the hopesthatthe nmemonic benefits gained will over-
shadow the apparent loss of generality. Specifically, the two classes of
causes will be signified by N (noise alone) and SN (there is a signal in
the noise). Two alternative decisions that the decision device can make
are to sound the alarm (A", the decision that a signal was present) or
to conclude that only background was present, the decision "B". When
the cause is noise alone, N, the decisions correspond to a false alarm
and a correct response, respectively; when the cause is SN the decisions
correspond to a detection and a miss, respectively.

The formal description of a decision device is a probability
function. For each possible observation the description_is the probability
that the device will response "A'". One might feel that a description of
a decision device would correspond to a listing of those observations for
which the decision device would response "A'". (On the remainder of the
observations the decision device would respond "B'".) Indeed, this has
been the writer's standard approach in electronic problems (Ref. '1, p.
174), Although this description is quite adequate for a great many pur-
poses, it does not cover those devices which may base their decision in

part on extraneous quantities: for example devices whose decisions are
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affected by internal noise or devices with some nonstationary behavior
in the decision process (such as a jittering decision threshold.) The
decision probability function is written p("A"[x), where x is a general
notation for the observation on which the device bases its decision.
In Fig, 1.1 the coordinate sy’stems for the ROC are

drawn on a blank unit square. The horizontal axis indicated on the

bottom is called the probability of the false alarm. It represents the
probability of a mistake, the probability of making a decision ""A" when
the correct decision would have been "B." The probabiiity of the corres-
ponding correct decision is shown on the horizontal axis above the ROC
and is simply one minus the probability of a false alarm. (The device is
forced to make either an ""A" or "B'' decision.) The left vertical scale is
the probability of making the "A'" decision when it is correct, and

is called the probability of detection. Had the alternative decision

"B" been made the action would have been labeled a miss and its
probability is simply one minus the probability of detection. This

probability is indicated on the right~hand side of the graph on the

1«— P("B"IN) — 0

1 , 0
! |
& &
|
0 1

0 — P("A"IN) — 1

Fig. 1.1. Blank ROC



vertical axis. Traditionally, one suppresses the upper and right-
hand coordinates, listing only the probabilities of false alarm and
detection, since the other two prob’abiliti.es can be obtained readily
from these. The term ROC first appeared in the paper by Peterson,
Birdsall, and Fox (Ref. 1) . Curves drawn on the ROC grid have
also been referred to as contours of iso-effectiveness, or contours
of equivalent performance. The traditional form of the curve that
appears in statistics and some work in signal detection plots the
probability of a miss on the vertical axis so that the ROC is the
mirror image of the form used here. In statistics such a curve is
called the power curve, where the probability of false alarm is called
the critical level and the power is one minus the probability of a miss,

that is, the probability of detection.

Our formalism for a decision device is the probability
function describing the probability of deciding '"A"  for each

observation x on which a decision is based.

Decision Device: p("A" | x) (1.1)

Our formalism for the observation statistics, describing a specific
problem, are the measures of the probability of occurrence of the

observation, x, for each of the cause classes.

Observation Statistics: u(x|SN), u(x|N) (1. 2)



These observation statistics refer specifically to those observations
on which a decision will be based. This is more restrictive than the
general use of the same term which might mean the statistics of the
entire random process of which the observation is just one portion.
A specific observation situation is defined by specifying the obser-
vations on which a decision may be based, and the observation
statistics, Eq 1.2,

The evaluation of a specific decision device in a
specific observation situation is the ROC point given by the proba-

bility of a false alarm and probability of a detection.

ROC Evaluation Point: P(AIN) = [ p("A"|x) du(xIN)

(1.3)

P(A ISN) f p("A"|x) dp(x] SN)

H

In Appendix A, taken from course notes for the Summer Intensive
Course on Random Process, 1961-62-63, it is shown that the ROC

plot of all possible decision devices in any specific decision situation

is convex, contains the chance diagonal, and is symmetric about the
center-point. The proofs are simple but tedious. The results are
shown in the following figures. In Fig. 1.2 the chance diagonal has

been added to the blank ROC. This is the locus of performance}where
the detection probability is equal to the false alarm probability. Such
performance may be obtained with a decision device that reacts indepen-

dently of theobservation, and hence is described as chance. Performance



falling below this diagonal is considered poorer than chance and per-

formance above the diagonal is considered better than chance.

Fig. 1.2. The "chance diagonal "

We have made no specific definition of optimum. However,
let us consider some specific point below the chance diagonal and compare
it to the point directly above it on the chance diagonal. Both have the
same performance under the condition N. The point on the chance
diagonal has a higher detection probability than the point under discussion
below the chance diagonal. We did specify that correct decisions aré
to be preferred to incorrect decision, that higher correct-decision
probabilities and correspondingly lower error probabilities will be
considered desirable. Therefore the chance diagonal is better than
any point plotted below it.

The convex closure of two points plotted on the ROC

grid consists of the straight line joining the two points. The implication

is that if two decisions devices are possible which plot at points

Wy and wz'. then it is known that a continuum of decision devices
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exist which will perform as indicated by the line between the points

w1 and Wy

e

Fig. 1.3. The "convex closure' of two points

Consider two decision devices which disagree on each
individual decision. The probability of "A' of the second device will

be the probability of "B'" of the first device.

P(”Az"IN) = P("Bl' [N)
P(”Az"lSN) = P(”Bl"ISN)

Equation (1. 4) is the reason the ROC region exhibits the midpoint

symmetry that is indicated geometrically in Fig. 1. 4.

Fig. 1.4. Existence of midpoint symmetry
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The purpose of this detailed geometric examination
was to determine the implications of the existence of a single non-
chance point, If there is a particular decision device with nonchance
performance, plotted at wy , then it follows directly that the region of
obtainable performance with the given observation statistics contains
at least the parallelogram indicated in Fig. 1.5. The boundary of this
parallelogram is the convex closure of the points (0, 0), wy, (1,1),
and the opposite of Wy Every point in the interior lies on many

straight lines between boundary points.

Fig. 1.5. Convex closure of a point, its opposite, and chance

The plot of all possible ROC performance points for a
specific observation‘-situation is called the ROC region. The ROC

region is a function of the observation situation, not of any particular
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decision device. Different observation situations may lead to dif-
ferent ROC regions.  If two observation situations have the same ROC
region, they are said to be equally detectable situations. Two observa-
tion situations may differ in.all respects; the observations on which
decisions are based, and the observation statistics. If two observation
situations have the same set of observations, but differ in one of the
measures in the observation statistics,they are considered as different
situations.

For the remainder of this section (1. 1) we shall consider
the observation situation fixed, and the ROC region known. If the
ROC region is as shown in Fig..1. 5, then one should desire to operate
somewhere along the upper boundary. This is because each point p
on the interior represents a higher miss probability than the upper
boundary point directly above p, and a higher false alarm probability
than the upper boundary point directly to the left of p. The upper
boundary of the plot of the ROC region is called the optimum ROC
curve. If one restricts himself to only the upper boundary instead
of the entire region,he can still maximize any specific goal, that is,
he can maximize every specific definition of performance.

The second step in this section is to establish that
the ROC region is closed, meaning that the upper boundary actually
exists and is obtainable, and that the widely acclaimed likelihood ratio

will always lead one to performance on the upper boundary. Of special
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interest are those decision devices which are based on the real quantity
likelihood ratio in a special way. A decision is said to be based on a
real decision axis d(x) anda cut value p, if the decision "A" occurs
with probability one whenever d(x) is greater than S and occurs

with probability zero whenever d(x) is less than 3. Whenever d(x)

equals 3, the decision probability is some value, r, between zero
and one.

Because this present treatment is slightly more general
than the usual likelihood ratio treatment, such as is given in Appendix A,
we must go back to the foundations of the likelihood ratio principle.
The likelihood ratio of an observation is the connecting link between
two possible measures of occurrence of that observation. The Radon-
Nicodym Theorem (Ref. 2) establishes this connecting link. Consider
two observation statistics pu(xiN) and u(x/SN). (These are assumed
to be measures on the same completely additive field of sets.) The
Radon-Nicodym Theorem states that there is a function, £(x), and a
set of N~measure zero AO’ such that Eq. 1.5 holds for any mutually

meastrable set.

WCIN) = [ duxiN) L w(AgN) =0

C-A0

u(CisN) U(x)dp(x 'N) + u(C A ISN)

- 0
CAO

-/

To obtain the N-measure of some collection of observations, C, integrate
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the number one with respect tothe N-measure. To obtainthe SN-measure
of the same collections of observations, integrate the weight /(x) with res-

pect to the N-measure and add on the SN-measure of CnAO. This allows

one to obtain both measures by integration with respect to pu(x |N),
except for sets of N-measure zero. The function £(x) is never really
utilized when x is in the set of N-measure zeéro, AO. We may
define ((x) to be infinity on this set as a notational convenience. Such a
function £(x) is called "the Radom-Nicodym derivative of the SN-measure
with respect to the N-measure, '" and is the most general form of a like-
lihood ratio.

The vast majority of the effort in the physical theory of
signal detectability is devoted to obtaining explicit equations for 1(x),
and to realizing practical equipment which will compute its value. In
contrast, this present work is devoted to evaluating performance and not
to obtaining performance. The meaning of the terminology ''a decision
is based on likelihood ratio with cut value B and boundary value r' is

given by Eq. 1.6..

0< < o, 0<r< 1
p("A" | x) = g(x,3, r) =1 2(x) > B
=71 {(x) =7 (1. 6)
=0 L(x) B

To establish that such decision functions fall on the upper boundary
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of the ROC region compare its performance to the performance of
any other possible decision function, which is labeled h(x). The

proof is shortest if we consider the contrived function Q

8
QB = [ P(”Ag" ISN) - P(”Ah”ISN) ] - 8 P("Ag" IN) - P("Ah_"lN)]
(1.7)
Qﬁ is a comparison of the probabilities of detection for the g and h
decision devices, together with a g-weighted comparison of the proba-
bilities of false alarm of the two devices. The probabilities of false
alarm are given by direct integration with respect to the N-measure,
P("Ag"lN) = f g(x, 8, r) du (x IN) )

X—AO

P("A,"IN) = [ hx)dy (xIN)

X-AO

where X—AO means those observations that are not in the set of
N-measure zero, AO. The probabilities of detection could be
obtained by similar integration with respect to the SN-measure.
However, utilizing the Radon-Nicodym Theorem and likelihood ratio

we may evaluate the probabilities of detection by again using the

N-measure.

P("A,"ISN) = [ glx, g x) () du(x IN) + [ g(x, B,r)du (x ISN)

X-AO AO

(1. 9)

P("A, "ISN) h(x) €(x)dp (x IN) + [ h(x)dp (x.SN)

2-4 Ag
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The six integrals in Eqs. 1.8 and 1.9 can be collected into two integrals
for determining the value of the quantity Q g

Q, = |/ [g(x,8, ) - h(x)] [£(x)- B]dp(x IN)
X-A
0
(1. 10)

+ qu [g(x, 8, 1)~ h(x) ] du(x ISN)

The first integrand is a product of two factors. When the likelihood
ratio is greater than g, the second factor will be positive. Since g
is one for these observations, the first factor will be zero or positive.
For those observations with likelihood ratio less than 3, the second
factor will be negative. Since g is zero for these observations, the

first factor will be zero or negative.

Ux) > B, [g-n] [£-p] =[1-n][L-8] >0
()= 8, lg-n][£-8] =[r-n][0] =0 (L11)
Ux) = 8, [g-h[L-p] =[o-n][£-8]>0

Since the integrand of the first integral is never negative, the integral
will also be nonnegative. We now turn our attention to the second
integral, over the set of N-measure zero. The likelihood ratio is
infinite for these observations. Therefore, g is one and the

integrand is nonnegative.

x€e A [w-h] =[1-h] >0 (1.12)
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We have therefore determined that a quantity QB
is nonnegative for the decision device based on likelihood ratio whose
cut level is the same number B. How does this establish that the
decision based on likelihood ratio is better ? Pick any particular
decision device. Compare it with a decision device based on likeli-
hood ratio which has the same probability of false alarm. Proof

that we can find this decision device based on likelihood ratio with
matching false alarm probability is given in Appendix A. Granting
that we can find such a matching device, it will have some value of

3 and r. The quantity Q 8 evaluated for that specific value of
will be nonnegative. Since the false alarm probabilities are equal,

the quantity Q, is simply the difference between the two detection

B
probabilities. Q 8 being nonnegative means that the detection
probabilities for the decision device based on likelihood ratio is

greater than or equal to the detection probability for the decision

device h.

P( Ag"IN) = P( Ahﬁ'lN) |
1.13)

Q,>0 = P("A" ISN) > P("A}"ISN)

B

This establishes that the performance of the decision based on likeli-
hood ratio falls on the optimum ROC curve for this ROC region.
The "onto'" part of the proof establishes that for every

possible probability of false alarm there is at least one decision
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device based on likelihood ratio which yields this probability of false
alarm. This part of the proof has been omitted here and given in
Appendix A because it is tedious and not illuminating. The first part of
the proof has been displayed to emphasize that the optimum ROC curve,

the upper boundary, is directly related to likelihood ratio.

1.2 Fundamental Theorem

1.2.1 Likelihood Ratio. A decision axis can be con-

sidered as an observable. Whatever the physical nature of the original
observation and the relationship of the decision axis to these original
observations, there will be certain probabilities of occurrence of the
various decision values under each of the two classés of causes. The
question ivmmediately arises, "If we have two measures induced on

this decision axis, what is the Radon-Nicodym relationship between
these two measures?' That is, '"What is the likelihood ratio of the deci-
sion value?"

We will consider the special decision axis which is the
likelihood ratio of the observation, and will establish that the likeli-
hood ratio of this decision axis is numerically the same as the value
of the decision axis. That is, the likelihood ratio of the likelihood
ratio is the likelihood ratio. For example, assume an observation space
and a device which numerically evaluates the likelihood ratio of each
observation. Let us further assume that for a given observation the
value calculated by this device is the number 2.74. We will establish

in this section that in this case the likelihood ratio of the number 2. 74
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is 2.74. That is, the numerical value 2. 74 occurs under the cause
SN with probability 2. 74 times the probability it will occur under
the cause N.

Let us consider an observation space, X, and a col-
lection of measurable sets A which form a o-ring sfon X. A
probability function is any nonnegative completely édditive set function
on , such that the probability of the entire observation space is unity.
To introduce likelihood ratio we consider two such probability functions
defined on the same U—ring i, and compare probabilities. Repeating
the Radon-Nikodym Theorem (Ref.2),

If u(A[ISN) is a completely additive set function on a
o-ring of sets which are measurable with respect to u(A[IN), then there

exists a unique decomposition consisting of the following:

AO’ a set of Wy Mmeasure zero; u(AO:N) =0

f, a function integrable with respect to p(x[N), unique almost

everywhere
Q, a set function defined on c,dmAO
such that
L(AISN) f f(x) du (xIN) + QA A N (1. 14)

Here the Radon-Nikodym derivative relates u(:|SN) to u(-IN)
except for a set of N-measure zero.

Using the above formulation define a likelihood ratio
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(1. 15)

The definition of likelihood ratio is unique, up to a set
of combined measure zero. That is, many functions and sets AO
may satisfy the definition; however, for any two likelihood ratios let

AD be any measurable set on which they differ. Then

u(Ap|SN) + B(Ap|N) = 0 (1. 18)
Corollary
PAISN) = ﬁ(k)du(xlN)+Q(AnA0)
A-A,
(1.17)
PAIN) = [ dp(xIN)
A-A,

Let us consider the implications of this definition to the familiar

situations of probability density functions and point-mass probabilities.
For example, consider an n-dimensional space. Let

X = (xl, Xor - - .,xn) and let there be density functions. Then for

any Borel set A

P(AISN) = [, f(xISN)dx P(AIN) = [, f(xIN)dx (1.18)

A

Let AO be those points for which the N density vanishes. Then for

any Bore] set
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P(A!SN) - P(A—AOISN)+P(AOHA&ISN) (1. 19)
P(AISN) = | {(xISN)dx + P(A,"AlSN) (1. 20)
AA,

Multiplying and dividing by f(xIN)

| ’ £(x|SN) ! NAL
P(AISN) = [—————] f(x{N)dx + P(A,(YA[SN)
AJ—AO f(x|N) 0
? (1:21)

while

PAIN) = [ f(xIN)dx

A-A0
J

Matching terms with Eq. 1. 17

_ f(xISN) . |

0(x) = TN if f(xIN) #0 1.22)
= 0 if f(xIN) = 0

Next consider a point space {xi'} , and A be any subset

of these points. Then

P(AISN) = ) P(x, ISN) , PAIN) -

X. €A X.
i i

Let AO be those points having N-probability zero,

then
P(AISN) = P(inSN)+P(AnAOISN) (1. 24)

TA-A
X, (A-A,
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DA ISN) o[PS A 2
iSN) = ) s— 15— P(x.IN)+ P(A" A_ISN
« Taea [P TR | P 0'SN)
while (1. 25)
P(AIN) = ) P(x.!N)
xieA-A0
/
Matching terms with Eq. 1.17
P(inSN)
,Q(Xi) = m——- lfP(XilN) #0
. (1.26)
= ® if P(x,IN) = 0

We shall not continue with the special cases by treating spaces with
distribution functions, leading to a mixture of densities and point-mass
probabilities. The purely mechanical difficulties involved in notation
make the general Radon-Nikodym formulation attractive.

Before proving the basic theorem that "the likelihood ratio of the
likelihood ratio is the likelihood ratio, ' let us set up the proper frame-
work of "induced measures. "

1. 2.2 Induced Measures. Paraphrasing from Pitt, (Ref. 2,

pp- 25-27) let a be any function mapping X onto Y, not necessarily
one-to-one, o/ a o-ring of sets in X and ;1 a measure on it. We will
saya set Bin Y isa simple set if o 1(B) is in the o-ring &. Obviously,

the collection of all such sets B form a o-ring <8 The function v is
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called ''the measure induced in Y by ;1 and a" if

B &, v(B) - u{a_l(B)} (1.27)

Integration of a function in Y can be reflected back to the original space
X. Quoting Pitt, Theorem 31:

Theorem 31: Suppose u is a measure in X and v is the measure induced

in Y by y = a(x). Then for functions of y

[ty)dv = [ f(ax))du (1.28)

in the sense that if one integral exists, then so does the other and the two
are equal.
To say that "B is a v-measurable set" is equivalent to saying

that the characteristic function 1B(y) is integrable with respect to .

lB(y) =1 yeB
=0 y¢B
v(B) = [ 1(y)duly) = [ dv (1.30)
Y B

Since the product of integrable functions is also integrable, for any integrable
tf of Theorem 31, 1B times f is also integrable. We therefore have the
corollary:

Corollary to Pitt's Theorem 31: Suppose [ is a measure in X and v

is the measure induced in Y by y = &(x); then for any measurable set

Bf%
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~
[iyydv = [ f(ax))du
B o 1(B) ,
(1.31)
if either ff(y)du or ff( a(x) )du exist.
Y X )

Let us diagram our current status. We have assumed an

observation space X, a o-ring & of measurable sets, two measures
u(xIN) and u(xISN). For any map we can consider the induced measures
v(rIN) and v(r |SN). If the map is the likelihood ratio £(x), the image

of X is some portion of the reals, together with co.

¢ x . ono

~ RCE'U{n}

1 (B) < B measurable
measurable

(: u(x IN) — v(rIN)

(: p(x1SN)— v(rlSN)

Right away let us single out r = o and the special set A

0
and list their properties.

u(AOISN) exists => b'l(ooi'SN) is some number.

For any measurable B of reals
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¢ “(B) A0=Gifoo;’/B

(B) A0 = AOifooe B

We now have a space R with o-ring P of measurable sets,
and two measures v(r [N) and v(r [ SN). The question arises, What
is the Radon-Nikodym derivative of v (r|SN) with respect to v(r(N)?
What is the likelihood ratio on R space? To answer this we consider the

identify map i(r) which maps each point into itself.

X > R > R

By definition the spacé X has probability one under both v measures.

1= p(XISN) = [ €(x)du(x IN) + n(A,ISN) (1.32)

X-AO

Because { is integrable with respect to u, for any set B measurable

in R space
J {(x)du(x IN)
(B)- A (1.33)

exists.

If we now consider the identity map of R onto itself, for any

measurable B

[ ir)du(riN) = i(0(x) )du( X IN) (1. 34)
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Because i(f) = ¢

| f i(r)dv(r| N) = f £(x)di(x IN), which exists (1. 35)
B- -1
0 (B)-AO
= u(ﬂ—lﬂ(B) -AO [SN) by def. of { (1. 36)

v (B-{w} ISN) by def. of v beingan  (1.37)
induced measure

Therefore we may write

yBISN) = [ i(r)dv(rIN) + (BT @ ISN) (1.38)
B~ f«} |
By direct identification i(r) is a likelihood ratio. We have therefore
shown the following theorem:
Theorem: A likelihood ratio of r (which is a likelihood ratio of x) is
T itself.
We complete this formal abstract work with one further con-

sideration. Consider any one-to-one transformation of R which maps

infinity onto infinity. This means take any function
w = u(r) (1. 39)
and its inverse
r = v(w) (1.40)

such that



u(eo) = o0, v(w) - Q (1.41)
Of course
W = u(R) (1.42)

Let the induced measures on W be MwI[N) and A(w|SN). The A-mea-

surable sets @ are the image of &

€ - «(R) (1.43)

For any measurable Ce@, let B = v(C). Then

A(CISN) = A(C - {o} ISN) + 1 (C"Yeo} ISN) (1.44)
A (CISN) = »(B - {wo} ISN) +1(C{ o} ISN) (1.45)
MCISN) = [ rdu(eIN)+2(C e} ISN) (1. 46)
B-{oo}
By the corollary to Pitt's Theorem 31
f rdy(r|N) = f v(w)dx (w IN) (1.47)
B- {oo} C-{o}
So
A(CISN) = viw)dr (wIN) + 2 (C Yo} |SN) (1. 48)

C-{w}

We see immediately that v(w) is a likelihood ratio.

Example: If w = Inr, then r = e". If r isa likelihood I'ai‘iu,i'hpn

W o L
e is a likelihnod ratio for w nr.
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1. 2. 3 Section Summary, What has been considered is

diagrammed in Fig. 1.6. From any observation space X with mea-

sures u and special set A0 there is a likelihood ratio £(x) such

that

pAISN) = [ 4)du(xIN) + p(A7A IsN) (1. 49)

The induced measures on R = £(X) are v, so related that their

likelihood ratio is simply the value of r itself.

yBISN) = [ rdu(r IN) + (B " {x}ISN) (1.50)
- B~ {a}

For any one-to-one transformation which leaves « fixed, say

NCISN) = [ v(w)d (wIN) 2 (C7 o} ISN) (1.51)
C

The likelihood ratio of w is simply the "substitution value" v(w).
In order to establish the proofs, care has been taken to avoid notation
which is "'suggestive. ' With the proofs complete we may now make

use of more suggestive notation to summarize the two conclusions.

(e = ¢ (1.52)

(w(0)) = w tw) (1.53)

and in particular if z =1n(
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-——-—"w
X R w

w(xIN), u(xISN), £(x) p(rIN), p(rISN), i(r)  Aw|N)., MwISN), v(w)

Fig. 1,6, Sketch of spaces and transformations
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Uz) e (1.54)

When the measures v(£IN), v(£[SN) are given by distribution

functions, we may write

B
F({ISN) = [ (dF(|N) (1.55)
0

This special case was given in Ref. 1 as Theorem 8, and was

written
dF(BISN) = BAF(B IN) (1.56)

1.3 Tnitiation of Present Study

In 1954 W. W. Peterson (Ref. 1, pp. 205-206) showed
the rather amazing theorem that if the logarithm of the likelihood ratio
is normally distributed under condition N, then it is also normally

distributed under SN. Specifically, he started with the assumption

z = In { has a normal probability density function under N.
_ _(z-m)®
\ 1 2d
f(zIN) = N e (1.57)

He was first able to show that the mean is related to the variance,

_(z +. 5d)*
1 2d
e

(1.58)
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and finally that the SN probability density of the logarithm of the

likelihood ratio is

f(z 1SN) =

Equations 1.58 and 1. 59 may be expanded to show that the likelihood

. .. g z
ratio of z is indeed e .

LUz) = “%TS\I‘I;‘)“ = e? (1.60)
This theorem of Peterson established the basis for
the one parameter family of ROC curves, the normal ROC curves, The
curves are indexed by fhe single real parameter, d, or as it is done
in the psychophysical literature by the single parameter d' = Vd.
This one parameter family of ROC curves has been used extensively
in both the electrical engineering and psychophysical work of detection,
The doubly truncated Halsted distribution is a five
parameter class of probability density functions. The untruncated dis-
tribution has been used in the study of rapidly fading signals (Ref. 3).
It arose again in a study of signal detection and learning in which the
amplitude of the signal was initially unknown (Ref. 4). When it is
used as the N-probability density function for the logarithm of the

likelihood ratio,it is

f(z]N) = F .2 ¢ e A <.z <E (1. 61)
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It was discovered that the SN-probability density function for the

logarithm of the likelihood ratio fell in the same class

f(z|[SN) = F.,z e e A< 2 < E (1. 62)

Since this class of functions contains as subclasses the exponential,
the normal, the Rayleigh, the chi-square, and the chi distributions
as special cases, it was evident that many theorems like Peterson's
normal theorem could be obtained from this relation. The key to all
these theorems is Eq. 1.54, that the likelihood ratio of the logarithm

of the likelihood ratio is ez .



CHAPTER II

ROC CHARACTER

2.1 ROC Curve

In the introduction a simple decision process was charac-
terized as one which assigns a probability p("A" [ x ) to each obser-
vation x, denoting the probability that this decision mechanism will
give the response "A' whenever X is observed. The performance
of such a decision device in a specific observation situation plots as
a signal point on the ROC plot. The mechanism for decisions based
upon likelihood ratio considered a probability function g(x, g, r)
which yielded an entire ROC curve. The parameters, g and r ,
added sufficient dimensionality to the simple decision function to
produce this complete curve. In general, decision functions are
parameterized by some index which allows more than one performance
point. If the dimensionality of the index set is too small, the decision
mechanism may generate only a set of points, such as shown in Fig. 2. 1(a),
or it may generate a continuum of points leaving some gaps in the curves,
or possibly multiple-values for y as a function of x, as shown in
Fig. 2. 1(c).

These differences between the types of ROC curve given
by decisions based upon likelihood ratio and decisions which give incom-
plete or multiple-valued plots on the ROC curve may be removed by a

process of convex completion. The graphic form of convex completion

33
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was to add to the ROC region the line segmentjoining ‘any two possible
points available from agiven decision mechanism. By such a process,
a single point not on the charce diagonal yields a whole parallelogram of
points surrounding the chance diagonal. |

Figure 2.1 illustrates two cases of convex completion.
The first, illustrated in Figs. 2.1 (a) and 2.1 (b), show the results of
convex completion for a finite set of points. In Fig. 2.1 (b), only the
upper bound of the ROC region has been filled in. This is sufficient,
since the lower bound of the ROC region lies below the chance diagonal
and could be obtained by symmetry through the midpoint if desired. This
upper bound lies on or above all of the internal secants forming the com-
plex rampletion between ahy two possible points. In Fig. 2.1 (¢) a
~nmewhat different case is involved. Between the points with false alarm
p. woabilities x, and x

1 2’

completion of those two points. Since the result is better (that is, above

there is a gap which is filled in with the convex

and to the left) than the short segment of arc in the interior of the region,
this short segment disappears from consideration. Secondly, the left-
hand side of the original arc shows a doubling back of the arc, making
the function y(x) triple valued on a region of false alarms. A straight
line can be drawn from the point (0, 0) tangent to the original curve in
the triple valued section, that exceeds all of the original curve up to the
point of tangency. The resultant region shown in Fig. 2.1 (d) exhibits a
smooth upper bound, the ROC curve.

The ROC curve lies on or above any internal secants
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since it is the upper bound of all convex completions. A convex ROC
curve also lies on or below any tangents or tangent cones drawn to
points on the ROC curve. For a tangent to one point on the ROC curve
to contact another point of the ROC curve would require that the convex
completion of those two points would fall above the ROC curve. Since
the ROC curve is on or above all internal secants, this situation can-
not occur. Figure 2.2 illustrates a tangent cone drawn at one point

of an ROC curve. At that point the curve is continuous but has a break
in slope, so that there is no unique tangent line to that point. The tan-
gent cone consists of all of those lines contacting the ROC curve at only
that one point, otherwise lying everywhere above it.

The upper bound of the convex completion of given ROC
points is the ROC curve for those points or segments. Such an ROC
curve is characterized by being complete and convex. The mathemati-
cal adjective "complete' means that for each value of the horizontal
axis there is one value for the vertical axis. That is, the function
y(x) is a well-defined single value function for x between zero and one.

Deﬁnition

Complete: y(x) has a single value for each

x €10, 1] (2.1)

Convex means that the values of the curve lie on or above the internal

secants.
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Definition

Convex: X< X < Xg s 0< a< 1
¥(xg) > ay(x)) + (1- 0 ylx,)

The term '"singular' has been used in the detection
literature to mean perfect performance. In terms of the ROC curve
this means that the probability of detection is unity for all probabilities

of false alarm. This 1s illustrated in Fig. 2.3(a).

1 1
y y
0 0
0 0
X X X
(@) Singular (b) Nonsingular (c) Regular

Fig. 2.3. Illustrating singularity for complete convex ROC curves

Definition

Singular: y(x) = 1 forall xe [0, 1] (2.3)

Once it has been established that a given situation leads
to singular detection there is no need for further description of its per-
formance. A curve may be nonsingular and still reflect a certain
degree of perfect detection. That is, there may be some observations

yielding a positive probability of detection and a zero probability of false
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alarm. Correspondingly there may be a set of observations for which
one can unequivocably respond "B, " for which the probability of a
miss is zero. The ROC for the hypothetical situation containing both
of these possibilities is shown in Fig. 2. 3(b). Such a curve will be
considered complete, convex, nonsingular, and nonregular, A regular
ROC curve is complete, convex, and interior to the unit square ex-
cept at the chance points (0, 0) and 1, 1).

At this point the precise statement of the type of ROC
curves that will be considered can be made. This work will deal
only with complete, convex, nonsingular ROC curves, or with non-
singular ROC curves that may be made complete and convex by the
process of convex completion.

Def inition1

]
o

Regular: complete, convex, X = 0 = ¥y

\Il/
>
1]
—

y =1

2. 2 ROC Models

In this section two propositions are proved. The first
proposition is that an ROC curve contains insufficient information to
specify the observation statistics that led to it, or even to specify the
statistics on a real decision axis that lead to it. The second proposition
is that an ROC curve does contain sufficient information to specify the
statistics on the logarithm of the likelihood ratio.

2. 2.1 One ROC Curve, Many Models. The purpose of

this section is to demonstrate that a single ROC curve contains insuffi-

1-> is read "implies. "
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cient information to specify the observation statistics or decision axis
from which it was obtained. Rather, there are many decision axes and
observation statistics leading to the same ROC curve.

To begin the demonstration, start with a real variable,
¢, and choose a distribution function, Fl(g ), fairly arbitrarily. We
shall also assume that a regular ROC curve, Y(X), has been selected.
The random variable £ will be used as a decision axis, and F1(£ ) will
be used as the N distribution function. The SN distribution function for

¢ will be chosen to obtain an ROC curve identical to the given ROC curve.

HB" < > HA"

: : > ¢

Fig. 2.4. Arbitrary decision axis, &

To say that the £ -axis is a decision axis means that
whenever a particular value of ¢ occurs which falls above a cut level,
say £, the decision will be "A. " In contrast, when it falls below ¢ ',

the decision will be "B." When the observation falls right at the value
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¢ ' a second (randomizing) random variable is introduced to determine
how often the decision '"A" is elicited. Since the purpose of this develop-
ment is to show that there are many possible ways to set up observation
statistics on £, let us introduce some convenient restrictions on these
observation statistics. To avoid limiting considerations, it is assumed
that the probable values of £ fall in the open interval between two num-
bers £ 0 and £ 1 Therefore, the distribution function is zero below

¢ 0 and is equal to one at and above £ 1 It is also convenient to assume
that the distribution function is strictly monotone increasing in the inter-
val between & 0 and £ 1 This guarantees that if a particular value of

F. between zero and one is assumed for some £ value that we can

1

uniquely solve for this £ value.

Fl(ﬁ) is strictly monotone increasing 50 ECE 1 (2. 5)
Fl(i) =1 §1§ 3

With these minor restrictions established, let us set the

N distribution equal to Fl'

F( IN) = F,(t) (2.6)
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It will be convenient to have a special symbol for one mimis the distri-

bution.

X(£) = 1- F, () (2.7)

X at the largest value of £, & 1 is zero. X at the smallest value of
£, ¢ 0 is one. X is strictly monotone decreasing as a function of 13

on the interval X between zero and one.

X\t on 0< X<1
(The notation X \y £ means "strictly monotone decreasing. ")

The decision axis and the distribution on { under N were arbitrary.
We now choose the observation statistics for ¢ under the condition

SN, using the specified regular ROC curve Y(X).

1

F(EISN) = 1-Y[X()] &<y

The N Distribution function is certainly a legitimate distribution. Is

the SN function as given a legitimate distribution function? Flor values
of thé variable less than the minimum, £ 0’ the X value is one and hence
the Y value is one, since Y(1) = 1. Therefore, the distribution function,

under the condition SN, is zero for all small values of the argument ¢ .



‘g’<§0, X() =1, Y=1, F(IiSN) = 0 (2.10)

For intermediate values of the argument ¢, X is a strictly monotone
decreasing function of £. Y is a monotone increasing function (not
necessarily strictly monotone increasing) function of X. The distri-
bution function under the condition SN is a strictly monotone function
of Y. DPutting these all together we see that the distribution function for

¢ under the conditioh SN is a monotone function of its argument, £.
E,<E<E;, X1§, Y1 X, F(£ISN) Ly, FEISN)T¢  (2.11)

Now we have a decision axis, £, and two distribution
functions on the decision axis for observation statistics. Let us deter-
mine the ROC curve. We will use Xq to denote the values of the proba-
bility of false alarm plbtted along the horizontal axis, and Vo to denote
the values of the probability of detection plotted along the vertical axis.
The subscript two is used to indicate that this is the second ROC curve;
the first one is the original or given ROC curve Y(X).

The probability of false alarm is simply the N-probability

that the decision variable will exceed the threshold value ', which is

simply one minus the distribution function for ¢' under the -condition N.
xz(g') = Pr(¢ > £'IN) = 1 - F(¢'IN) (2.12)

The distribution function of £' under N condition may be written in

terms of X(£) by combining Eqs. 2.6 and 2. 7. When these are
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substituted into Eq. 2.12 we obtain

1-[1-X("]

>
D
—~
.Uy
N
1]

(2.13)
Xo(E') = X(£')

The probability of detection is derived in a completely analogous manner.
ol§') = Pr(£ > £'ISN) (2.14)

yoE) = 1= [1- Y(X(E")] = Y[X(@)] (2.15)

Equation 2.13 can be used to justify replacing X by X, to obtain

2

yole") = Y[x,(8")] (2.16)

The relationship between the vertical and horizontal axes in this second
ROC is exactly the same as it was in the original ROC curve; that is,

the two ROC curves are identical.

YolXy) = Y(X) (2.17)

Let us review the above argument. Start with any com-
plete convex ROC curve for which a model is desired. A model is a
decision mechanism and observation statistics which yield that given ROC
curve. The decision axis must meet only the minor restriction of bounded-

ness. The distribution function for the variable under the condition N
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must meet only the minor restriction of monotoneity. (Both restrictions
were for convenience and are not strictly necessary.) Once a specific
choice of these two has been made, a distribution function under the other
condition, SN, can be specified to obtain the given ROC curve. This
result has two implications. First, a regular ROC curve and a fixed
decision axis together contain insufficient information to specify the
observation statistics that led to the given ROC curve. Second, given a
regular ROC curve for which a model is desired, one may exercise great
freedom in assuming the nature of the decision axis and one distribution
on it.

This above demonstration required that the ROC curve
be regular. This could have been relaxed from "regular' to "complete,

. convéx, nonsingular. ' The additional complexity did not seem warranted.
In Section 3.5 a functional relation will be established between a complete,
convex, nonsingular ROC curve, and an associated regular ROC curve.
After that section, one may conclude that each model for the associated
regular ROC curve impliés a model for the completev convex, nonsingular
ROC curve, thereby obtaining many models for the nonregular ROC curve.

A Notation Introduced. Many of the equations in this work will occur in

pairs of equations, one for the condition N and the other for the con-
dition SN. It will be convenient to have a notation that signifies both
equations when they are nearly alike. The notation used is a slight
modification of the £ type of notation commonly used. Its use is shown
in the following two equations.

Consider two exponential density functions.
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f(t|SN) [t] < . 48125

y (2.18)
Itl < . 48125

I
(¢2]

f(tIN)

i
@

In the double notation these would be written

f(ty) = e It] < . 48125 (2.19)

When the upper condition is used, the upper sign is used.

Consider the following equation in double notation.

Prob (z < B|SN - f(z|s£1) dz (2. 20)
-0

or condition is used throughout the whole equation, or the lower

conaiuon is used throughout the whole equation.

2. 2.2 A Unique Model for Each ROC Curve. In the pre-

vious section it was shown that there are many models for each regular

ROC curve. Inthis present section the relation between the decision

axis and the likelihood ratio will be specified. Under this condition,

the specification of the ROC curve will uniquely determine the distri-

butions on the decision axis. The demonstration is complicated enough

for regular ROC curves; the inclusion of consideration of fhe nonregular

but complete, convex, nonsingular ROC curves adds no further complexity.
The specific decision axis considered is the z-axis, where

z is the logarithm of the likelihood ratio of the observation.

z = In ((X) (2.21)
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We shall first analyze an ROC curve derived from distributions on the z-
axis, then discuss the synthesis of z-axis distributions from an ROC
curve.

Any distribution function on a real axis consists of two
partsl: the jumps in the distribution function corresponding to values
that have probability, and the smooth continuous parts of the distribution
corresponding to those values that have zero probability individually,
but which have a probability density function. For notation use F for
distribution function, f for probability density function, z(i) for a
point on the decision axis for which the distribution function under N
.or SN has a discontinuity. The magnitude of these jumps will be

denoted by w(z).

%

Flzo|) = [ 1|} dz

| SN
, wz@l)|%W) a.e (2.22)
-0 {z(i)z_% ZO}‘ _ ’N

The above equation represents the distribution function for the condition
N if the lower conditions are read throughout, and the distribution
function for the condition SN if the upper conditions are used throughout.
As is true in all general distribution work, we can guarantee the exist-
ence of the probability dehsity function almost everywhere, but not
everywhere. This is because there may be a ﬁnite or countable number

1S,trictly speaking, this may fail to be true at some points. However,
the total set of points at which it fails is a set of zero probability. Thus,
the statement is said to hold "almost everywbere, ' written a. e.
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of points‘ at which the probability density is not specified without affect-
ing the value of the distribution function.

Concentrate on those values of the decision axis, z, that
have probability under either condition N or SN. If the probability
under N is positive but the point is a set of SN-measure zero the like-

lihood ratio will be zero.
w[z(i)IN] > 0, w[z(i)ISN] = 0, £[z(i)] = 0 (2.23)

If the converse situation holds with the point z(i) having N-measure

zero, then the likelihood ratio of that value is infinite.
w[z(i)IN] = 0, w[z(i)ISN] > 0, £[z()] = o (2. 24)

In the situation where the point is of positive probability under both con-
ditions N and SN the likelihood ratio is given by the ratio of these two

probabilities.

_ w|z@)ISN

w[z(i)IN] >0,  w[z(1)ISN] > 0, L[z()] = MO (2. 25)

roved in Section 1. 2, the
likelihood ratio of the logarithm of the likelihood ratio is the exponen-

tial of the log of the likelihood ratio.
Uz) = e (1.54)

Equation 1. 54 is a direct result of the fundamental theorem. It is not

obtained by inverting Eq. 2.21. The likelihood ratio in Eq. 2.21 is a
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function which maps the observation space into the reals. The likeli-
hood ratio given in Eq. 1. 54 maps the reals into the reals. This distine-
tion is the reason the fundamental theorem had to be established.

From ’Eq. 1. 54, under the three conditions of Eq. 2. 23
- Eq. 2.25, the value.;s of z(i) can be determined exactly at which the
likelihood ratio takes on the values zero and infinity. When the likelihood
ratio is zero;,the deciéion axis value must be minus infinity, and simﬂarly
when the likelihood ratio is infinite,the decision axis value must be plus
infinity. All other jumps in the distribution functions must be common
to both of the distribution functions, and the ratio between the two magni-

tudes of the jump will be given by Eq. 1. 54.
z@i)] = 0o 2> a(i) = +w (2. 26)

We will retain the form of Eq. 2.22 for the N distribution function but

will utilize Eq. 1.54 and 2. 26 to write the distribution function under SN.

“0 \ 2(i)
Flz)ISN] = [ ’t@Ndz+ ) e w[zi)IN] ae
" 1)< ) (2. 27)

In Section 2. 2.1 the N distribution function could be chosen
quite arbitrarily and the SN distribution function chosen to obtain the
desired ROC curve. In contrast, the SN distribution function of z

is determined once fhe N distribution function is chosen.
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Let us analyze the ROC curve for a given N distribution
function for z. Let 3 stand for a particular cut value along the z-axis.
Whenever the value S is one for which the distributions have jumped,
representing a z-value with positive probability under both conditions, let
r .be a number between zerc and one inclusive. The simple decision
based on the z decision axis with parameters g and r will plot as

the point (x, y)

o0
x(B, r) = [ t(zINNdz+ ),  w{(z(i)IN) + rw(8IN) a.e. (2.28)
B {2(i)> B}
~ (1)
y8,1) = [ “tzINydz+ Y "V u@i)IN) + ref w(gIN) a.e.
g {(0)> B} (2. 29)

The point moves up along the ROC curve with increasing r and moves
down the ROC curve with decreasing r, in the range of r from zero

to one.

r=0—»

L——-w(BlN) —

Fig. 2.5 Sketch of arc of ROC corresponding to a z value
' B of positive probability
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The derivative of the probability of false alarm (Eq. 2. 28) with respect
to the parameter r is the magnitude of the jump under N. The deriva-
tive of the probability of detection (Eq. 2. 29) is the magnitude of the

jump under SN.

fe {2}, 0<r<1

(2.30)
d
1) . a1 B iy
The ratio of these two derivatives is the slope of the ROC curve
S o u 8 = lny'(x) (2. 31)

where the prime denotes differentiation with respect to the argument.
For any portion of an ROC curve where the slope is constant, the
natural logarithm of this slope corresponds to the cut value on the z-
axis. At the end points of the linear segment corresponding to the
value r =0 and r =1 the value of the cut on the z-axis can be deter-
mined from the appropriate one-sided derivatives. The r value can
also be determined for each point along a linear segment of the ROC
curve, since r will increase linearly from the value zero at the left-

hand point of the segment to one at the right-hand point of the segment.

=

1
o
™

1l

Iny'(x+0)
(2. 32)

=

1
p—t
™

i}

In y'(x - 0)

For a cut at a z value which occurs with probability
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zero under both conditions N and SN, the parameter r is irrelevant.
A change in ROC point corresponds to a change in the cut value 8.

If there are no jumps in a z-neighborhood of a cut B,
one may differentiate the coordinates of the ROC curve with respect to

B. From Egs. 2.28 and 2. 29, it follows directly that

B¢ *Z(i)} ——a-BL—— = -f(z=pBIN) a.e.
(2. 33)
oD - P ia-p) ace

As before, the ratio of these two derivatives relates the value of the

decision cut on the z-decision axis to the slope of the ROC curve.

e‘8 - Yy B = Iny'(x) a.e. (2. 34)

We have shown that when the ROC curve is obtained from
the decision axis, which is the logarithm of the likelihood ratio of
observation, that the curve is differentiable almost everywhere, and the
logarithm of this derivative is numerically equal to the cut value on the
decision axis.

Synthesis:

It was really unnecessary to hypothesize that the decision
axis was the logartihm of the likelihood ratio of some (physical) observa-
tion space, . It was merely necessary for the variable z to be the
logarithm of the likelihood ratio of something and, since it is the loga-

rithm of the likelihood ratio of itself the internal consistency would
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have been sufficient tovspecify the problem. That particular circle was

avoided because the logic may have been questioned. Since the logic has
now been established by examples here and by the fundamental theorem,
Section 1. 2, we can adopt this seemingly circular logic from now on.

If we are given an ROC curve which is complete and con-
vex, we can hypothesize the existence of a decision axis which is the
logarithm of its own likelihood ratio and deter mine for each point on
the ROC the corresponding cut value on this decision axis; and, if
necessary, the value of the randomizing parameter r. If the value of
the derivative is constant over some portion of the arc of the ROC, the
horizontal extent of this arc indicates the probability w(z|N), and if a
value of the derivative has been taken on only once, then Eq. 2. 34
relates the slope to the corresponding cut value and Eq. 2. 33 gives the
probability density function, f(zIN).

It has been shown that every complete, convex, non-
singular ROC curve corresponds one-to-one with a particular distribu-
tion function for z under the condition N. It was also shown that the
distribution for z under N completely specified the distribution for
z under SN. Even more can be shown, since Eq. 2.26 can be inverted

to read
o[z)IN] = e 2V y[a(i)18N] (2. 35)
and the similar relation for probability density functions is

f(zIN) = e 2 £(zISN) (2. 36)
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Therefore the distribution of z under SN completely'specifies the dis-
tribution of z under N. It has therefore been shown that every complete,
convex, nonsingular ROC curve corresponds one-to-one with a particular
distribution fuhction for z under the condition SN. Both correspond-
ences relate td the same model; they are different ways of describing
a sufficient part of the observation statistics, from which all of the
remainder of the model may be obtained.

Another type of generalization is possible. Any class of
functions that is in one-to-one correspondence with the distribution of
z under N, will be in one-to-one correspondence with the set of com-

plete, convex, and nonsingular ROC curves.

2.3 ROC Character, 7(z)

The ROC character 7(z) introduced in this section is the
principal function that will be used in the organization of ROC curves
into families. The only property of the ROC character and its several
related functions discussed in this section is the one-to-one relation with
the disfribution functions for z.

Definition: ROC character 7(z).
Whenever the logarithm of the likelihood ratio, z, pos-

sesses probability density functions, the ROC character is defined as

m(z) = Vi(zISN) f(z[N) [z] < o (2.37)

The ROC character can be used to obtain the two probability densities

used in its definition. Since the likelihood ratio of z is 'ez’ that is
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z _ f(zISN)
e = N (2. 38)
it follows that
e %% 1(z) = % Vi(zISN) f(z[N) = f(z|SN) (2. 39)

In a similar manner

- of f(zIN)
12) = ¥ 1N

i

-. 5z
e N

Vi(zISN) f(z|N) = f(z|N) (2. 40)

These are summarized in the double notation equation

SN

1) = te|y)

= f(z (2. 41)

When the distribution functions for z contain discontinuities, the jump
functions (d’iscrete probabilities) are also needed to specify the distri-
butions.
Definition: ROC character jump wﬂ(z)

Let w(zSN) andv w(zIN) be the jump functions for the

distribution of z. The ROC character jump is defined as

w (2) = Vo(zISN) w(z|N) 1zl < w (2. 42)

Utilizing Eq. 2. 26, it follows that

e T w (z) = w(zl Nv) (2. 43)
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The ROC character is obtained from probability densities and, as will
be formally established in Section 3. 2, has many of the properties of
a probability density. The function that is analogous to a probability
distribution function is the integrated ROC character TII(z),

Definition: Integrated ROC character II (z)

Z
0 ,
Ny = [ w@)dz+ ) w2 (2. 44)
-0 A/

The integrated ROC character will be useful in Stieltjes integration,
where it will appear written dII(z). As a memory aid, one may think

of Eq. 2. 44 as reading
memory aid: dll(z) = m(z) dz + wn(z) (2. 45)

The distribution functions for z can be expanded in density and jump

function form.

zZ

0 .
SN, _ SN SN

F(zolN) _— f(z]N)dz+ y w(le) (2. 46)

-0 A/

=70
Using 2. 41 and 2. 44
%0

F(ZOlSI\II\I) = f ei' oz m(z) dz + Z e* oz wn(z) (2. 47)

-0 ZSZO

The precise relation of these distribution functions to the integrated

ROC character is given by Eq. 2. 48
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SN ZE20 4
F(szN> - Z[OS = 92 411 (2) (2. 48)

Although almost all of this work will be devoted to the
distributions of z (meaning, as always herein, the logarithm of the like-
lihood ratio), it will be convenient to have a function for arbitrary prob-
ability density functions that parallels the ROC character.

Definition: Root product density function fﬂ( )

If t is a random variable with probability density func-

tions f(t|SN) and f(t[N), then the root product density function for t

is defined as

f (t) - £(t|SN) £(t|N) (2. 49)

2. 4. Remarks on the Distribution of z

This section contains four short remarks -about the dis-
tribution of z and their correspondingly short proofs. The first three
have to do with the expected value of z under the two conditions N
and SN.

Remark: E(zIN)<0

Proof:

(1) E(LIN) = [ edF(LIN)

[ 0(0) dF(£IN) (2. 50)

[ dF(LISN) = 1

(2) Inis a convex function, and hence lies on or below a
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tangent
Sz <z (1) + z'(1)(L-1) = £-1
E(zIN) < E({-1IN) = 0
Remark: E(z|SN)> In E(Z[SN) : (2.51)

Proof:

In is a convex function

Remark: E(z|SN) > 0 (2.52)
Proof:
Consider g(£) = £1Ing; g(1) = 0
g'0) = 1+1Ing;g'1) =1
-1

g"() = L7 g">0
g(0) is "convex upward' and lies on or above any tangent
Sog() > g(1) + g'(1)(e-1)
£1n > (-1

E({ In £|N)> E({-1IN) = 0

E(¢ In £[N) = E(In ¢[SN)

.. E(In £|SN) >0 Q.E.D.

Whenever there are no jumps in the probability. distribu-
tion functions for z, the ROC character contains all of the information,
and there is no need to use the integrated ROC character. In that case,
w}e' can say something about the symmetry of the ROC character.
Remark: 7(z) is symmetric iff it is symmetric about z = 0

Proof:

Assume n(z) = w(c - z)
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X -. 5z
f f(zIN)dz = f ' (z) dz
-0 } -0
0 ©
f e oz m(c-z)dz = € Sc f
-0 -0
0
g ¢ f e oA T(A) dx = - ¢
-0
-.be
e



CHAPTER III

ROC FAMILIES

3.1 Philosophical Orientation

The objective of the present work is to organize ROC
curves into families. To do this, some restriction has to be made on
the system of ROC curves to be considered. The first intent is to
treat as large a system of ROC curves as possible. The second intent
is to develop the ROC families which have some generality while still
requiring that each curve in the family can be specified by only one or
two parameters. In this way, the determination of an ROC curve can
be broken into a two-step process of determining the family, and then
determining the one or two parameters necessary to specify the par-
ticular curve.

In this work I have been influenced by Karl Pearson,
who wished to unify and codify the treatment of probability density
functions of one real variable. Restricting himself to the class of
unimodal functions he worked with those probability densities de-
scribed by the range of the random variable and the first four moments.
His results were strongly related to the function which has come to be

known as the Pearson ratio. For a probability density function £(t),

the Pearson ratio is

. d 3
Pearson ratio = s (In £(t)) = W (3.1)
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Whenever the Pearson ratio is a rational function of degree no higher
than a monomial over a quadratic, the density function is within the
Pearson system. The specific type is based on the roots of the quad-
ratic. The root of the numerator, the monomial, is the position of
the mode of the density function. Pearson later expanded this work
by the consideration of a quadratic over a cubic, which allowed in-
clusion of more complicated unimodal functions as well as bimodal
functions. The Pearson ratio plays two roles of special interest to
this present work. First, the Pearson ratio defines the area of appli-
cability of the Pearson classification system. That is, the mathema-
tician dealing with a given probability density function could decide
definitely whether that function falls within the Pearson system or
not. Secondly, within the system the ratio provides a classification
into families.

In attempting to codify ROC curves the present work is
restricted to complete convex nonsingular ROC curves. The formal
function that is proposed as a basis for classification is the ROC char-
acter.

The classification of families of ROC curves would be
a huge undertaking if it were not true that a link can be found that re-
lates this classification to our heritage in probability theory and
statistics. In a moment the relation of the ROC character to the
Pearson ratio will be determined to see if the Pearson system can be

used directly for classifying ROC characters. In the next section,
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3.2, the relationship of the ROC character to all univariate proba-
bility density functions is obtained. This second link provides the
basis for the classification of ROC families by ROC characters.
The relationship of the ROC character, n(z), to the
Pearson classes is obtained from the relationship of the SN and N

density functions to the ROC character.

f (z|3§f ) - o502 (z) (2. 41)

Divide through by the exponential
1(z) = e 5z f(z ISI\?I) (3.2)

and take natural logarithms.

Inw(z) = 1nf<z’8§>1.5z (3.3)

The functions are in convenient form to take the derivative with respect

to the variable, z.

o (of3)
m'(@) _ C\INJ o g (3. 4)

TT-(z) - ¢ (lel\:]N) + .

The Pearson ratio for the ROC character differs from the Pearson

ratio for either density function by either plus or minus one-half. It

is not enough, however, that each of these Pearson ratios be a rational
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function. If the denominator is of higher order than the numerator,
then the inclusion of the added constant in obtaining a new rational
function will generally lead to numerator and denominator having the
same order. It is quite common to find that the distribution for the
logarithm of the likelihood ratio under one of the conditions does fall
in a Pearson class, while the distribution of the logarithm of the likeli-
hood ratio under the other condition falls in either a different Pearson
class or outside the Pearson system. Only when the denominator is
of equal or lower order than the numerator will the two distributions
of likelihood ratio and the ROC character stay within the Peérson Sys-
terﬁ. In this special case, all three will‘be‘ in the same Pearson
class.

The Pearson ratio for a normal probability density is

mean - z

Normal Pearson ratio = :
variance

(3.5)

Section 1.3 contains W. W. Peterson's result, "When the logarithm
of the likelihood ratio is normally distributed under one condition, it
is also normally distributed under the other condition.”" We can add
to this at this time, by adjoining '"'and the ROC character will be pro-
portional to a normal prbbability density function and centered half-

way between the two conditional density functions."
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3.2 Fundamental Theorem on Regular ROC Characters

In this section it will be shown that ROC characters for
regular ROC curves correspond to those probability distributions on
the real line which possess moment generating functions. Such dis-
tributions have received considerable study in the history of probabil-
ity theory.

All probability distributions on the real line possess
characteristic functions (Fourier transforms), but not all poséess
moment generating functions (double sided LaPlace transforms). 1
Those distributi‘ons that possess both will have finite moments of all
orders, and their transforms will be analytic in some neighborhood
of the origin.

In order to consider both discrete pfobability functions
and probability density functions, we work with probability distribu-
tion functions, denoted by F, and the integrated ROC character, }H(z).
For discrete random variables the individual probabilities are the
jumps in the distribution. For continuous random variables the proba-
bility density function is the derivative of the distribution, and cor-

respondingly the ROC character #(z) is the derivative of II(z).

From Character to Distribution: As is customary in probability nota-

tion the limiting values for large negative and large positive values

1
For example, Ref. 30, p. 12.
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are indicated by the arguments -« and +occ. The four requirements

on the integrated ROC character for regular ROC curves are:

(1) the lower limit is zero [I(-c) = 0 (3.6)
(2) monotone growth d1i(z) 26 (3.7)
(3) unit "N" value f e ’ 5z dll(z) = 1 (3. 8)
(4) unit "SN'" value f et oz dll(z) = 1 (3.9)

Add the equalities for the third and fourth conditions to obtain

f [e' 5Z+e—'5z] dli(z) = 2 (3. 10)
oz -.5z

Since the sum (e %% + e ) is greater than or equal to 2 for all z

values,

N(+c) = foo dli(z) < 1 (3.11)
=-oC

Let ¢ be reciprocal of II(+w).
cll(+ewc) = 1 (3.12)

This has provided the basis for the distribution function
that is proportional to the integrated ROC character, and the proof
that the corresponding moment generating function exists in some

neighborhood of the origin. Consider the function
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F(z) = cli(z) (3. 13)
From (3.6), (3.7) and (3. 13) it follows that

F(-c) = 0 F(+c) = 1 (3. 14)

F is monotone nondecreasing, dF(z) > 0

Therefore F defined by (3. 13) is a distribution function.
The definition of the moment generating function is usu-

ally given using the expected value operator, E( ).

M() = E() (3. 15)

This may be evaluated using the distribution function

Mp(E) = [ et aF(t) (3. 16)
0

If the distribution function contains no jumps, the density function may

be used.
- £t
Mp(E) = [ e i) dt (3. 17)

MF(ﬁ) is called the moment generating function because

d"M(¢)
L N (3. 18)
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Only those random variables which are sufficiently "concentrated"
will possess a moment generating function and f‘inite moments of all
orders.

A simple dominance method can be used to show that
the moment generating function exists near the origin & = 0. For any

real £ with absolute value not greater than one-half,

oC
M) = [ e dF(2) (3. 19)
=oC
vk
=c [ e*?an(z) (3. 20)
~-oC
oC
<ef it anw) (3. 21)
-oC
< cf e Zie %% 4z = 2c (3.22)
=oC

From Distribution to Character. To satisfy the requirements on the

integrated ROC character, specifically the unit N and unit SN values
listed in Eqs. 3.8 and 3.9, II(z) may differ from a parent distribu-
tion by a shift and a scale factor. Start with any probability distribu-
tion function, F(t), which possesses a moment generating function,
MF(g). Later, values will be specified for the constants a, b, and

¢, the latter two positive. For the moment consider

z = a+bt (3.23)
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The moment generating function for the random variable z is

B[e] = E[F@PU] o 3 npop) (3. 24)

that is

[ dFEz) = o M (bt) (3. 25)

The specific values of interest are

et dF (52) = St M (s . 5b) (3. 26)

For any positive value of b which is sufficiently small so that the

function MF(i . bb) exists, set
a = In MF(-. 5b) - In MF(+ 5b) (3.27
' .D
c = [MF(-. 5b) MF(+. 5b) | (3.28)

The decimal exponent .5, the fractional exponent 1/2, and the square
root symbol all mean the same thing. The decimal exponent is con-
venient for the type of manipulations in this present work. If the
constants have been chosen correctly, then the following is an integra-
ted ROC character

iz = ¢ FEY (3. 29)
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If the distribution function F is the integral of a probability density

function, f, then

7(2) = (be) " £EZH (3.30)

The final step is to determine that Eqs. 3.8 and 3.9 hold.

From (3. 26) and (3. 27),

[ P AFER) < Myl 50)]* ° My 50)] 0 Mgl 5b) (3.31)
[ &t df‘(?»;;—%) = [Mg(-. 5b) My(+. 50)]° = ¢ (3.32)
From (3. 29),
[ et dl(z) - L[ e dF 425 (3.33)
From (3. 32) and (3.33),
[e&%an@E) = e =1 (3.34)

There is a continuous range of b values. Correspond-
ing to each b value are appropriate constants a and c. Using
these values, the simplé scaling, Eq. 3. 2'3, generates a f?:m of
(integrated) ROC. characters.

The key relations are repeated for later reference.

Given a distribution function F(t), or a moment gener-

ating function MF(ﬁ),_ for any positive value of b sufficiently small
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that M («. 5b) exists, let
a = In MF(—. 5b) - 1n MF(+.>5b) (3.27)
¢ = [Mg(-5b) My(+.5b)]° (3. 28)
Then
el EE .29
wz) (o) ! 1E2) (3.30)

are valid integrated ROC character, and ROC character, respectively.

3.3 Classical ROC Characters

The development of a system of ROC families will begin
With probability density functions of a real variable which have moment
generating functions. Each such probability density function corfes—
ponds to vsome ROC character. If the probability density function is
well known and has a universally accepted name, that same name will
be used for both the ROC character and the resultant ROC family of
curves. Certain classes of probability density function are known
by several different names, because they were independently developed
in several fields of applications. An example is the normal, Gaussian,
or error function. An attempt has been made to relate this present
work to each of the names used in the literature.

Armed with a table of probability density functions and
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their moment generating functions, one may mechanically generate
classes of ROC characters. The ROC curves are found by direct
integration. The basic equations for the ROC curve in terms of the
z-axis cut value B, and the randomizing parameter r are given by
Egs. 2.28 and 2.29., When B is a point of continuity, or otherwise
when r=0, the ROC curve equations can be written compactly using
the form of Eq. 2.48.

Y(B) |
- foo % gm(z) (3.35)
B

The following sections list the results for the major
classical probability density functions. Some mechanical comments

are in order before proceeding with these.

(1) The fundamental theorem of ROC characters allows for a transla-

tion and scaling of the variable.
zZ = a+bt (3. 23)

An entire probability density function class may usually be considered
by using the normalized form for the density function, having zero
mean and unit variance, since Eq. 3. 23 rescales the mean and the var-

iance.

(2) Bounded probability density functions on a bounded range will

always have moment generating functions. Many of these correspond
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to sections of probability density functions with infinite or semi-
infinite range. Section 3.4 will treat these separately. The beta and
rectangular density functions are not sections of other probability

density functions, and are included in the following sections.

(3) The table upon which the following sections are based is Table

26. 1 of Ref. 6.

3.3.1 Normal, Gaussian, Error Function. For

o< t< ®
8 £
1 2 2
fit) = —— e , MF(E) = e
Vor
bZ
Mg(.5b) = e 8 existforallb > 0
_ b b
a——8———§——0
bZ
8
c = €
SO
b2 ba % u2
H(z):esd)(-lz-))ze8f 1o 2 g
~o V2T

and
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For standard notation for the normal ROC we let b = d

_d _zt
8 1 2d

e
vemd

The ROC curve is y = ®(t + ¥d) when x = ®(t). &() is the normal
distribution function.

3.3.2 Exponential, PearsonX. For t> 0

Mp(6) = (1-8)7

MF(:t.Bb) = (li.5b)_1 exists for 0 < b < 2

a = Iln 1-.50
- 1+.5b

-1
c? = (1- .25b%)

- _z-a
H(z)=c-1[1-e _b] z>a



1,
o - Ni-.26® (1-.)” “b ) f1- . 5)
me) = b T+ .50 2 - 1+ .50
If we let
_, A-1
b = 2A+1
that is, let
_1+.5b
A =1 &b A>1
then
1z A+l |
7(z) = (A-l)-lA A-1 e 2 A-1 , z>-lnA
or
s A+l 272,
A A-1 2 | )
”(Z)”TA_—ﬂe z>z0—-1nA
The ROC curve is
X ='YA

3.3.3 LaPlace, Double Exponential. For -« < t< o

St My = -8

i(t) = 5

F(:t. 5p) = (1- .25b2)_1 exists for 0 < b < 2



that is, let

then

The ROC curve is

w(z)
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from (0, 0) to the negative diagonal, and

Y = 1-

=0
= (1-.25p%)° L
Lzl
11 b
" be 2 ¢
_lzl
_ 1-,25p% b
- 2b
_ o B-1
b= 2577
B=§fg B> 1
_lzl B4t
B , 2 B-1
B%-1
(B+1_)B'1 B
—g— Y
B
B-1
B+1 B

B
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rrom the negative diagonal to (1,1). The negative diagonal point is

3.3.4 Pearson Type Ill, Gamma, Chi-Square. For

t>0,p>-1
i) = t? e t/T(p+1)

M) = (1-¢) @D

MF(i. 5b) = (1. 5b)_(p+1) exists for 0 < b < 2

) 1- .50
a = (p+1) 1n<1 5b>

-(p+1
¢ = (1-.2 , 0V
SO
' 2%-1_ p _-t-z;a
7(z) = (1';125b_) [ (p 1) ln( gg)] e b, z>a
bP" Tp+1) ,
As before, let
_1+.5b A
B = 1 5 B>1
A p+l _Zz-aB+1
B 1 2 B-1
7T(Z> = -B—:—'T T +1) <Z+(p+1) In B)p € y

-(p+1) In B
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or
Z-2
__\P _B+l 0
o) = B.S(p+1) z-2 . -1 9
(B-1) T(p+1) \B-1 ’
3.3.5 Fisher-Tippett Type I. For -« <t <
. —e_t
Ft) = €© Mgt = T(1-5)
and
-t
f(t) = g te
MF(f.Sb) = T(1¥.5b) existsfor 0 < Db < 2
a = InT(1+.5b)-1n I(1 - .5b)
c¢® = T(1+.5b) T(1- .5b)
1y
2 z[nem)]® o
1(z) = 1 I(1+.5b) |~  b|r(1-.5b)
b vT(1+. 5b) (1-. 5b) | F(1--5b)
3.3.6 Beta, Pearsonland XII. For 0 <t < I;
m, n>1
1 m-1 ., .n-1
f(t) = m,t (1-t)

z > z, = -(p+1) In B
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This is Kummers confluent hypergeometric function, and yields a

- power series form for all b for positive n,m

M (.50) = ) (&1)F (mek-1)1 (men-1)1  b"

This is so unwieldy that the general form is retained

1) = (be Blmn) T &Y @Ebog

where

1In MF(—. 5b) -1n M'F(+. 5b)

o
i

c = [Mo(-.5b) M (+.5b)]'5

F( F

For m=1 or n=1 the infinite series becomes a finite sum, but no
real simplification results. ROC curve formulae have not been obtained.

3.3.7 Rectangular. For 0 <t< 1

f(t) = 1

Mg(6) = £t - )

Mg(e) = (2.50) = 2207 (€ - 1)
a = -.bb

be (2 e 20 2%
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If we let
b = 21n(l +R) R>1
then
bc = 2R/V1+R
m(z) = \/2? , z| < In(1+R)

The ROC curve is a symmetric rectangular hyperbola
(1+Rx)(1+R-Ry) = 1+R R>1

The asymptotes lie outside the ROC unit square at a distance R 1

3.3.8 Geometric. For integer t> 0; 0 q < 1

i) = (1-q) ¢

M(E) = (1-q)/(1-qe®)

M(.50) = (1-q)/(1-qe*" ), 0< b< 2lingl
. 5b
_ 1-qe

a = In (M-.Sb)

1-qe

bz Bb =.Bbyy 0
¢ = (1-9) fl+q? - qle’ ™ + e °?))
[z-a

-1 . b .

w (z) = ¢ (1-q)q , z=a,a+b, a+2b, ...
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{m
. _.5b _-.5by Of 1-ge P N
w (z) = (1+q -qe " -qe (
17 -.5b
1-qe
write
. 5b
7z - ln __]_'___.ie___.___
0 1 -.5b
- qe
and
zkzzo+kb, k=0,1,2, ...
Let
A = Inq - . 5b
" Inq +.5b

The ROC curve subscribes X = YA and touches it at

's Wk
_ -.9b _ +.5b -
Xk- (qe ) , Yk—<qe ) , k=0,1,2, ...

3.3.9 Binomial. For integer t > 0; 0 <p< 1

wity = ¢} p'1-p™"

where

n!
t!(n-t)!

ci‘ - binomial coefficients =
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Let
u = 1n--1—£-_-
-Pp
» w ©on ut
wt) = (1+e) Ct
- n
M) = (1+¢e% (eu+$+1)
u-. 5b u 5b
a=n1ne+5b+1 nln (e:esb )- S5bn
e 2041 (e™ °041)
-n - . 5n
c = (1+eh (ezu e '5b+1)
u, O n .b5un 5n
c =(l+e) 27 ¢ (.5 cosh u + .5 cosh . 5b)’
=1 _z-a
w (z) =c¢c wlt=225
T
= [eu(.Scoshu+ .5cosh.5b)J_'5n Z-HC?eut, z = a+bt

The term 2—nCi1 has a "bell-shaped’ graph and sums over t to
unity. The symmetric case of p=.5 or u=0, yields a =-.5bn

and

-.5n o-n .n

wﬂ(z) = [1+.5 cosh . 5b] 2 Ct , 2z = b(t-.5n)

The ROC curve consists of n+1 straight segments, with slope
change of eb at each vertex. The equation of the ROC must be ob-

tained from the two parameter table of binomial sums.
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3.3.10 Specific Binomial.

n = 0, one point: from the general binomial

a=0,c=1and t=0

w(z) = ¢ w(t) = 1 and z=a=0

This is the chance diagonal, Y = X.

n=1, two points

. v [ 20 wsp w.5b |°
zo-zl-b w(zo)—[ +e + +1]
. 5b+e
zy = In — 55 g w(zl) = e w(zo)
+e
The ROC curve is called a "Luce-ROC" after Duncan Luce
Z u u
1 e e
Y =¢e¢e X from (0, 0) to , ‘
o +e'5b eu+e--.5B

zZ
1-e 0(l-X) from the vertex to (1, 1)

<
i

For this special case it is easier to write

ROC Curve is line segment from (0,0) to (X YO)

from (XO, YO) to (1,1)

and
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1_ YO

zy = In ITX, w(zg) = V(1- Yy(1-Xy)
Yy

zZy = In —Xa w(zl) = \IYOX0

3.3.11 Negative Binomial, Pascal, Po'lya. For in-

teger t > 0; 0 <p< 1. and q= 1-p.
wlt) = ¢S L pT (1o p)t

r-1

-Tr
M) = pt et P (1-ge ) 0<b< 2hg

-.5b
a = rln E_.______g.
. bb
€ -q
e = pI‘ 1+qa_qe+.5b_qe-.5b -.5I'v

. or
wﬂ(z) = (1 +q% - qe’ o _ qe 5b> C:trl-l(l- p)t

t=0,1,2, ...
and
Z = a+bt

The extensive use of tables is necessary to plot the ROC curves.

3.3.12 Poisson. For integer t > 0; m > 0.




M(g) - erﬂ(e§ - 1)

+ 5b
M(x.5p) = em€ - 1)
a = -2m sinh .5b

(2m[sinh . 25b]?

w (z) = om0 cosh. b mt/t! t=0,1,2, ...

z = bt- 2m sinh . 5b
The ROC curves can be obtained from chi-square tables, using the

identities

- P(x? = 2me* | vo k)

=18
3
o
-

Many of the classical distribution functions for continu-
ous and discrete variables do not possess moment generating functions.
Among these are the Cauchy distribution and generalizations of the
Cauchy distribution, the Pearson Types IV, VI, and XI, the F dis-
tribution and the Student's t distribution. These cover a semi-infinite
or an infinite range, and have ''tails" which go to zero as some power

of the random variable.
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3.4 Truncated ROC Characters and the Metastatic Transformation

ROC curves which approach the origin at some »slope
other than infinity or approach the point (1, 1) at some slope greater
than zero correspond to ROC characters whose z- ranges are bounded
away from +wo or -, respectively. There is a functional relation-
ship between many of these characters and those corresponding to
ROC curves covering the complete range of slope from infinity to zero.
There is similarly a geometric relation between the two types of ROC
curves. This correspondence shall be called the metastatic relaﬁon.
The word comes from the medical term metastasis, meaning a por-
tion of something which has broken off and grows in a new place, yet
retains its original character.

The metastatic transformation will be used in Section
3.5 to relate each Anonregular but complete and convex. ROC curve
and character to a regular ROC curve and character. This will extend
the classification system based on associated distributions to these

nonregular ROC.

3.4.1 The Transformation. The algebra of the trans-

formation, and the geometric interpretation will be discussed at each
step in the following development. Figure 3. 1 displays a particular
regular ROC curve; Eq. 3.36 is a formal representation of the cor-

responding functional relationship.
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First ROC curve: Y1 = Yl(Xl) (3. 36)
Y30 | oo
, |
|
Y1 1 }
: a
Y,@) | ¥___
I |
|
| I
Ojl b 1
X1 >

Fig. 3. 1. A particular ROC curve

Also sketched in Fig. 3.1 are the coordinate lines at

.X1=a, X1=b and Y1 1

with the first ROC curve passing through the lower left and upper

= Yl(a), Y, = Yl(b)‘ These form a rectangle,
right corners. Between these two corners the arc of the first ROC
curve is interiof to the rectangle, because the first ROC curve is
convex.

The metastatic transformation is the mapping of this
rectangle onto a unit ROC square. Geometrically, the rectangle is
removed, and the coordinate axes uniformly stretched to extend from
zero to one. The transformed arc of the first ROC curve is the sec-

ond ROC curve, the metastatic image. Is the second ROC regular?

Yes, itis compléfe, convex, and interiorto the unit ROC square
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except at (0,0) and (1,1). An equation for the new ROC curve, (XZ’ Yz),

is

H

X, = (X,-2)/(b-2)

a<X, <b (3.37)

H

Yy

YA
When a point (X i, Yl) with slope e 1 maps onto a point (Xz, Yz) the

slope is multiplied by the ratio of the Y to X axis expansion. For-

malvly

b-a 29

Z dY
e ? - =2 e (3. 38)

- a-x-.; - Yl(b) - Yl(a)

Therefore

(3.39)

The second z-axis is simply a translation or horizontal shift of the
first z-axis.

The ROC character for the second ROC curve can be
obtained as follows. The formal relationship between the ROC charac-
ter and the probability density function of the log likelihood ratio, con-
ditional to the condition SN is

‘ -. 522 v
nz(zz) = e f(z2fSN) (3. 40)
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This probability density function can be found by differentiating the

corresponding distribution function, 1- Y,

N
f(z, ISN) "&%‘é (1-Yy)
_ d(l-Yz). d(l-Yl) dz, > 6. 41)
d(l-‘Yl) dz, d z, -
- L f(z., ISN)
" Y,0) - Y,) 21
J

The probability density function of the first log likelihood ratio in

terms of its ROC character is

f(ZIISN) = e 111(2 1) (3. 42)

(3.43)

Equations 3. 40 through 3. 43 lead to the equation for the second ROC

character

(3. 44)
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Let us draw a parallel between the geometric trans-
formation of the ROC curves and the algebraic changes in the ROC
character. Both a horizontal and vertical 5ca1ing convert the rec-
tangle to the unit square. In Eq. 3. 44 there is a vertical scalinggiven
by the denominator, and a horizontal translation, not scaling, given by
the added constant in the argument of the numerator. The second par-
allel has not been explicit. Only an arc of the original ROC curve
was transformed, not the entire curve. The bounds on the Zg axis
correspond to the upper and lower bounds on the zZy variable at the
two ends of the arc by Eq. 3.39. In summary, the ROC curve was
cut, and a small portion selected. This parallels the condition that
only a portion of the original character is used by the metastatic char-
acter. The ROC curve was re-scaled to fit the unit square; the ROC
character has been re-scaled according to its necessary properties.

In Fig. 3.2 are two specific ROC curves and their cor-
responding characters. The first is a normal ROC curve with index
d of 2.828. Above it is the normal ROC character, a curve propor-
tional to the normal density function, centered symmetrically about
zero and extending from -oc to +oc. The metastatic transformatioﬁ
chosen to illustrate the process was the part of the arc from (0, 0) to
the negative diagonal. This corresponds to the Zq axis from zero to
infinity. A metastatic transformation maps the dotted rectangle to the

unit square. The transformation on the ROC character truncates the.
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ROC character on the left, re-scales it vertically (the scaling is a
factor of 2.5 for this specific example), and translates the axis hori-
zontally the appropriate amount. The resulting ROC curve and char-
acter are shown on the right in Fig. 3.2. The ROC curves are
repeated in Fig. 3.3 on normal-normal probability paper.

Figure 3. 4 shows ROC curves before and after a meta-
static transformation from normal with d = 6.55. The metastatic
ROC curve is the image of the original ROC curve from the (0,0)
point to the negative diagonal. Both of these metastatic "half-normal”
ROC curves appear to be binormal ROC curves when plotted on nor-
mal-normal paper.

3.4.2 Sélf-Metastatic Families. Certain families of

ROC curves are self- metastatic; that is, a metastatic transformation
of one character will yield a second character which is in the same
class. The most startling of these cases is the pure power ROC
curve with exponeﬁtial ROC character‘(see Section 3.3.2). This is

the type corresponding to the ROC curve
X = §y (3. 45)

A metastatic transformation of the power ROC curve containing the
point (0, 0) to any point along the curve is the same as the original.
The formal proof is in Appendix B.

The rectangular hyperbola ROC curve has a rectangular
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(flat) ROC character. Such a character, being a simple rectangle,
is symmetric about its midpoint. =~ The midpoint must be z =0
since this is the symmetry point for all symmetric ROC characters
(see Section 2. 4). If a flat character is truncated either on the right
or on the left, or both, and then the translation and rescaling dicta-
ted by the metastatic transform rules performed, the Character'will
again be flat and symmetrically placed about z = 0. Since the char-
acter will not spah as much of the z axis as the original character
did, the new ROC curve will be different from the first; it will still
be a rectangular hyperbola. The moré that is removed from the ori-
ginal charactef, the poorer the resulting right hyperbola ROC curve.
As a family, rectangular ROC are self- metastatic.

It will be shown in Chapter V that the ROC character

for the conic class is

nz) = £ KA+ 2B +Ce ) - (3. 46)
where the rahge of the log likelihood rati»o, Z, depends on the specific
curve being considered. The coefficients A, B, and C are the first
three coefficients in the classical form of a conic section. The trans-
lation of the z axis, Eq. 3.39, will be absorbed into the new coeffi-
cients A and C, magnifying ~»e ~~4 diminishing the other propor- ’
tionately. The discriminant for a conic section in classic form is

B?-AC. Any translation of z, although changing the coefficients A
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and C, will leave the value of the discriminant unchanged. Not only
will the individual subtypes of conic section (hyperbola, parabola,
ellipse), be self-metastatic families, but each value of the discrimi-

nant will correspond to a self-metastatic subfamily.

3.5 Nonsingular, Nonregular ROC

The only difference between the complete convex non-
singular ROC curvé and a regular ROC curve is that the initial left-
hand point of the ROC curvé may begin at some nonzero value and/or
attain unity probability of detection at some value of false alarm proba
bility less than one. Such a complete convex nonsingular ROC curve
is illustrated in Fig. 3._‘5. It should be emphasized that both condi-
tions of starting above zero and terminating before one are not neces-
sary, either one is sufficient to make the curve nonregular. The
singular ROC curve is simply the upper edge. Nonsingular means
that the initial pdint is not as high as one, nor is the value of false

alarm at which it reaches unity detection as small as zero.
Nonsingular = Y(0) # 1, X(1) # 0 (3. 47)

On Fig. 3.5, a metastatic transformation of the rectangle from Y(0)

to one, and from zero to X(1) would produce a regulai‘ metastatic

image. For this metastatic image the ROC character would be
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1- Y(0
T2z+1
1y(@) = 1( M < 5) (3. 48)
[X(1) (1- Y(0))] -

Consider any ROC character, 1r2(z) with either bounded

or unbounded range denoted by Zy 1O EE

Given: th(z)) fg <z < -i; (3. 49)

If this were the metastatic image of some arc, such as in Fig. 3.5,

the ROC character for the regular part of the original arc would be

r@ = KO -YO) 5y (a- n 10))
(3. 50)
1- Y(0)
X(1) -

zz-ln» X‘l) <z < zz-ln

The complete description of the nonregular ROC curve contains the

boundary conditions.
=-¢|N) = 1-X(1), P(z1 = +¢]SN) = Y(0) (3.51)

Such boundary conditions cannot be included in the ROC character
since probabilities are obtained by multiplying the character value by
%92 This multiplier is either zero or infinite at the extreme bound-
ary values.

If the values for the boundary were unknown, they could

be obtained by integrating the nonregular ROC character over the
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range between -cc and +oc.

o 5 _

[ e ane) = 1-Y(0) (3. 52)
o -5 .

[ ez = X(1) (3. 53)
-

The above equations are the essential formal difference between the
nonregular and regular ROC characters. For the nonregular ROC
the value of one or both of these integrals will be less than one, indi-
cating that portion of the decision which is error free. The regular
ROC character always has a value of unity for the complete integral
(Eqs. 3.8, 3.9).

Two special ROC curves with discrete ROC character
have been of importance in the psychophysical literature. Both are
related to nonregular ROC characters with just one value of log like-
lihood ratio other than .

The pure-threshold or traditional-threshold ROC has
only two values of log likélihood ratio that play any role, +w and some

negative value Z,. The ROC character jump is
0

w (Zg) = e (3.54)

Equations 3. 52 and 3. 53 are applied to this nonregular ROC charac-

ter to determine that X(1) is one, méanin'g that the ROC curve first
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contacts the upper edge at the corner point (1,1). The ROC curve is
given by Eq. 3.55, and shown in Fig. 3. 6.
Z Z
Y=1—e0+eOX (3. 55)
The more common form of this equation may be given by relabeling

Y(0) as Py’ sometimes called the "true probability of perception. "
Y = p‘0+'(1-p0)x (3. 56)

The value Z, and its ROC character jump are

0

5

Zy = In(1-pg), w (Zg) = (1-py) (8.57)

A second nonregular ROC curve related to a single
point on the log likelihood ratio axis is the Green ROC. This is the
nonregular limit of D. M. Green's double threshold ROC curve. For

any point z_ and any ROC character jump value small enough that

w (z) < e © (3. 58)

X
Y = 1 X(1) < X < 1 (3. 59)
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The ROC curve is sketched in Fig. 3.7 for a slightly negative value

of z .
0

3.6 Summary of Chapters I, II, and III

The purpose of this research was to furnish a variety of ROC
curves, to develop sufficient analytic structure to classify ROC curves
into families and to provide a means of generating new families. In
Chapter II it was shown that the distribution of a decision variable
may be quite arbitrary under one cause condition; therefore decision
models may be developed with considerable freedom.

The ROC curve contains 'informzition sufficient to specity a
decision model iff the decision axis bears a specific functional relation
fo the likelihood ratio f. This research has concentrated on z, the
logarithm of the likelihood ratio, because the distributions of z are
necessarily sufficiently concentrated to possess moment generating
functions. It has been demonstrated that the ROC charécter can be
used to structure ROC curves into families, and to provide both inter-
family relationships and a basis for generating new ROC families.

This completes the development of the research into the structure
of ROC curves. The following chapters deal with specific ROC families,
in order to determine properties peculiar to each, and to demonstrate

the techniques for working with ROC curves and ROC families.



CHAPTER IV

TRADITIONAL ROC FAMILIES

This chapter will deal with those ROC families that

appeared in Ref. 1.

4.1 Normal ROC

The normal ROC has been used extensively in both the
electronic and psychophysical literature (Refs. 1, 4, 7 through 14).
This type of ROC curve was used so extensively in the originai psycho-
physical work of Tanner, Swets, and Green, that many fhought it was a
necessary pai‘t of their perception theory. Tables of the normal ROC
curve are available (Refs. 17 and 18).

The ROC character for the normal ROC curve is

d Lz
w(z)—e-_g : ezd -0 <2< w
- V2nd )

(4.1)

Multiply the character by e * -2 44 obtain the probability density
functions for the logarithm-of the likelihood ratio under the two conditions

N and SN. Both of these are normal,

100
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) (z +.5d)?
f(z/N) - —ﬁ;r__—l-&— e \/-2_(1- (4.2)
_ (z -.50d)°
.V
f(z/SN) = —— € (4.3)
v 2nd

with equal variance and with mean values shifted plus and minus . 5d from
the character mode of zero. The ROC curve is obtained by direct inte-

gration of Egs. 4.2 and 4.3.

: -.5d-2z
P("A" [N) = = @ (——
( ) = X (ﬁ_~ )
.hd-z
P("A"iSN) = = —
("A ) =y = & i ) (4. 4)

The symbol & stands for the normal distribution function. From this
point on, the probability notation for the ROC curve will usually be omitted
and only the description of the ROC curve as a real function, y, of a real
variable, x, retained. While Eq. 4. 4 explicitly indicates the relation
between the coordinate values and the logarithm of the likelihood ratio,
this relation is not always desired. z may be suppressed, and the

equation for the‘ROC curve written as
y = & +Vd )whenx = ®()) (4.5)

where the variable A is the dummy parameter along the ROC curve. In
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this form the natural parameterization is by v d , which is normally
called d' in the psychophysical literature.

Graphs of the normal ROC are displayed in Figs. 4.1
to 4.3. In 4.1 they are displayed on ordinary linear coordinate paper,
with curves given for d Valﬁes of zero (the chance diagonal) and
d=1, d=4, andd = 9. This reflects the natural stepping shown in
Eq. 4.5. The coordinate paper for Fig. 4.2 has been called "normal-
normal paper' indicating that it is related to the normal distribution
function on both axes, and is also called "double-probability paper"
and "'z-scale paper.' The lihear distance in each coordinaté direction
on this paper is the argument of the normal distribution function. Refer-
ring to Eq. 4.5, on such paper a normal ROC point plots with the

“vertical coordinate X + Vd, and horizontal coordinate X . These

lie along a straight line with slope one and separated by a difference
vd - Transformation to normal coordinates spreads the unit square
over the entire infinite twd-dimensional plane. The region displayed in
Fig. 4.2 is that used for medium ﬁrobabilities, between one percent and
ninety-nine percent. The region displé.yed in Fig. 4.3 is more common
in machine application where very small probabilities can be measured,
and extends from 'IO-Gvfo 1- 10—6

The main diagonél with slope plus one is the chance
diagonal. The minor diagonal, with slope minus one, vis usually
referred to as the "negative diagonal' and corresponds to those pbints

where the probability of miss, 1 -y, is equal to the prbbability of false

alarm, X.



P(VVAY'!N)

y:

103

x = P("A"IN)

Fig. 4.1. Normal ROC
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Four normal ROC characters are plotted in Fig. 4.4
on the equivalent of semi-log paper; that is, In n(z) is plotted against
z . These are simple parabolas with center at z = 0 and opening
downward. As the detectability increases, d increases, the ROC
characters broaden out, giving more weight to large magnitude z
values. The locus of the one percent false alarm probability and 10-6
false alarm probability have been indicated. Since the ROC curves,
and ROC characters, are symmetric, the negative diagonal corresponds
to z v= 0. The regions of interest for the psychologist will normally lie
in the neighborhood of the negative diagonal with possible extension to
high positive z values out to the one percent point, x =.01. The
fegion of interest for most radar and sonar applications is between the
one percent and 10'6 false alarm probabilities. (In the past, some have
been interested in false alarm probabilities as low as 10_14. ) These

correspond to regions of high positive z value.

4.2 '"Case II", Detection of a Sine Wave in Added Normal Noise

A problem occurring frequently in the electronic literature
is the detection of a stable sine wave with uniformly uncertain phase in
the presence of added white Gaussian noise. This has been treated by
Rice, (Ref. 19), by Marcum (Ref. 16), by Middleton (Ref.7), by Helstrom
(Ref. 15), was included in Ref. 1 as Caée II, and has been recently
investigated extensively for its usefulness in hearing by Lloyd Jeffries

(Ref. 20).
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The normal ROC case has been used so easily by so
many. Yet its equation, Eq. 4.5, is really quite complicated. The
normal distribution function & ( ) cannot be determined in terms of
polynomials or the elementary transcendental functions. It owes
whatever simplicity it possesses to the‘ease with which tables can be
obtained, and farhiliarity with this specific function. In the case at
hand, the coordinates of the ROC curve cannot be simply written in
terms of each other, and the parametric form of the curve again
involves a tabulated function. However, this particular function is
one with which few people have great familiarity and for which the
tables are not as readily available as one would wish. Tables have
been calculated by Marcum (Ref. 16), specifically for the evaluation
of this ROC curve. These are called QTables since that is the

symbol that he uses.

2 2
Q Tables: x = eP /4 Q(0,B) = tet /Zdt

m%8

. - ® 2 2
y = Qla,B) = ]te't /2e-0’ /zlo(at)dt
B
(4. 6)

The false alarm probability is a very simple function of the parameter
of the curve, 3, but the detection probability involves integration of a
function whose integrand contains the modified Bessel function of order

zero, itself a non- simplé tabulated function. The parameter o, a
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positive real number, indicates the quality of detection. As « in-
creased, the ROC curves become better. The Q tables were used to

plot the ROC family of Fig. 4.5.

\/a_ Values Slope Formulae
a |[AtY=50;q[AtX =1- Y|AtX =.50 S a-.5\/InIO(oz)
0 0 0 0 1 - 0
) - - 0. 108 0.970] 0 -
1.0 0.412 0.40 0. 381 0.925) 0.5 0. 486
1.5 0. 869 - 0.761 0.877] 1.0 -
2.0 1. 397 1. 30 1. 188 0.851] 1.5 1. 56
2.9 1. 940 - 1. 640 0.845] 2.0 -
3.0 2.476 2. 30 2.106 0.852] 2.5 2.65
3.5 3.003 - 2.581 0.861] 3.0 -
4.0 3.512 3.35 3.544 0.872] 3.5 3.70
4.5 4,001 - , 4.036 0.885| 4.0 -
5.0 - . 4. 40 - - 4,5 4,75
5.5 - Graph - 5.0 -
Table
6.0 - 5. 45 - - 5.5 5.78
7.0 - 6. 47 . - 6.5 6. 80
8.0 - 7.51 - - 7.5 7.82
9.0 - 8.55 - - 8.5 8.84

Note: q and s are binormal approximation numbers. See Chapter VII.

Table 4.1. Numbers relating Q-Table ROC to normal

The vd and slope readings for a range of @ are
given in Table 4. 1 and plotted in Fig. 4. 6.

Clonsider a random variable t whiv:h ranges from zero to
infinity with probability density functions given by the integfand in Eq.
4. 6. TItis immediately evident that the likelihood ration of t is the

- product of the third and fourth terms in the integrand of the equation
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Fig. 4.6. Slope and quality values relating
Q- Table ROC to normal and binormal
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for y (Eq. 4.6). Therefore, the logarithm for the likelihood ratio of

t is

z = Inl, (at) - .50 2 4.7

0

and is strictly monotone increasing with the variable t. Those

familiar with the chi-square distribution will recognize that under the

.N condition t is the square root of chi-square with two degrees of
freedom while under the SN condition t is the square root of a noncentral

¢ hi-square with two degrees of freedom.

t = VX2 vS. t = VX2 (4.8)

2d. f. 2d f.

- .- general problem of detecting a shift from central to noncentral
chi-square distribution with a known number of degrees of freedom has
been treated in Ref. 21. The variable t rather than chi-square has
been chosen for two reasons; the first is that Marcum's tables use t
inst_ead of t? , the second is that the Bessel function 1n IO(at) is nearly
linear with its argument, at, when the argument is large. This means
that the density function for z should be of the same type as the density
function for t if large values of at are the relevant values.

The ROC character for z can be obtained from the root
likelihood product of t multipiied by the Jacobian of transformation
from t to z. The root likelihood product of t is simply the N density

function multiplied by e’ °Z
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1z)  ftIN) e ‘ dt

= (4.9)

It would be desirable to write t in terms of z and determine the form
of the ROC character as a function of its argument, z. We cannot invert
Eq. 4.7 in any practical fashion. Therefore, the best procedure is to
write the ROC character in terms of the parameter t, and to attempt

to graph or approximate the ROC character.

-t*/2 -a®/2 . .5 0
e IO ((Zt) m 410)

m(z) = te

Table 9. 8 of the NBS Handbook (Ref. 6) gives not the

modified Bessel function, but the more slowly varying quantity.
TM) =e " 1Q) (4.11)

(TV has been used to indicate "tabulated function. ') In order to use the
tables, Eq. 4.10 is rewritten in terms of the table entries.  The

logarithm of the Bessel functions can be written as

nT () = InT () + A (4.12)

and inserted in Eq. 4.7 and 4. 10.

z = [ InT,(at) + at] - [ .5a%] (4.13)

0 1
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In7(z) = [.5(t)+In(at) + 1.5 In T, (at) - In T,(@t)] 4 - . 5t*

0

-[.25a% +2Ina] (414

The argument of the Bessel function is at, and therefore the equations
have been written in terms of a quantity which is a function of ot alone,
and then modifiers depending upon t or . Since o is the parameter
of an ROC curve, it will be constant over any computations of the ROC
or its character. These equations were utilized to calculate ROC
characters with table values and slide rule. The resultant ROC
character for three values of the parameter is shown in Fig. 4.7. This
is shown on the same coordinate system that was used for the normal
ROC character Fig. 4. 4. The range of the random variable z is
bounded below by .5a ? as can be seen in Eq. 4.13, and hence the ROC
curve will have a nonzero minimum slope.

Since the ROC character is bounded below but unbounded
above, it cannot possibly be symmetric. The mode of the ROC character
for the cases shown is slightly negative. Inthe case o =1 the mode
is at the extreme negative value, z =-.5. For the cases o =2 and
a =V10 , the mode values are approximately z =-.73, and z = -. 179,
respectively. As detectability increases (a increases) the logarithm of
the ROC character covers a wider and wider range and begins to appear
similar to those for the normal case. It is therefore very tempting to

attempt to fit the ROC curve with a normal ROC curve, to fit the ROC

character with a normal ROC character. In Ref. 22, the approximation



-10

-11

115

a =1
a=V1p
d J x=10-2
a =v10 a=2|a=1 a=1 a=2 a=v10
— pd
Ve
) | .~
A0 \
- *7 _ 7
~
| e A W
5 4 3 2 10 1T T I 5T 910 1T 12
Z
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d=(a - .5)° has been given. Some have used the approximation
d=1In IO (@ ?). Both of these have been useful in engineering application
to indicate that performance is very poor for a less than .5, and
essentially normal for o greater than V10. For those interested in
the ROC curve between false alarm probabilities of 10_6 and IVO'-2 the
picture is simpler, since it is evident from Fig. 4.7 that over this
region the arcs of the logarithm of the ROC character could fit quite
well with a parabola. Appendix C éontains the numerical work in an
attempt to fit the entire a =2, In 7(z) curve over the portion shown
in Fig. 4. 7. Thi's means that the same expression must fit near the
mode as well as along the skirt. The result is summarized in

Eq. 4.15.

z +.725

' '1.885
1.625

(4.15)

The numbers . 725 and . 25 come directly from the graphically determined
mode. The power 1.885 is close to 2.000. This accounts for the normal
appearance of the ROC curve and ROC character over short segments.
The difference between 2.000 and 1. 885 accounts for the failure of

attempts to match the ROC curve or its character over major portions.

4.3 Noise-in-Noise, Same Spectrum

There are two basically different problems called noise-

in-noise in the detection literature. The first, and the one that we shall
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consider here, is the case which is an increase in the:power level
without any other change in the statistics of the observation. The
contrasting case, not considered here, is when the two noise pro-
cesses differ in spectrum and in autocorrelé.tion function. This
latter case has caused considerable controversy in the literature
because one can obfain singular detection at low power levels from
seemingly innocent assumptions.

The standard problem assumes 2WT independent
samples of a Gaussian noise'process are observed. Each sample

has the probability density function given by Eq. 4.16.

f(ui!N) =—Q——— e (4.16)

(I apologize for the confusing notation which uses N to indicate the
cause on the left-hand side of the equation, and to represent the noise
power‘or varianée on the right-hand side of the equation; however, this
is the standard notation in the field. ) The signal to be detected, if it

were observed noise-free, would be of the same nature

o

| il
f(u, |S) = —— e (4.17)

~except that it has a power S. When the signal is added to the noise, the

resultant observations will have the probability density function given
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by Eq. 4.18.

Ll.z
1

P I

f(u 1 SN) = ——L__ o 2(N+8) (4.18)

Vor(N+ S)

The logarithm of the likelihood ratio of an individual point observation

is obtained by dividing and taking logarithms.

1

| i1 1 N
z) = 5 (g - §rg) 3 g

+S)

(4.19)

If a number of independent observations are to be used
reach a single decision, then the likelihood ratio of the total obser-
vation is the product o_f the likelihood ratios of the individual parts.
This means that the logarithm of the likelihood ratio of the total
observation will Ee the sum of the logarithm of the likelihood ratios of
the individual observations. It follows directly from Eq. 4.19 that the
sum of the z values corresponds to the sum of the squares of the

individual observations.
u = uiz (4. 20)

Thus, u is a sufficient statistic. It follows directly that the log of
the likelihood ratio of u is the sum of the logarithms of the likelihood

ratios of the individual observations.



2WT w11 .

z(u) = R z(u,) = 3§ §rs) t VT In (gg)

Z = U+ WT In (=) (4.21)
ZNEN+S) N +S .

Since u is the sum of the square of Gaussian random variables, its
distribution is closely related to the chi-square distribution with 2WT
degrees of freedom. Specifically, the variable u/ N will have a chi-
~square distribution with 2WT degrees of freedom. This éan be used

to obtain the distribution for u.

ol e

WT- 1

fiN) = —o € | u> 0 (4.22)
oWT rwT)NWT -

In a similar manner, the distribution for u under condition SN is
obtained from u/ (S+N) being a chi-square random variable. The
equation is exactly like‘ Eq. 4.22, except that N is replaced by (N+8).
The present objective is not to obtain the individual
density functions to take their ratio, since we already know the likeli-
hood ratio. The objective is to obtain the individual density functions
in order to obtain their product. Since, by Eq. 4.21, u is a linear
translation of Z, the ROC character is obtained from the rootv
- likelihood product for u by multiplying it by the Jacobian‘of trans-
formation (the derivative of u with respect to Z.)

5 du

i _z, (4.23)

7(z) = | f(u N) f(u SN)|
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From Eq. 4.21, z is bounded below by a quantity we shall call Z

0
because u is bounded below by zero.
Z, = WTIn (o) = -WT In (1 +2) (4.24)
0 N+S N '
From (4. 22) and (4. 23)
u s 2N + S
v - MV 0T [ us ]WT'I JINN+§) 28
L (WT) SWT 2N(N + S)
(4.25)
The next step simpliy 1s tne change of variables from u to z.
5WT B4 8)z-2)
Tf(Z) _ 1 N(S + N) ' ( - Z )WT“I e S O
(4. 26)

This ROC character is a Pearson III character, a two-
parameter class. When WT is small, or S/N is large, the ROC
curve can be obtained by direct integration. Tables of the chi-square

distribution may be used to plot the ROC curves.

1-P(x? =

N.
I

lu = 2WT)

zi =

u

- - '2’:_________

‘z/ = 2WT) (4.27)
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When S/ N is very small, but WT is sufficiently large
so that the resulting performance corresponds to normal indices of
the order of 0.5 to 50, a normal approximation to the ROC curves may

be made. The formula for the matching normal index

& - WT-1) (%)2 (4. 28)

is derived in Appendix D, using the ROC character. This approximation

is not new; the use of the ROC character to obtain it is new.

4.4 Signal One of M Orthogonal Signals

Chapter IV on ROC models derived from electronics
cases concludes with a review of the M orthogonal signals case. The

situation is this. An observation
X = (Xl’ X2""’XM) (4.29)

consists of M similar parts. If the condition is noise alone, N, the
individual parts are similarly distributed and are statistically independ-

ent

M

y&N = I £ (X N) (4.30)

f

Therefore, the probability density for the occurrence of the total
observation is given by a product of the individual N probability

density functions. These M parts of the observation correspond to
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M different subcauses, possibly M specific signals. Each possible
subcause affects only one part of the observation. Thus, if the j-th
signal is present, the probability density for the total observation is
given by

(X.ISN) 1II f

[ (XISN) = f
MET i#]

(Xis’N) (4.31)

1 1

The j-th signal affects only the j-th part of the observation and the rest
of the observation is distributed the same way it was under the condition
N. Rewrite Eq. 4.31 interms of Eq. 4.30 by multiplying and dividing

by the missing factor in the large product and obtain

f -(XI'SJ.N) = (XIN) (4.32)

M (Xj) f

1 M

for the probability density under the special subcondition of the j-th SN
cause. The actual SN cause is an ensemble of these subcauses, each
occurring with known probabiii’ty P(S].N). The probability density
function for the total observation under the condition SN is therefore
the average probability density function (averaged over the various sub-

causes. )

(xsst) (4.33)

fy XISN) = ;P(SjN) By

Using Eq. 4.32,

e _ v ;
fXSN) = ), P(SJ.N) £y (X N) (4.34)

Cm
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Since the term fM(XiN) is independént of the summation, divide

through by it to obtain the likelihood ratio for the total observation.

(x) = ), P(S;N) 4 (X)) (4. 35)
J
The logarithm of the likelihood ratio is simply the logarithm of
Eq. 4.35
zZ.
z = In Zp(SjN)e ] (4.36)
J
The physical picture of the receiver for such a situation
is one of M parallel branches, each of which computes a log likelihood
ratio on part of the observation. Each of the log likelihood ratios is
passed through an exponential nonlinearity which greatly emphasizes
large positive values. The output of these nonlinearities are averaged
together to form the total likelihood ratio of the observation. If this
total likelihood ratio is passed through a logarithmic nonlinearity, the
output will again be on a z axis. Although the value of z on any
observation will, in generai. be less than the maximum individual log
likelihood ratio, the effect of the peaking function before the averaging
means that the output z will, in general, be greater than the average

value over all of the M parallel channels.

Y P(S.N) z, <

z < max z, (4.37)
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The evaluation of reasonable parameter cases for the
"M orthogonal signal problem has taxed many people. The difficulty
is the presence of the nonlinearities before the averaging process.
.Some authors have felt that the presence of the averaging process
would tend to make the Outﬁut normally distributed. However, if one
realizes that ¢ ranges over positive yalues, has an expected value of
one for condition N, a good normal fit could be obtained only if the
standard deviation of the fit is small compared to one. The direct
route to obtain the distribution of z, or ¢ , is to carry through the
M-fold convolution to obtain the results. This could be done in the
transform plane by finding the charaéteristic function for (, raising
to a power, and iransforming back. Since the Iikelihood ratio often
fails to possess a moment generating function one suspects that a
great deal of care will be necessary if any approximation or numerical
work is done in obtaining the characteristic function or its inverse.

An Example: Let us consider a particular example of

ROC character for the individual parts of the observations that
simplify the process of obtaining the ROC character for the total

observation. Consider the ROC equation given in Eq. 4.38
Vi T XX In Xy (4.38)

and graphed on normal-normal paper in Fig. 4.8. This does not
represent particularly good observation quality, or any physical case

of interest, but has been chosen because of the specific form of its
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‘Fig. 4.8. A particular ROC curve
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ROC character.

m(z) =e ' e - < 7, <o (4.39)

Multiply the character by e oz to obtain the probability density function

for z under the con_ditioh N,

fl(zi}N) S (4. 40)

and by substitution, obtain the probability density function for the

- individual part-of-the-observation's likelihood ratio.

f(4IN) = (e Lot 2 ! 0< 0. < w (4. 41)
Let

u = EQ. (4. 42)

The distribution of u is obtained by simple use of the characteristic
function. The resulting density function is

. M-le-u

fmm)=lWFTW (4. 43)

The likelihood ratio desired is not the sum of the individual likelihood
ratios, but the average likelihood ratio. Assume that the subcauses are

equally likely. ‘From Eq. 4. 43 obtain
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[4 ¢ (4. 44)

From the distribution for the likelihood ratio, transform to the log

likelihood ratio axis

; MM Mz —MeZ

IN) = '
f(Z.N) m—_—fy!— e v e (4 45)
and multiply by e’ 5z to obtain the ROC character for the total observa-
tion procedure.

MM (M +.5)

' VA
ﬂM(z)“T“—T—M—II e e

Z .
~Me -0 < 2z <o (4. 46)

This ROC character is functionally similar to the single observation

character.
@)=e ' &} 0 <2< (4. 47)

Normal Case: To obtain an accurate estimate of the ROC

curve when the individual observations are normally distributed,
Jaarsma (Ref. 24) programmed the IBM 7090 to obtain the dist_ribuﬁons
using the characteristic function. Reproduced here are some of his ROC
curves and the ROC characters for the particular case when the originél
observation was normally distributed with parameter d = 4. The ROC

cheracter for this individual observation is given by Eq. 4. 48.
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1r1(z.) = e \[5; e ~0 K Z <o (4.48)

ROC curves are for 5; 20 and 100 parallel channels of observation. The
resulting performance is displayed on normal-normal paper in Fig. 4.9.
The ROC characters for these three cases are drawn on linear paper in
Fig. 4.10. The three charécters all have the same general form. They
are unimodal with the mode being at a slightly negative value of Z. The
decrease from the mode is faster in the negative direction than in the
positive direction. As the number of parallel channels, M, increases
and the detection performance falls off the ROC character is essentially
’conﬁried to a narrower range of z values andbecomes ‘correspondingly
more peaked: To compare these ROC characters with those shown for
Cases I and II the logarithm of the ROC character has been plotted in |
Fig. 4.11 to the same scale as for Fig. 4.4 and Fig. 4.7. Because of
the specific mechanics of the computer program, the computation of the
character was terminated at the neighborhood of the one percent false
alarm values; that is, x = .01. In order to look at one of these in more
detail, the axes were éhanged and the ROC char aéter feplottéd for the
case of M'= 20 in Fig. 4.12. In Fig. 4.12, the z-range shown ektends
only from -2 to +2. To the left of the mode, the appearance of the ROC
character is quife parabolic (or ,atv least power law). The fall-off to fhe

positive z direction is shallower, as has already been noted, and
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Fig. 4.9. ROC curves for M orthogonal normal signals
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Fig. 4.11. ROC characters for M
orthogonal normal signals (log scale)
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appears to be more linear.

In order to investigate this nearly linear fall-off of the
log of the ROC character, consider what the effect would be if the
ROC character behaves exponentially for large positive values.

Assume

m(z) = C, e c, >0, Cy >.5,2>C (4. 49)

1 3

holds for z greater than some value, say C3, and with coefficients
C1 and C2' For this simple ROC character, the ROC curve can be

obtained by direct integration

0 C -(C,¥.5) 2z
Y + .5t _ 1 2
() = Je nt)dt = = e (4.50)
zZ 2
Taking logarithms of both sides
n(Y) = 1InC, -1In(C,¥.5-(Cy¥ .52 (4.51)
X 1 2 2 :

Eliminate the parameter z to obtain a nonparametric form for the ROC

curve.

C2+.5
nCy+ (g =75

2 , 2 2

) - ln(C2+.5)

(4.52)
This shows that the ROC curve would plot as a straight line on log-log

paper for that range for which the ROC character is essentially a

simple exponential. The general form for such a curve is given by
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A

InX = AlnY+InB = X = BY (4.53)

The ROC curves of Fig. 4.9 are replotted on log-log
paper in Fig. 4.13. The straight-line portions of the ROC continue well
beyond the initial part of the curve up to the general region of Y = . 55.
There must be a departure from this straight line form as the ROC
curve approaches the point (1, 1) since the ROC curve is regular, and
the ROC character is definitely not exponential over its complete extent.
Figure 4.13 does indicate that the exponential portion of the ROC
character extends amazingly close to the mode.

A detection situation where the likelihood ratio is an
average likelihood ratio, corresponding to the signal affecting only one
of many parts of the observation, leads to great difficulty in treating
the ROC analytically. This is in contrast to the happier situation when
the logarithm of the likelihood ratio is the sum of the logarithm of the
likelihood ratio for various parts of the observation, corresponding to
the situation where the signal affects all of the individual parts of the
observation. In this latter case, one will be dealing with the distribution
for z, a variable which has concentrated density function, moment
generating functions, and tends to be more amenable to transform

methods than ¢, which has wildly skewed probability distributions.
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CHAPTER V

ALGEBRAIC ROC

This chapter is dedicated to Professor James Egan, His
work with the type of ROC known as the Power ROC (Ref. 23) suggested
the use of simple algébraic formulas for use in ROC models. Such
models can be expected to be used to fit data, or approximate the be-
havior of a decision mechanism, and not necessarily arise from phys-
ical phenomena. Egan noted the nonnormal nature of ROC curves that
he obtained for human observers. The region of the ROC near the (0, 0)
point a.ppeared to be fairly normal, sharply rising and curved. How-
ever, the region of the ROC near the upper corner (1, 1) was more like
the.pure threshold ROC curve of traditional psychophysics, with the
curve approaching the upper corner at some nonzero slope. ROC
curves of this naturé are shown in Fig. 5. 1. These curves are Egan's
pure power ROC curves, detailed in Section 5. 1.

The description of the ROC curve as an algebraic for-
mula will mean that most of the mathematics will be simpler than that
necessary when the ROC is described by higher transcendental equa-
tions. The calculus that is involved is generally elementary. The
algebraic ROC curves are recommended as classroom examples
since little higher mathematics is required of the student.

In this chapter Egan's pure power ROC is examined in

Section 5. 1. obtaining a one parameter family of ROC curves. 1In 5.2

136
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Fig. 5.1. Power ROC curves on linear graph paper;

X=vA



138

the general conic ROC curve is considered. These ROC curves are
arcs of parabolas, circles, ellipses, or hyperbolas. The Luce ROC
Curve will be considered a conic section, it being the two straight line
asymptotes of a hyperbola. The regular conic ROC is a three parame-
ter family. Section 5.3 is devoted to a nonlinear scaling which can be
used to produce a special type of probability paper, called lor-lor
graph paper. The Chapter concludes with Section 5.4 on curve-
fitting using the conic ROC curves. While the three parameters of

the conic ROC family are too cumbersome to yield a simple set of

ROC, they become three degrees of freedom in fitting curves to data.

5.1 Power ROC: X = YA

The ROC curve of the pure power type, X = YA, where
A is greater than one, has already been shown in Fig. 5.1 on linear
graph paper. In this graphical form it is similar to many ROC curves
that have been measured. This type of ROC has one property (Ref. 23)
which is extremely chvenient in situations where the probabilities,

X or Y. can be determined except for a fixed, unknown, constant of
proportionality.

For example, in an experimental situation in which the
number of false alarms is measured, but the number of opportunities
for false alarm can only be estimated, the false alarm probability, X,
can not be determined exactly. If two similar experimental runs are

made, or if an experimental technique is used so that two points on
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