Division of Research March 1985
Graduate School of Business Administration
The University of Michigan

A COMPARATIVE EVALUATION OF HEURISTIC
LINE BALANCING TECHNIQUES

Working Paper No. 415

F. Brian Talbot
The University of Michigan
and
James H. Patterson
University of Missouri-Columbia
and
William V. Gehrlein
University of Delaware

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research.






Abstract

In this paper, we report on a computational experiment designed to assess
the efficacy of twenty-six heuristic decision rules which group work tasks
into work stations along an assembly line such that the number of work stations
required is minimized. The heuristic decision rules investigated vary from
simple list processing procedures that consider a single attribute of each
work task for assignment, to procedures which are optimal seeking, but which
have had their search terminated through the imposition of a limit on the
amount of computation time that can be devoted to each search. Also included
are heuristic decision rules which backtrack in an attempt to locate an
improved solution, and decision rules which probabilistically search for
improved solutions. Our investigation differs from those reported previously,
in that the objective in balancing each line is to determine the minimum
number of work stations for a given limit on the time available for assembly
at each work station (the cycle time). Previous approaches have investigated
the problem of determining the minimum cycle time for a given line length. We
also compare the results obtained with the optimal solution for a subset of
the problems investigated. Both problems which have appéared in the open
literature and problems which have been solved for the first time are
included. Since some of the results reported in this paper differ from those
reported previously, we suggest why these differences have occurred. Guide-
lines are also given to those balancing industrial assembly lines on the
choice of the heuristic decision rule to use whether one is attempting to
obtain a minimum station balance given a limit on the time available for
assembly at each work station, or whether one is attempting to minimize the

time devoted to assembly at a work station given a limit on the number work

stations available.






1. INTRODUCTION

One of the problems inherent in organizing for mass production is how to
group work tasks to be performed into "work packages” or work stations so as
to achieve a desired level of performance. When the number of work stations
or production employees is fixed, the objective is to allocate the work to be
performed to the work stations in such a way that the maximum time required
for assembly at any given station (i.e., the cycle time) is minimal across
all feasible station balances. The optimal solution to this problem, called
the Type II problem (Mastor, 1970), maximizes the output rate or the number
of units that are produced for the given line length. A Type I problem, on
the other hand, is characterized by a forecast of demand or a production plan
dictating the output or the production rate. The objective in this problem
is to detemine the minimum number of work stations required to meet the
specified production requirements. A line with fewer stations translates into
lower labor costs and reduced space requirements, and hence, a more cost
effective production plan. In this paper, we examine in detail the latter of
these two problem types, and offer guidelines for applying our results to
either one.

There have been two previous investigations of the performance of various
heuristic decision rules for solving the Type II assembly line balancing (ALB)
problem for the case in which heuristic performance is assessed relative to

the best heuristic result obtained. Mastor (1966) evaluated the performance

of ten heuristic decision rules on twenty and forty task assembly problems for
three different order strengths (ratio of the number of ordering relatioms
among the tasks to be grouped into work stations to the total number of

possible orderings), and for line lengths (number of work stations) ranging



-2—

from four to fifteen for the forty task problems and from three to twelve for
the twenty task problems. Since the majority of the line balancing heuristics
investigated by Mastor were designed to solve the Type I line balancing
problem, Mastor obtained minimal cycle time balances by iteratively employing
each of the evaluated techniques, increasing the cycle time in one percent
increments above the lower bound cycle time until a balance was achieved for
the specified number of work stations. Mastor's general conclusion is that
best results are obtained by the Held et al. (1963) dynamic programming
technique, glthough the range of experimental conditions over which this proce-
dure was evaluated was less than for most of the other procedures. (This was
due to excessive computation times being required on certain categories of
problems using the dynamic programming approach. The difficulty reported by
Mastor in solving certain problem types using dynamic programming is consistent
with our experience with this approach, as described later. Also, Magazine
and Wee (1981b) observed this same result when attempting to obtain optimal
solutions to the line balancing problem using a dynamic programming procedure.)
The results obtained with the Held et al. dynamic programming technique were
followed closely by Arcus's COMSOAL (1963) in Mastor's investigation. Further,
the range of experimental conditions over which this procedure was evaluated
was not curtailed as with the Held et al. dynamic programming procedure.

Dar-E1 (Mansoor) (1975) investigated twelve heuristic decision rules,
also for Type II problems. Dar-El used fifty, one-hundred and five, and one-
hundred and forty task assembly problems, varied across three task precedence
configurations, and four ratios of work elements per station (WEST ratios) in
his evaluation. Dar-El's general conclusion is that MALB, a technique he

developed (1973), which is based upon a backtracking extension to the Ranked

'



-3-

Positional Weight heuristic of Helgeson and Birnie (1961), gives consistently
superior results to the Arcus or to the other techniques investigated. (A
procedure we h;ve found effective, a backtracking approach due to Hoffmann
(1963), was not included in Dar-El's investigation.)

In this paper, we report on a computational experiment designed to assess
the efficacy of heuristic procedures for solving the Type I assembly line
balancing problem. Heuristic decisiom rules that have been found effective
elsewhere are included in this evaluation, as are some that are reported on for
the first time. Four data sets are used to assess heuristic performance. The
first data set consists of 120 computer generated problems each of which is
solved for 11 cycle times, yielding 1,320 balances. The second data set con-
sists of 12 problems which have appeared in the open literature. These 12
problems are solved for a variety of cycle times, yielding/64 balances in
total, The third and fourth data sets each consist of 110 "difficult”
balances. These latter problems have been generated in order to assess the
performance of several of the heuristic decision rules evaluated under a
"worst case" scenario.

We first compare the various approaches examined to the minimum heuristic
result obtained for each problem. This measure provides us with a relative
meaéure of heuristic performance, and thus is similar to previous investiga-
tions. Then, because many of the heuristic procedures evaluated are able to
determine and verify optimal solutions within the specified time limit for a
subset of the problems examined, we also compare heuristic performance to the
known optimal solution for this subset of problems. In so doing, we obtain an
estimate of absolute performance for each of the heuristic decision rules that

previous investigations have not provided.



-

In Section 2, each of the heuristic decision rules investigated is
described. Section 3 then describes the test problems used to assess
heuristic performance. In Section 4 we present the computational results.
Because the results reported in Section 4 are somewhat at variance with other
reported results, in Section 5 we suggest why the variability in results has
occurred. We also offer guidelines for applying the heuristic decision rules
to either type of line balancing problem. Concluding remarks are given in

Section 6.
2. HEURISTIC LINE BALANCING TECHNIQUES INVESTIGATED

In this section, each of the heuristic;decision rules investigated is
described. These decision rules vary from éimple list processing prioritizing
schemes to optimai—seeking procedures which have had the amount of time to
devote to each search limited. To aid in our description of these procedures,
we have placed each decision rule into one of four categories. These cate-
gories allow us to capture salient features of each approach, and to emphasize
the similarities and differences among them. The first category consists of
those decision rules which implement a list processing prioritizing scheme for
task assignment based upon a single attribute of each assembly task. We term
this category "Single-Pass Decision Rules” (Dar-El (1975)). The second cate-
gory consists of decision rules which are a composite of the Single-Pass
Decision Rules, or which otherwise produce multiple single-pass solutions for
a given problem, selecting that solution for implementation which results in
the fewest number of work stations. We include in this category the Arcus
COMSOAL (1966) procedure found effective by Mastor, as well as a composite

rule which selects the best of the solutions determined by our application of

the single-pass decision rules included in Category I. This second category is



-5-

termed "Composite Decision Rules.” Two of the procedures evaluated consist of
backtracking approaches which attempt to improve upon a solution or station
assignment previously obtained. These procedures are contained in a third
category labeled "Backtracking Decision Rules.” Procedures in this category
include the Precedence Matrix, Enumeration method of Hoffmann (1963), and MALB
(1973). Finally, six procedures are included which are optimizing approaches,
but which have been programmed with a time limit set to restrict the time
permitted for each solution. The procedures included in this category are two
versions of Branch and Bound (Magazine and Wee, 1981b), two variations of
Integer Programming (Talbot and Patterson, 1984), Dynamic Programming (Schrage
and Baker, 1978), and MUST (Dar-El and Rubinovitch, 1979). This last category

is titled, "Optimal Seeking Decision Rules.”

2.1 Single-Pass Decision Rules

In this category, thirteen single-pass, single attribute, priority dis-
patch scheduling rules such as Maximum Ranked Positional Weight (Helgeson and
Birnie, 1961), Maximum Number of Immediate Followers (Tonge, 1961), Maximum
Task Time First (Moodie and Young, 1965), etc., are included. The heuristic
decision rules in this set include those which have been found effective
elsewhere, plus two "benchmark" heuristic decision rules. Several techniques
are additionally included which have been recently developed to compete
against the set of established rules.

Each of the decision rules included in this first category consists of a
simple, computationally efficient, list-processing procedure that assigns
tasks to work stations according to a task's computed priority. Operationally,
in the implementation of each of these procedures, a task is first assigned a

numerical priority specified by the logic of the heuristic decision rule.



-6-

Then, tasks that are both precedence and cycle-time feasible (i.e., all
predecessors have been assigned to a work station and the task time is not
larger than the remaining time available at the work station), are placed on
an available list. The task on the available list with the highest priority
is assigned first. The available list is then updated to reflect the possible
addition of tasks that are now precedence feasible, and the amount of time
available to be assigned to tasks in the work station is reduced by the

task time of the assigned task. This process continues for a station until
no more tasks can be assigned to it. The assignment process then continues
to the next station, and so on, until all tasks have been assigned to some
work station. When the final task has been assigned, a complete balance has
been obtained.

The thirteen decision rules included iﬁ our investigation are delineated
in Table 1. Also included in Table 1 is the basis for determining task
priority. A random rule is included in this set in order to provide a compari-
son with the more logically appealing decision rules. Rules which are being
investigated for the first time include: MINLB, MINUB, MINSLK, MAXAVGRPW,
MIN(UB/TFOL), MAX(DUR/UB), and MAX(TFOL/SLK). This set thus includes the
majority of those single-pass, heuristic decision rules which have been
found effective elsewhere, as well as includes several new approaches for

solving this problem.

2.2 Composite Decision Rules

2.2.1 The Best of Thirteen Rule (COMPOSITE-13)

The first composite decision rule evaluated selects the best solution
available from Category I decision rules. Because a given decision rule does
not always discriminate among tasks on an available list (for example, two or

more tasks available for assignment to a work station could tie on their task



-7-

TABLE 1

SINGLE-PASS DECISION RULES

Basis for Determining

Rule Notation Task Priority
1. Maximum Ranked Positional MAXRPW RPW, = t, + .1 t.
X i i jes, j
Weight i
2. Maximum Total Number of MAXTFOL NSi
Follower Tasks
3. Maximum Task Time MAXDUR ti
4. Maximum Number of Immediate MAXIFOL NISi
Follower Tasks
5. Minimum Slack MINTSLK UBi - LBi
6. Random Task Assignment RANDOM random (uniform)
+
. ini B, = + .
7. Minimum Lower Bound MINLB L i [(ti JgPi tJ)/C]
+
B, = N+l- +
8. Minimum Upper Bound MINUB U i N+1 [(ti jési tj)/C]
9. Minimum Task Number MINTSKNO task number, i
10. Maximum Average Ranked MAXAVGRPW RPWi/(NSi+1)
Positional Weight
11. Minimum Upper Bound Divided MIN(UB/TFOL) UB, /(NS, +1)
i i
by the Total Number of
Followers
12. Maximum Task Time Divided by MAX(DUR/UB) ti/UBi
Task Upper Bound
13. Maximum Total Task Followers MAX(TFOL/SLK) NSi/Slacki
Divided by Task Slack
C Station cycle time. NISi(NIPi) The number of tasks which
must immediately succeed
N The number of tasks to be (precede) task i.
balanced into work statiomns. :
s (P) The set of tasks which
NSi(NPi) The total number of tasks 11 must succeed (precede)
which succeed (precede) task task 1i.
i (i.e., the number of ele-
ments of Si(Pi))' t; Assembly time required
to complete task i.
+

[X]

The smallest integer greater

than or equal to X.



-8-

times when the prioritizing scheme is based upon task duration), it is also
possible to use one of the remaining twelve decision rules to break ties.
Including the tie-breaker decision rules yields 156 (13 x 12) rule/tie-breaker
rule combinations for solving each problem. Further, the possibility also
exists to balance a given line beginning with the last task in the network and
working forward, achieving what previous researchers of the line balancing
problem have termed a "reverse" balance. Considering decision rule/tie-breaker
rule combinations as well as balancing a line in reverse yields 312 possible
decision rules for solving a given problem (13 x 12 x 2) using the thirteen
heuristic decision rules described in Category I. The Best of Thirteen Rule
selects the best of these 312 balances, implemented as described below.
Whenever a balance is determined by any decision rule that is equal to
the smallest integer greater than or equal to the sum of the task times
divided by the cycle time, the optimal solution (that is, the solution re-
quiring the minimum number of work stations) has been determined. This is
because it is not possible to obtain a balance requiring fewer work stations
than given by this quantity, which we refer to as the LOWER BOUND (M) on the
value of a solution.l 1In the implementation of the Best of Thirteen Decision
Rule (as well as with all of the decision rules which follow), the procedure
terminates the search for the minimum solution whenever a balance is obtained
that is equal to this lower bound. The effect of this proéess is to eliminate
unnecessary computations and, hence, to reduce the computation time required

to solve many of the problems investigated.

IThe quantity
+

has been termed the "theoretical minimum" number of work stations by previous
researchers investigating the line balancing problem. This is an unfortunate
choice of words, as a given problem may have an optimal solution in which the
number of work stations exceeds the "theoretical minimum."”



-9-

2.2.2 Arcus' Biased Sampling Procedure (ARCUS)

The Arcus (1966) procedure uses a biased sampling approach to generate
feasible sequences of tasks for assignment to a work station. A "fit list,”
consisting of those tasks which can be assigned to a work station is
constructed, and weights governing the probability the task will be selected
for assignment to the work station are assigned to each task. Tasks so
assigned are removed from the fit list, and a new fit list, consisting of
the tasks which can currently be assigned to a work station is constructed.
The process continues until all tasks have been assigned to some work statioun.
A given line is then balanced several times, resulting in different assignments
based upon the probabilistic selection of tasks from the Fit list. To be
consistent with the work of Arcus (1963), Mastor (1970), and Dar-El (1975),
Arcus' Rule IX (which is the product of five separate weights) is used in our
evaluation. The procedure we use is programmed to determine eighty balances
for each problem, and to then select the balance requiring the fewest number
of work stations. However, if a balance is obtained during execution of
this procedure that is equal to the lower bound M, then the procedure

terminates, yielding M as the number of work stations required.

2.3 Backtracking Decision Rules

2.3.1 Hoffmann's Enumeration Procedure (HOFFMANN-0.0)

Hoffmann (1963) developed a heuristic method that assigns to each work
station, in numerical order, a combination of tasks which minimizes station
.idle time. Starting with station one, a precedent feasible list of tasks is
maintained from which the combination of tasks which will minimize station
idle time is found via complete enumeration. These tasks are assigned to
station one, and the process continues with station number two using an

updated precedent feasible list. This procedure is repeated for each station



_10_

in numerical order, until all tasks have been assigned. Hoffmann uses a
special zero-one precedence matrix and index vector to implement the enumera-
tion process, which results in a very simple computer code, a description and
FORTRAN listing of which 1s in his original article (1963). The Hoffmann
methodology can be applied to tasks in decreasing order as well as in numerical
order, which results in a second solution to a problem. In this investigation,
all balances are solved in both the forward and reverse direction (where a
forward balance did not determine the minimum required number of work
stations, M), with the best solution being reported.

2.3.2 Hoffmann's Modified Enumeration Procedure (HOFFMANN-0.5

HOFFMANN-1.0
HOFFMANN-2.0)

Because the original Hoffmann approach considers stations in numerical
order, it has a tendency to concentrate idle time in the later stations. 1In
addition, a significant amount of computation time can be spent at those
stations where the task precedence feasible list is long, and where a zero
idle time solution doesn't exist or is difficult to determine. TIn the latter
case, all feasible combinations of task assignments may have to be enumerated.
In order to overcome these difficulties, Gehrlein and Patterson (1975)
proposed a very slight modification to the original Hoffmann procedure:
instead of determining the minimum idle time solution at each work station,
determine one that is 'acceptably' close to minimum.

To define acceptably close, Gehrlein and Patterson use a measure of
average idle time per station, which is derived in the following manner. The
quantity (M x C) gives the minimum amount of time that will be devoted to

producing one unit of product. This quantity bears the following relationship

to the total work content (E ti) for a given line:



-11-

(M x C) 2_? ti'

The difference between these two quantities ((M x C) - ? ti) represents the
minimum total line idle time that will necessarily be present in any balance.
This quantity divided by the minimum number of work stations required, M,
yields an estimate of the average amount of idle time present in a work
station.

The Hoffmann procedure is thus modified by curtailing the search for the
set of tasks resulting in the minimum amount of idle time for a given station
whenever a subset of tasks ¢ is found which satisfies the following
relation:

OS_C—EtiS_O([(CxM)—gti]/M)
where the parameter © is varied in an attempt to obtain a balance requiring
the fewest number of work stations. Gehrlein and Patterson (1975 and 1978)
have shown that this slight modification to Hoffmann's original procedufe can
have a significant impact on reducing the amount of time devoted to each
search, while simultaneously smoothing the idle time present among work
stations for certain classes of line balancing problems. Further, this
improvement in computation time is often achieved with no increase in the
number of work stations required.

Based upon previous experience in solving line balanéing problems with
this approach, we allow © to assume the values 0.5, 1.0, and 2.0, and denote
these modified Hoffmann procedures by HOFFMANN-0.5, HOFFMANN-1.0, and
HOFFMANN-2.0, respectively.

2.3.3 Dar-El's Line Balancing Heuristic (MALB)

Dar-El developed MALB (1973) as a heuristic variant of his earlier
optimal-seeking iterative procedure (1964). His optimal seeking procedure is

based upon the Rank Positional Weight heuristic method of Helgeson and Birnie



-12-

(1961), enhanced with a backtracking algorithm that generates all feasible
sequences of task assignments. Dar-El (1973) found that the computation time
of his optimal seeking method restricted its applicability, so he sought to
develop a heuristic approach that would retain most of the power of the
optimal approach, without incurring its computational expense. MALB is the
result of these efforts. To limit the number of sequences generated, and
hence, to reduce computation time, MALB incorporates four types of heuristics
that control the amount of backtracking permitted. In a comparative study
(1975), Dar-El found that MALB dominated both ARCUS and the best of the ten
single—-pass rules he eyaluated. On the basis of these results, MALB was
included in the present investigation.

MALB, however, was originally written to solve the Type II problem.
Hence, it was necessary to modify it slightly here. Like most of the methods
developed to solve Type II problems, MALB, in effect, solves a series of Type
I problems. 1In the Type I problem the cycle time is fixed, and the minimum
number of stations is sought. The Type II problem fixes the number of sta-
tions, and seeks to determine the minimum cycle time. Operationally however,
MALB, and most of the other procedures, solves the Type II problem by fixing
the cycle time at the theoretical minimum time (the largest task time), and
determines the minimum number of stations less than a specified 'goal' number
of stations, Y. If no solution is found, then the cycle time is increased
one time unit, and the process is repeated. The first feasible solution found
with the number of work stations less than or equal to y yields the desired
balance. (In general, if the procedure is optimal-seeking, then the first
feasible solution is optimal. Otherwise, as with MALB, it is heuristic.)

For the present investigation, instead of permitting the cycle time to

increase when no feasible solution is determined, the goal Yy is increased by



-13-

one work station, and another attempt is made to find a feasible solution.
The first feasible solution found is the minimum (heuristic) number of sta-
tions. Specifically, then, the only modification made to MALB (other than
changing input and output formats) was to defeat the logic in the procedure
that permits the cycle time to increase. The cycle time is fixed at the
desired experimental level. 1Initially, y is set equal to M. 1If no feasible
solution is determined, the value of y is increased by one station, and the

process is repeated until a feasible solution is determined.

2.4 Optimal-Seeking Decision Rules

The methods described in this section are included in our evaluation in
order to gain insight into the benefit obtained by using optimal-seeking
algorithms given a computational time constraint roughly comparable to the
time required to solve a problem using the more sophisticated heuristic
procedures. Clearly, given enough computation time, any optimal-seecking
procedure will dominate a heuristic one. Our purpose is not to verify this
fact, but to give an indication of the quality of solutions obtained for a
given amount of computation time expended. All of the solution routines
listed here have thus been run with an internal CPU time trap of 3.0 seconds
per problem (balance). The reported solution is the minimum one obtained
within the 3.0 second limit.

2.4.1 Branch ;nd Bound Methods (MAG-1 and MAG-2)

Magazine and Wee (1981b) report excellent results for the Type I line
balancing problem with their branch and bound procedure. With their method,
each node in the solution tree corresponds to a feasible set of task assign-
ments to a particular work station, where all nodes at the same depth in the
tree refer to the same station number. Starting with node zero (the null

set), descendent nodes from a node of depth (d) are generated, which are



-14-

maximal feasible assignments of tasks to station (d+1). The branching direc-
tion, fathoming criteria, and growth rate of the tree are controlled via a
number of heuristics and dominance tests incorporated into their procedure.

Two decision rules of special significance used in their procedures are
IUFFD (Immediate Update First Fit Decreasing), which we refer to as MAXDUR,
and IUBRPW (Immediate Update Backward Recursive Positional Weight), a variation
of MAXRPW. Although their branch and bound procedure incorporates a breadth-
first (versus depth-first) branching strategy, an upper bound on the solution
is found at each node using one of these two heuristics for the unassigned
tasks. This permits their procedure to terminate prior to verification of
optimality with a given heuristic solution to a problem. To facilitate the
use of this feature, they allow the user to select one of these heuristics and
to specify a time limit for implementation of their approach. This is the
time limit capability used in our experiments. ' The references to MAG-1 and
MAG-2 correspond, respectively, to the use of the heuristics IUFFD and IUBRPW.

2.4.2 Integer Programming (ALBCUT and ALBHOFF)

Two variations of Talbot and Patterson's (1984) integer programming
procedure are included in our evaluation. The basic algorithm is a depth-
first, implicit enumeration, backtracking procédure to which various search,
fathoming, and backtracking decision rules are applied. The first variation
included (ALBCUT) contains network cuts (1984), where search and backtracking
are controlled with the heuristic decision rule MINUB (with ties broken using
MAXDUR). The second variation (ALBHOFF) also uses MINUB and MAXDUR for search
and backtracking, but does not use any cut associated fathoming rules. Also,

prior to enumeration, the problem is first solved with HOFFMANN-0.5, which



-15-

provides an initial heuristic starting solution and computational upper
bounds.

2.4.,3 Dynamic Programming (DYNAMIC)

Schrage and Baker (1978) have proposed an efficient method for implement-—
ing the dynamic programming approach of Held et. al. (1963) through improved
procedures for generating feasible subsets, and for labeling. Magazine and
Wee (1981b) programmed and tested the Schrage and Baker approach for solving
the Type I line balancing problem. Magazine and Wee concluded that their
branch and bound solution procedure is preferred to dynamic programming for
solving these types of line balancing problems, both with regard to computation
time and computer storage required. For completeness, however, we have
included the dynamic programming approach in our evaluation.

2.4.4 Multiple Solutions Technique (MUST)

MUST, by Dar-El and Rubinovitch (1979), employs exhaustive enumeration to
generate all solutions, or some subset of them, for solving the Type II line
balancing problem. As with MALB; the Type II problem is solved as a sequence
of Type I problems. The cycle time is fixed, and a "hurdle” number of work
stations, y, is specified. 1If a feasible number of work stations cannot be
found given y, the cycle time is increased one time unit, and the process is
repeated. Starting with station number one, MUST generates all feasible task
assignments. Redundancies are eliminated, and the remaining feasible task
assignments (subsets) for this station are saved. At station two, and subse-
quent stations taken in numerical order, these subsets are extended by adding
all feasible task assignments at a work station. Redundancies are then
eliminated, and the extended subsets are saved. This process is repeated

until all tasks have been assigned (all subsets are fully extended).



-16-

This exhaustive enumeration procedure results in an exponential growth
in the number of subsets saved. In order to make this process manageable,
MUST saves sets as a sequence of bits, and also uses circular storage buffers.
Even with these storage-saving features however, MUST, unlike the other methods
evaluated, is programmed to use external storage. To control the growth in
the number of subsets.saved, MUST contains three user-specified parameters.
These can be set to permit the generation of either multiple optimal
solutions, or multiple heuristic solutions.

As a result of experiments by Dar-El and Rubinovitch (1979) which demon-
strated that MUST dominates MALB, MUST was included in our investigation. It
was modified to solve the Type I problem in the same manner as was MALB, by
permitting the hurdle number of work stations y to increase by one station
if a feasible solution could not be found, rather than (as with the Type II

approach) increasing the cycle time by one time unit in each iterationm.
3. DESCRIPTION OF PROBLEMS SOLVED

In order to generalize the results of our investigation, both randomly
generated problems and problems taken from the open literature are solved.
The characteristics used for problem generation are based upon an examination
of actual assembly line balancing problems, and are experimentally varied
over a wide range of representative values. There are four data sets in total:
three comprising randomly generated problems, and a fourth data set consisting

of problems available in the open literature.

3.1 Main Experimental Data Set
This data set contains 120 unique assembly networks, each of which is
solved for 11 cycle times. Details of problem characteristics and generation

schemes for these problems are described below.



-17-

3.1.1 Problem Size

Sixty 50-task and sixty 100-task assembly networks are randomly generated.
These line sizes are sufficiently large to permit generalization of our results
to actual line balancing problems, and are comparable in size to those used by
Dar-El (1975), and are significantly larger than those examined by Mastor
(1970).

3.1.2 Distribution of Task Times

An investigation of actual line balancing problems appearing in the open
literature suggests parameters for generating task times. These times are
derived from the binomial distribution (n=30, and 7=0.25), with zero dura-
tion tasks having their task times increased to one time unit.

3.1.3 Distribution of Cycle Times

When the magnitude of the cycle time approaches the maximum task time in
an assembly line balancing problem, the alternatives available for scheduling
tasks into work stations decrease, as do the opportunities for the heuristic
scheduling rule to exercise its intended logic in assigning tasks to a work
station. Alternatively, as the cycle time increases relative to the maximum
task time, the number of alternatives for assigning tasks to work stations
increases, as does the discretionary "power" of the investigated decision rule.
In order to investigate the efficacy of the heuristic decision rules evaluated
over a wide range of problem types, each problem generated is solved for the
cycle time equal to the maximum task time. The cycle time is then increased
in 10 percent increments of the maximum task time to the closest integer equal
to 10 percent, 20 percent, 30 percent, etc., above the minimum possible cycle
time until eleven balances are obtained for each problem.

3'1f4 Strength of the Precedence-Ordering Relations Among Tasks

The strength of the precedence-ordering relations among tasks affects the

number of alternative production lines that may be established. This in turn



-18-

influences the discretionary power of the heuristic decision rule and, hence,
its effectiveness. Network‘density, a characteristic which measures the
strength of this relation, has been found to be an important factor in influ-
encing heuristic performance in previous investigations of the line balancing
problem.

To define density, let W be an N x N 0-1 matrix that represents a

precedence-ordering relation P. For a given element w,, of W, let w,, =

1] ij

1 if )(,i € Pj (i.e., if task i precedes task j) and wij = 0 if task i does
not precede task j; or Xi ¢ Pj. Let d be the total number of relations

contained in P, or

N N
d = 2 .2 mij
i=1 j=1
The maximum number of relations that can be included in P is N(N-1)/2. The

density of the assembly network is defined to be the ratio:

D = 2d/[N(N-1)],
or the ratio of the number of relations that exist to the number which could
exist. The measure 1-D is the F-ratio used by Dar-El (1975), and the measure

D is referred to as order strength by Mastor (1970).

Values of D ciose to 1 indicate a highly interconnected network, and fewer
alternatives available for assigning tasks to a work station. Values of D
close to 0 indicate relatively fewer precedence relationships, and more
opportunities for assigning tasks to a work station. 1In our evaluation,
values of D equal to 0.2, 0.3, 0.5, and 0.8 are used for problem generation.

3.1.5 Partial-Order Generating Methods

It is possible to test not only for the effect of network density on
- heuristic performance, but also for the effect of the method used to generate

precedence-ordering relations. That is, several methods for generating a



-19-

precedence-ordering relation on a set of tasks can be devised, each resulting
in the identical problem density. However, various factors of the ordering
relation structure can be different for different generating methods. Three
methods of generating precedence-ordering relations are investigated, and their
effects on problem solution are assessed.

All three methods of generating precedence-ordering relations work in the
same general way. We begin to describe how each method works by recognizing
that precedence-ordering relations are partial ordering relations. A binary
relation P on a set X is a partial order if it is irreflexive (xiPxi for no
X, in X), asymmetric (xiij requires not ijxi for all X, and xj in X), and

in X). Given

k i 7k

transitive (if x,Px, and x,Px, then x,Px for all x,, x., and x
i 7] i i’ 7] k

a linear ordering relation L = e Xy, We wish to generate a random

*1%2
partial order P that is contained in L, or P& L. That is, if Xiij’ then

i < j. We do not lose any generality by requiring this, because any partial

order can be transformed so that if xiij then i < j simply by interchanging

the subscripts attached to the x's.

The first step in each generating process is to generate a suborder PO.

Suborders are binary relations that are irreflexive and asymmetric, but not
necessarily transitive. PO is then changed to a partial order by taking the
transitive closure of PO, denoted by PS. This indicates that all necessary

P relations are added so that PS is transitive. For example, if the suborder

PO has XiPOXj and XjPOXk’ it is not necessarily true that XiP , Since

0™k
suborders are not always transitive. 1In forming P6, all relations, such as
xiPOXk’ are appended so that P8 is transitive. Since Pg is a transitive
suborder, it is a partial order, and it is used as the generated partial order
in network synthesis (Fishburn & Gehrlein (1974)).

We now describe the three partial order generating methods used in our

investigation:



-20-

Method 1: Let ¢ be a randomly selected permutation on
{1, 2, ..., N}. For each j from 2 through N select
a y; at random from {Xo(l)’ X5(2)> *te xo(j—l)}' Let

PO = Ln{[yz’xo(z)], [XU(Z)’YZ]’ cee, [YN,XG(N)],

[x ]} so that P

O(N)’YN contains N-1 order pairs, and

0

form the transitive closure PS. Then P8 is made more

dense by adding q additional pairs from L-Pt. The trans-

0
itive closure is taken after each paif.is added and P
results after the final transitive closure is tdken.

Method 2: Form P0 by taking each (i,j) pair with i < j and enter

OXj with probability p. The same p is used when each

(i,j) pair is considered for entry into P

x.P
i
= pt
0 Then P PO.
Method 3: Form P0 by taking each (i,j) pair with i < j and enter
P x. with probability (A)k itive k
X, Oxj W probability -1 or some positive k.
The same k is used when each (i,j) pair is considered for
entry into PO. Then P = PB.

By examinating three distinct methods for generating the partial orders
necessary to construct each network, we can assess the sensitivity of our
results to the network generation scheme used. Many examples of simulation
analysis can be given where the results reported are dependent on the procedure
used to generate random partial orderings. (For example, see Fishburn &
Gehrlein (1974) or Patterson (1976).) Hence, an examination of their effect
is prerequisite to making general statements concerning the efficacy of the
heuristic procedures investigated. (For a more comprehensive discussion of

how the desired density measures are determined by using partial order

generating methods, see Gehrlein (1980).)



-21-

3.1.6 Main Experimental Problems Solved

For each line size (50 and 100 tasks), each density (0.2, 0.3, 0.5, and
0.8), and each partial-order generating method (Method 1, Method 2, and
Method 3), five line balancing problems are constructed. The density of the
partial orders generated by Methods 1, 2, and 3 is controlled by the values of
q, p, and k used, respectively, in each method. Each of the generated problems
is then solved for cycle times equal to the largest task time, the largest
task time plus 10 percent of the largest task time (rounded to the nearest
integer), the largest task time plus 20 percent of the largest time (rounded
to the nearest integer), etc., untii the cycle time equals twice the largest
task time. This yields 1,320 balances in total [(2)(4)(3)(5)(11)] in the

Main Experimental Data Set.

3.2 Literature Problems

A number of problems, ranging in size from 7 assembly tasks to 111
assembly tasks, were taken from the open literature to be used in this evalua-
tion: Arcus (1963), Bowman (1960), Dar-El (1964), Heskia (1968), Jackson
(1956), Jaeschke (1964), Kilbridge and Wester (1961), Merten (1967), Sawyer
(1970), and Tonge (1961 and 1969). These problems also serve as the basis for
determining the network generator parameters used for the main experimental
data set. The cycle times used to assess heuristic performance in evaluating
the procedures described are the same as those used by Talbot and Patterson
(1984) in their evaluation of an integer programming algorithm for obtaining
optimal solutioms to this line balancing problem, with the exception of the
Bowman and the Dar-El problems, which they did not include. For these latter
two problems, the same cycle times as reported by the original authors were
used (C = 20 for the Bowman problem, and C = 48, 62, and 94 for the Dar-El

problem). For a more complete description of this data, see Talbot et. al.



-22-

(1985). Sixty-four balances were obtained using this literature data set

over the range of cycle times considered.

3.3 "Difficult" Problem Set One

Five 50-task and five 100-task assembly line networks with task times
uniformly distributed Between 1 and 10,000, and with network density equal to
0.2 were randomly generated and solved for 11 trial cycle times equal to
10,000, 11,000, ..., 20,000. These balances were included in the experiment
becausé with few precedence relations in the network and a very wide range of
task times, the enumeration procedures evaluated can be expected to exhibit
large increases in computation times. There are two arguments to support this
notion: With an enumeration procedure, there will be fewer opportunities to
terminate the search procedure at a given station before full enumeration is
complete, because there are fewer sets of sums of task times that equal, or
nearly equal, the cycle time. Also, with fewer precedence relationships, many
more assignments are possible, resulting in an anticipated increase in the

computation time required to solve a given problem.

3.4 "Difficult” Problem Set Two

Preliminary experimental results using "Difficult” Problem Set One, led
to the development of "Difficult” Problem Set Two. This set contains the same
110 networks as in Set One, except that all the odd task times are increased
by one time unit to make them even numbers. The eleven cycle times include
the largest task time and added increments of 10% of this value (to the
nearest integer) up to twice the largest task time, where all even cycle times
are increased by one time unit to make them odd numbers. With all problems
having even task times and odd cycle times, no zero idle time station

assignments of tasks or zero balance delay solutions are possible, thus



-23-

forcing enumeration methods such as HOFFMANN-0.0 to completely enumerate all
feasible task assignments at every work statiom.

We emphasize that these latter two data sets were not generated to
represent actual problem types such as those found in examining industrial
line balancing problems. Rather, they were generated to assess "worst case”
performance for several of the techniques investigated, especially those

employing enumerative and backtracking approaches.

4. COMPARATIVE RESULTS

4.1 Experimental Conditioms

An attempt was made to solve each of the problems in all four data sets
using the 26 solution procedures described in Section 3. A time limit of
3.0 CPU seconds per balance for each solution procedure was implemented as
described. This is an internal time trap that excludes input time, but in-
cludes minimal computer output time per balance. All methods (with the excep-
tion of MUST) are programmed in FORTRAN and were run under the same operating
system and compiler (IBM FORTRAN H OPT=2) and on the same computer, an AMDAHL
470/Vv8. MUST is programmed in PL1, and was run on the same AMDAHL 470/V8
using the same operating system after being compiled by the IBM PLl1 optimiza-
tion compiler (OPT=2). All methods, including MUST, were programmed to read
from the same data set in an identical manner, and to write summary results to
a common output data base. A concerted effort was made to run each program
under similar operating conditions.

With the exception of MALB, HOFFMANN-0.0, MUST and DYNAMIC, the methods
were able to solve all problems within the time limit specified per problem.
Unfortunately, neither MUST nor DYNAMIC were able to solve more than just a

few of the smaller problems within this time limit. It became very clear that



~24-

their performance would be even worse on the larger problems, and it would be
a misuse of a constrained computer budget to have them attempt the larger
problems. Hence, they were dropped from further experimentation, leaving 24
solution methods to be evaluated.

Before proceeding with the main results, an indication of the results
obtained using MUST and DYNAMIC will be given to justify excluding them from

further consideration. (The following are representative of our results--many

more tests were run than are described here.)

As mentioned in Section 2.4.4, MUST contains three user-specified param-
eters that control the growth of the solution space, which in turn affect
computation time and solution quality. We first input the recomménded param-
eter values as given in Table 2 of Dar-El and Rubiunovitch (1979). Using these
parameter values, MUST was able to solve only 27 of the 64 literature balances
(the largest solved consisting of 21 tasks) within the 3.0 second time limit
specified. Even with the limit doubled to 6.0 seconds per balance, ouly 29 of
the 64 problems were solved, the largest consisting of 28-tasks. Within the
6.0 second limit, MUST was not able to solve any of the problems in either of
the "Difficult" Data Sets One or Two, or any of the first 11 50-task problems
in the Main Experimental Data Set.

In an effort to obtain ﬁore solutions using MUST, even at the possible
expense of lower quality solutions, the parameter values were all set equal to
one, which would have the anticipated effect of reducing computation time and
storage requirements for the algorithm. With these parameter values, MUST was
able to solve 40 of the literature balances (the largest being a 30-task
problem), two of the 110 balances (both 50-task) in the "Difficult” Set One,
and none of the problems in the "Difficult” Set Two, within the 3.0 second time

limit. A number of other tests were conducted with similar results. It



-25-

should be noted that these timing results are consistent with those of Dar-El
and Rubinovitch, who report an average of 125.4 seconds per balance on an IBM
370/168 for a set of 50 to 140-task problems, for which they also report MALB
required an average of 22.4 seconds on the much slower IBM 7044.

The dynamic programming procedure was able to solve only the smallest 27
of the 64 literature balances within the 3.0 second time limit per balance,
the largest problem being Mitchell's 21-task problem (C=39). Attempts to
solve larger problems (e.g., 28-task and 45-task) also failed with a time
limit of 6.0 seconds per balance. These findings are completely consistent
with Magazine and Wee's results (1981b), and reinforced our decision to

exclude this procedure from further evaluation.

4.2 Main Experimental Data Set Results

Table 2 contains summary results for all heuristic decision rules re-
tained, and for each data set. The first column under each data set is a
relative measure of heuristic performance, the average percent above the best
solution found by any method. The second column under each data set is the
average percent above optimum, an absolute measure of heuristic performance.
Whereas Table 2 indicates average heuristic performance, Table 3 shows the
worst single result using each method. Specifically, the first column under
each data set lists for each method the maximum percent above best heuristic
solution determined for a single balance, and the second column lists the
maximum percent above optimum. (All methods determined each balance within
the 3.0 second time limit specified, except as noted in Table 2.)

In order to more clearly illustrate the relationships depicted in Table
for the Main Experimental Data Set, Figures 1A and 1B were prepared. Figure
is a histogram of first column data with the heuristics grouped by category,

and ranked within category. Figure 1B is a similar histogram of second

1A



MAIN EXPERIMENTAL

Average Percent Results For All Data Sets

-26-

TABLE 2

DATA SET: DATA SET LITERATURE DIFFICULT SET ONE DIFFICULT SET TWO
Above Best Above Above Best Above Above Best Above Above Best Above
CRITERIA: (1) Heuristic (2) Optimum  (3) Heuristic (4) Optimum (5) Heuristic (6) Optimum (7) Heuristic (8) Optimum
SOLUTION
METHOD
1 MAXRPW 5.16 5.77 4,62 4,85 4.76 4.35 4.43 4.13
2 MAXTFOL 4.89 5.59 4.27 4.1 4.70 4.46 4,22 4.02
3 MAXDUR 4.71 5.20 4.81 4.70 4.99 5.22 4.72 4.87
4 MAXIFOL 6.00 6.24 3.96 3.94 4.79 4,37 4.59 4.62
5 MINTSLK 6.50 6.81 5.16 5.34 5.43 5.20 5.09 4.75
6 RANDOM 9.33 9.48 10.26 10.71 9.11 8.32 8.96 8.22
7 MINLB 6.03 6.45 5.81 6.03 5.15 5.19 4.94 4.73
8 MINUB 4.51 5.11 3.43 3.3 3.91 3.75 3.40 3.43
9 MINTSKNO 6.63 7.21 8.96 9.02 7.08 6.95 7.04 6.75
10 MAXAVGRPW 6.35 6.76 5,66 5.84 5.15 4.93 5.09 5.09
11 MIN(UB/TFOL) 5.00 5.61 4.27 4.31 4.82 4.51 4.30 4.07
12 MAX(DUR/UB) 4.50 5.14 4.40 4.52 4.87 4.88 4.59 4,75
13 MAX(TFOL/SLK) 5.05 5.65 4.71 4.83 4.60 4.22 4.26 4.03
14 COMPOSITE-13 2,34 2.97 0.46 0.23 1.90 2.47 1.65 1.72
15 ARCUS 2.73 3.35 2.78 2.94 2.06 2.00 1.75 1.80
16 MALB 2.15 1.78 0.3t 0.36 2.80 2.40 2.78 2.52
17 HOFFMANN-0.0  0.46 0.04 1.3 1.48 1.75 0.65 1.42 0.44
18 HOFFMANN-0.5  0.47 0.04 3.29 3.44 1.58 0.15 1.61 0.33
19 HOFFMANN-1.0  0.50 0.09 3.29 3.44 1.61 0.39 1.56 0.20
20 HOFFMANN-2.0  0.65 0.36 3.41 J.44 2.41 1.68 1.96 1.34
21 MAG-1 1.05 0.92 0.00 0.00 0.89 0.26 1.09 0.31
22 MAG-2 2.19 2.21 0.52 0.61 2.16 1.34 2.27 1.18
23 ALBCUT 3.68 4.13 0.60 0.26 3.52 2.92 3.22 3.23
24 ALBHOFF 0.42 .02 0.73 0.45 .13 0.01 1.10 0.13
Number of
Balances 1,3202 6358 64 55 110b 50b 110¢ 45¢
a. The results for MALB are based upon 872 balances (out of 1,320) and 431 (out of 635) that it solved.
b. The results for MALB are based upon 79 (out of 110) and 30 (out of 50) balances.
c. The results for MALB are based upon 80 (out of 110) and 24 (out of 45) balances. The results for
HOFFMANN-0.0 are based upon 69 (out of 110) and 25 (out of 45) balances, respectively.
TABLE 3
Maximum Percent Results For All Data Sets
MAIN EXPERIMENTAL
DATA SET: DATA SET LITERATURE DIFFICULT SET ONE DIFFICULT SET TWO
Above Best Above Above Best Above Above Best Above Above Best Above
CRITERIA: (1) Heuristic (2) Optimum (3) Heuristic (4) Optimum (5) Heuristic (6) Optimum (7) Heuristic (8) Optimum
SOLUTION
METHOD
1 MAXRPW 17.4 15.0 50.0 50.0 18.2 15.8 21.1 21.1
2 MAXTFOL 17.4 15.8 33.3 33.3 21.1 2].1 21.1 21.1
3 MAXDUR 13.6 11.6 33.3 33.3 15.0 15.0 13.3 13.3
4 MAXIFOL 17.4 17.4 33.3 33.3 21.1 21.1 21.1 21.1
5 MINTSLK 17.6 16.7 33.3 33.3 18.2 15.0 14.3 1.1
6 RANDOM 25.0 25.0 50.0 50.0 22.7 20.0 17.6 17.6
7 MINLB 20.0 20.0 33.3 33.3 20.0 20.0 15.8 15.8
8 MINUB 14.3 14.3 33.3 33.3 15.0 15.0 15.8 15.8
9 MINTSKNO 17.6 17.6 50.0 50.0 18.2 15.8 16.7 15.8
10 MAXAVGRPW 17.9 15.8 33.3 33.3 18.2 13.3 15.8 11.8
11 MIN(UB/TFOL) 17.4 15.8 33.3 33.3 21.1 21.1 21.1 21.1
12 MAX(DUR/UB) 15.0 15.0 33.3 33.3 15.8 15.0 15.8 13.3
13 MAX(TFOL/SLK) 17.4 15.0 33.3 33.3 19.0 15.8 19.0 15.8
14 COMPOSITE-13  10.0 7.7 16.7 12.5 7.7 7.7 7.7 7.7
15 ARCUS 10.5 10.5 33.3 33.3 9.1 7.1 8.7 7.1
16 MALB 13.6 10.5 20.0 20.0 15.8 15.8 15.8 15.8
17 HOFFMANN-0.0  10.0 7.1 25.0 25.0 9.5 5.9 7.1 5.9
18 HOFFMANN-0.5 10.0 7.1 33.3 33.3 10.5 4.8 7.7 5.6
19 HOFFMANN-1.0 10.0 7.1 33.3 33.3 10.5 5.0 10.0 5.9
20 HOFFMANN-2.0 10.0 7.1 33.3 33.3 10.5 7.7 9.1 6.7
21 MAG-1 11.6 11.6 0.0 0.0 14.3 6.9 14.3 10.5
22 MAG-2 13.5 11.4 33.3 33.3 14.3 11.8 14.3 10.5
23 ALBCUT 12.5 12.5 16.7 14.3 15.0 15.0 15.8 15.8
24 ALBHOFF 8.3 7.1 25.0 25.0 9.5 2.9 6.7 3.0
Number of
Balances 1,320 635 64 55 , 110 50 110 45
NOTE: The footnotes to Table 2 also apply to Table 3.



-27-

FIGURE 1A

AVERAGE PERCENT ABOVE MINIMUM

ALL TWENTY-FOUR SOLUTION METHODS

PERCENT

METHOD

" L2@I0oL L

REEREETR =< o

XX TOLLIECZZN O

%%
IOoLLECZZw O
IoOLLI<4ZZ0O -0

IDLLECZZO ‘0

«<xoudun

VOoOILOoONHIFW-M

TAXFLOINVIY

ITHZIOION\N-LOJ

mmm%mm A T«4XxX00o

X I~ZOMm
WV T4X0D2OTN\NDe
T T T

T
© N 0 n A4 m [\'} - [=]

CD>WECOL LUEOWIZ- «HDO>L XFLZ_IDZ

CATEGORY

b— 8k — }— os —

c

XNec

sP ——

|

707/

LEGEND: CATEGORY

[oz000; =TS Z\AN os

FIGURE 1B

AVERAGE PERCENT ABOVE OPTIMAL

ALL TWENTY-FOUR SOLUTION METHODS

PERCENT

METHOD

& IOLLECZZE O
TOLLELZZ~ -0

IDLLEICZZO ‘N

I0LLXI«ZZO -0

77777880
g R N- T TR ]

I4axXTraex

LSWESOW QWEOWZ- <MO>W Ok _F<

CATEGORY

b— 8k —— |- os —

c

SP

XN c BERRA 8x PN os

pzzd sp

LEGEND: CATEGORY




-28-

column data. As indicated in Figure 1 (A or B), the enumeration procedure of
Hoffmann, or a variant of it, performs best on these problems. The original

Hoffmann procedure, HOFFMANN-0.0, yields an average increase of 0.46 percent

above the best heuristic solution result obtained, and an average increase of
0.04 percent above the optimal number of work stations. The Gehrlein and

Patterson modification to improve computation time and idle time distribution

characteristics yields only slightly larger results, as seen with HOFFMANN-0.5,

-1.0, and -2.0. ALBHOFF, which begins with the HOFFMANN-0.5 solution and
systematically attempts to improve upon it, has the best overall results of
0.42 percent above the best heuristic result obtained, and 0.02 percent above
optimal solution on this group of test problems. ALBHOFF also found and
verified the optimal solution more frequently than did any of the other
optimizing methods (632 out of 635 optimal balances examined) and has the best
"worst case" performance for a single balance (8.3 percent above best heuris-
tic, and 7.1 percent above optimal, respectively).

The next best results obtained are 1.06 percent above best heuristic and
0.92 percent above optimum for MAG-1. The performance of MAG-2, at more than
twice the average percentage levels of MAG—I,.and the much larger differences
between ALBHOFF and ALBCUT, indicate the importance of the incorporated
heuristics in implementing e;ch of the optimization approaches. The primary
difference between MAG-1 and MAG-2, for example, is in the use of IUFFD
versus IUBRPW influencing the search strategy. Similarly, the overriding
reason for the difference in performance between ALBHOFF and ALBCUT lies in
the use of different initializing heuristics with each approach (HOFFMANN-0.5
versus MINUB). Although each of these methods will eventually determine the
optimal solution given sufficient time and computer storage, these results

suggest that the computational effort required in using these procedures as



-29-

heuristics is significantly influenced by the choice of the internal heuristic
procedure employed.

For the 872 balances it obtained, MALB has an average percent increase
above the best heuristic result of 2.15, and an average percent increase above
optimum of 1.78. These percentages are not directly comparable to the percent-
ages for all of the other methods which are based upon the larger set of 1,320
balances. 1In an effort to correct for this difference, all methods were
reranked on just the 872 balances that MALB obtained. This resulted in no
changes in the rankings for the percent above optimum criterion. For percent
above best heuristic, the ranking of MALB did not change. However, there were
two pairwise exchanges: MINUB and MAX(DUR/UB) exchanged rankings, and
COMPOSITE-13 and MAG-2 exchanged rankings.

A more detailed examination of MALB's results indicate that both problem
size and cycle time affect computational performance. Of the 448 balances not
obtained, 308 are from 100-task and 140 are from 50-task problems. More
striking, however, is the impact the cycle time increment has on heuristic
performance. The most difficult problems for MALB, in terms of computation
time, are those with cycle times in close proximity to the largest task time.
A plot of balances not solved against cycle time increment looks surprisingly
exponential, with 112 not solved when the cycle time equals the largest task
time, 96 not solved for the first iancrement above the lowest cycle time, etc.,
decreasing to 14 not solved at twice the largest task time. 1In terms of solu-
tion quality, however, our results with MALB are generally consistent with
Dar-El's (1975) findings that MALB yields better average results than ARCUS or
a composite of the single-pass heuristics he tested.

Predictably, the composite methods perform better than the single-pass

heuristics in terms of average and worst case performance. Somewhat



-30-

surprising is that over all methods considered, COMPOSITE-13 has the second

best worst case results, even though a number of other methods have better

average results.

Among the single-pass methods examined, two new heuristics, MINUB and

MAXDUR/UB, slightly outperformed MAXDUR as the best of the group. The poorest

average and worst case results come from the benchmark rule RANDOM, as one

designing heuristics would hope. (This is not always the case, however. Davis

and Patterson (1975) found for the resource-constrained project scheduling
problem, that a random rule was often better than several apparently reasonable
heuristics.) Although no attempt was made to number the tasks in a structured
fashion during problem generation, solving the problems by assigning tasks in
numerical order using MINTSKNO, our second benchmark rule, did produce slightly
better solutions than when an explicit effort was made to randomly assign
tasks with the RANDOM rule. This indicates the need to explicitly apply a
random rule in this type of experiment, rather than rely on an 'arbitrary'
surrogate.

Not indicated in the tables and figures 1s that while certain rules
produced superior results on average, or in terms of worst case results, no
one procedure consistently dominated any other. All procedures, including
RANDOM, are able to produce minimum, and often unique, solutions to certain

problems, albeit is rare for some of them.
In order to more systematically analyze the results for the Main Experi-
mental Data Set, a randomized complete block, full factorial analysis of vari-

ance was performed.1 Assessed are the effects of the number of tasks (T),

IMALB was omitted from this analysis because of the overall size of the
experiment and the consequent effect unequal cell sizes had on the analysis.
The SAS statistical software system (PROC ANOVA) on an Amdahl 470/V8 computer

was used to analyze these results.



-31-

network density (D), method of generating partial orders (G), number of incre-
ments above the lower bound cycle time [i.e., MAXi(ti)] (1), and heuristic
solution technique (H) on line balancing performance. The response variable
measured is the Percent Increase Over the Minimum Heuristic Result obtained.

Those variables found to be significant in this analysis include (in order of

significance): the heuristic solution technique (H) examined (r2 0.47), and

the number of increments (I) above the lower bound cycle time (r2 0.30).
Variables found relatively insignificant in contributing to heuristic perform-
mance include network density (r2 = 0.015), number of tasks in the line balanc-
ing problem (r2 = 0.0006), and the method used to generate random partial
orders (r2 = 0.002). The only significant interaction effect identified is
the interaction between the heuristic solution technique employed and the
number of increments above the lower bound cycle time (H*I).1 Thus, it
appears as though heuristic performance is not contingent in a statistical
sense upon these latter measures (T, D, G) of problem structure.

In order to illustrate the (H*I) interaction, we include Figure 2, which
is a three-dimensional histogram of the Percent Increase Above the Best
Heuristic Solution for seven of the methods examined and for all eleven cycle
times (C = maximum task time at Increment 1. At Increment 2, C = 110% of
maximum task time, etc.). What is clear from this chart is that the average
performance of each rule varies as a function of the cycle time, and in some

cases by a considerable amount (by a factor of six for COMPOSITE-13). For

each method, the distribution of Average Percent Above the Best Heuristic

IMAG-1 did generally (1) decline in performance when the number of tasks in
an assembly network increased from fifty to one-hundred, and did generally
(2) improve in performance over the other techniques examined when the
density of a network increased (especially to 0.8). These results, however,
were not found to be statistically significant.



-32-

FIGURE 2

AVERAGE PERCENT ABOVE MINIMUM

BLOGK CHAAT BY INCARNENT

Result Obtained is low at Increment 1, then gradually rises, and then
decreases (eventually to zero for all methods when C = Eti, although this
latter situation is not specifically plotted in Figure 2). In an effort to
better understand this relationship, the distributions of the average number
of stations (instead of average percent) above best heuristic solution were
also plotted to control for the fact that as C gets larger, the number of
stations in a solution generally gets smaller. These distributions are very
similar in appearance to those shown in Figure 2, revealing the same general
types of information. 1In general, with both plots, one would expect there to
be much less variability among the methods when the cycle time is equal to or
is close to the maximum task time. This is because there are fewer opportuni-

ties to effect alternative task assignments. As the cycle time increases




-33-

beyond the maximum task time, however, there become more opportunities to
effect different assignments as there are more combinations of tasks that can
be feasibly assigned into each work station. This phenomenon continues until
the cycle time approaches the work content of the product, in which case all
methods will assign each of the tasks to the one work station required, giving
zero variability in heuristic performance.

One has to exercise a great deal of caution in interpreting Figure 2. It
is tempting to conclude, for example, that the best performance overall is
achieved by the heuristic decision rules when the cycle time is equal to the
maximum task time. What is minimal when the cycle time is equal to the maximum
task time is the variance in the performance of the procedures. There are
simply fewer opportunities using these procedures to effect alternate balances
at this cycle time. And, in fact, it is at the lower cycle times that the
optimization approaches used in this evaluation (as heuristic procedures) have
the greatest amount of difficulty in determining and verifying the optimality
of the solutions obtained. Specifically, for only one balance out of 120 at
the first increment was an optimal solution found and verified using the four
approaches described, whereas 112 out of 120 optimal balances were found and
verified when the cycle time was 200% (increment 11) of the maximum task time.
The entire range of values for the eleven increments are (1, 6, 18, 25, 43, 68,
69, 87, 103, 103, 112). Hence, without additional verified optimal solutions
at the lower cycle times, it is simply not possible to claim that all of the
methods studied perform better in an absolute sense at the lower cycle time
increments.

Tukey's studentized range test (HSD) was used to compare the results
obtained for the performance measure Percent Increase Above Minimum Heuristic

Result Obtained. An alpha value of 0.05 was used for reporting significant



-34-

differences. It 1s encouraging that using this procedure, the RANDOM rule
which produced the highest mean value overall was placed into a group by
itself, and the five variants of the HOFFMANN procedure which produced the
lowest overall sample mean values were also grouped together. These results
were identical when the performance measure became Percent Increase Over
Optimal. Employment of Duncan's multiple range test and Scheffe's comparison

procedure produced similar results on this group of test problems.

4.2 Literature Data Set

As indicated in Tables 2 and 3, MAG-1 performed relatively best on the
Literature Data Set by determining minimum balance solutions to all problems,
and verified optimum solutions for 55 balances. The second best results were
determined by MALB and COMPOSITE-13, for the measure Percent Increase Above
Best Heuristic and Above Optimum, respectively. COMPOSITE-13, MALB, MAG-2,
ALBCUT, and ALBHOFF each found 54 of the 55 verified optimum solutions,

Although it is instructive to compare methods with a common set of test
problems appearing in the open literature, some caution should be exercised in
extrapolating percentage results from this data set. First, it is a very
small sample. More important however, is the use of Percentage Increase
Above Minimum Heuristic Results criterion. Over half of the balances ob-
tained using this data have solutions consisting of less than ten stations
(ranging from two stations up to 29), with only two balances containing more
than 20 stations. With such small numbers in the denominator using this
criterion, even a one station difference between methods often yields a large
percentage increase. In contrast, this does not seem to be such a problem
with the Main Experimental Data Set where solutions range from 13 to 90
stations, with over 90% distributed approximately uniformly in the 15 to

60 station range.



-35-

4.3 "Difficult" Data Set One

This data set was generated with low network density and high variability
in task times to especially challenge the backtracking and optimal-seeking
methods which have the best performance on the other two data sets. As can be
seen from Tables 2 and 3, however, MAG-1 and the Hoffmann-based codes yield the

best results on this data set, overall.

4.4 "Difficult" Data Set Two

This 'pathological' data set with all even task times and odd cycle times
was also created to tax backtracking and optimal-seeking methods, but speci-
fically HOFFMANN-0.0, which was expected to be unable to solve problems in this
data set within the time limit specified. This expectation is based upon the
notion that HOFFMANN-0.0 uses exhaustive enumeration of task assignments unless
a zero idle time solution is first found. As is shown in Tables 2 and 3,
HOFFMANN-0.0 was able to solve 69 of the 110 balances. However, along with
MAG-1, the other Hoffmann-based procedures yield the five best average

results reported.

4.5 Computer Time and Computer Storage Requirements

Table 4 indicates the actual computer time and storage used by the 24
mefhods. The times quoted are the average seconds of CPU time required by
each method to solve, or attempt to solve, all balances in each data set. For
each balance, the minimum of the actual CPU time and 3.0 seconds is used.
These values are summed over all balances in the data set and divided by the
number of balances in the data set to obtain the times appearing in Table 4.
The storage values are given 1W kilobytes of primary storage required.

Although the values in Table 4 are accurate measurements, one should

interpret them cautiously in evaluating the relative efficacy of each solution



-36-

TABLE 4
Computatfon Time and Amount of Computer

Storage Required to Solve Line Balanclng Problems

Average CPU Time to Solve Each
Balance in Each Data Set?
Primary
Solution . Storage
Procedure Main Requtredb
Experimental Literature Difficult Difficult
Data Set Data Set Data Set One Data Set Two
1,320 Balances 64 Balances 110 Balances 110 Balances

Each Single-~

Pass Decision 0.004 0.002 0.005 0.005 8

RuleC

COMPOSLTE-13 1.37 0.57 1.52 1.52 91

ARCUS 0.49 0.05 2.14 2.19 63

HOFFMANN-0.0 0.17 0.53 1.48 8.36¢ 251

HOFFMANN-0.5 0.18 0.35 0.28 0.29 251

HOFFMANN-1.0 0.18 0.29 0.22 0.24 251

HOFFMANN-2.0 0.18 0.29 0.19 0.20 251

MALB 1.85 0.07 1.57 1.60 175
__MAG-1 . _1.48 00y 1.15 1.18 1,711
»__MAG—&_”____“ijj:VIJH“N_"_~~NA_jbﬂl__ 1.64 1.82 1,711

ALBCUT 2.76 0.52 2.40 2.52 248

ALBHOFFd 1.67 0.91 1.76 1.91 172

AAMDAHL 470/V8 CPU time, {n seconds with a 3.0 second time limit per balance. FORTRAN-H
Compiler used, with OPT=2.

bIn kilobytes.

COne computer program was used to find individual single-pass results and COMPOSITE-13 results.

. The storage value is an estimate, however, of what would be required to code any one single-
pass decision rule.

dHal f-word integers are used in the HOFFMANN-0.5 subroutine in ALBHOFF. This has the effect of
increasing the computation time and decreasing the storage over the standard HOFFMANN-0.5
procedure.

€The locatfon of the internal timer in this code permitted some balances for which no sotution
was found to be attempted for more than 3.0 seconds in this data set.

procedure. First of all, through clever programming one could reduce both
storage and time requirements for any of the methods examined. Second, the
methods vary in the predictability of their use of time and storage, which
affects the potential expense and ease of their use. For example, it is not
possible to specify precisely, and in advance, the amount of computer storage
that will be required to solve a given problem with the MAG-1 and MAG-2 branch
and bound procedures. (This is a generic problem with branch and bound codes,
and has been observed elsewhere (Patterson, 1984).) Thus, the array dimen-—
sions, and hence storage values, had to be determined by trial and error
(repetitively increasing dimensions until overflows disappeared). The two
codes dropped from the study, DYNAMIC and MUST also have this drawback,

although MUST has been programmed to directly use external storage, which



-37-

reduces the need to a priori specify storage precisely. None of the other
22 procedures evaluated have this drawback relative to storage needs. How-
ever, all methods other than the single-pass and composite methods (and the
optimum codes with time traps) have difficult-to-predict time requirements for
an arbitrary balance.

Within a given data set, it is fairly safe to compare the relative compu-
tation times of the methods. Across sets it is more risky, although in
terms of number of tasks in each balance, the Main Experimental Data Set, and
the "Difficult" Sets One and Two, are comparable. In creating the latter two
data sets, it was expected that some of the methods, specifically the back-
tracking methods, would perform worse in terms of computation time. This is
certainly true of HOFFMANN-0.0 on "Difficult" Data Set Two. In "Difficult”
Data Set One, HOFFMANN-0.0 is about nine times slower than it is in the Main
Experimental Data Set. However, relative to all other methods on "Difficult”
Data Set Two, its time performance was average. The only other method that

exhibits substantially increased time per balance is ARCUS.

5.0 A Comparison of These Results with Previous Investigations

There have been two previous major investigations of heuristics for
solving the Type II line balancing problem [Mastor (1970) and Dar-El (1975)],
but none, until the current investigation, for the Type I problem. Hence, it
is difficult to make direct comparisons among these three evaluations. How-
ever, as indicated earlier, most methods for solving the Type II problem are
in reality methods for solving the Type I problem that are repetitively
applied to the same network with an increasing cycle time. This is certainly
true for all of the methods included in our evaluation. Hence, we feel that
the procedures examined will give the same relative performance for the Type

IT problem as they have for the Type I problem. In fact, by solving each



-38-

network using 1l increments of cycle time, we have in one sense mimicked the
process needed to solve a Type II problem.

The major methods included in both our evaluation and Mastor's (with
Mastor's terminology given in parentheses) are MINTSKNO (Lexicographical),
MAXRPW (Helgeson), MAXIFOL (Immediate Follower), RANDOM (Random), HOFFMANN-0.0
(Hoffmann), and ARCUS (Arcus). Mastor also included a version of the Held,
et. al. (1963), dynamic programming procedure. In general, the poorest results
obtained by Mastor were for the Lexicographical rule, followed by the single-
pass decision rules. The best performance was obtained by Held et. al.,
followed by Arcus and Hoffmann, although the Held et. al. and Hoffmann methods
were tested over a subset of his data because both methods required excessive
computation times., Dar-El included MALB, ARCUS, and the best of ten single-
pass heuristics (10-SP) in his comparative evaluation. The ten single-pass
methods are combinations of four procedures included in our investigation,
MAXRPW, MAXTFOL, MAXDUR, and MAXIFOL. Dar-El excluded Hoffmann and Held et.
;1. from his investigation on the basis of Mastor's observation that these
methods exhibit high computation times. Overall, Dar-El found that MALB
consistently gave superior results to ARCUS, and that generally, ARCUS
outperformed 10-SP.

All three investigations (Mastor's, Dar-El's and ours) are consistent in
finding that the more complicated procedures give better solutions than the
single-pass methods. Our results comparing MALB and ARCUS are not quite as
conclusive as are Dar-El's, However, they are generally in agreement. More
noteworthy are the differences among the results, the most important of which
is the difference in the performance of HOFFMANN-0.0 in our study and the
Hoffmann in Mastor's investigation. Tn FORTRAN, many decimal fractions are

imprecisely represented in the computer. When these numbers are arithmetically



-39-

manipulated (e.g., normalized) and compared, this imprecision can give logi-
cally erroneous results. Specifically, by treating task times and cycle times
as decimal fractions, the test in Mastor's version of the Hoffmann procedure
to determine if a station's idle time is equal to zero is very rarely met

thus forcing complete enumeration at each work station using this approach.
This is in fact the situation we have artificially created in "Difficult" Data
Set Two with all even task times and all odd cycle times. If one feels that
these types of problems are likely to occur in balancing an industrial assembly
line, then he or she should probably use one of the modified versions of the
Hoffmann procedure (we prefer HOFFMANN-0.5). 1t has been our experience, how-
ever, that these instances arise rarely in practice, and one has to go to the
extreme of normalizing the task times or else constructing a data set such

as given in our "Difficult"” Data Set Two in order to observe the HOFFMANN-0.0
procedure experiencing difficulty in deriving a satisfactory solution to a
liné balancing problem.

The less significant differences in the individual performance of single-
pass decision rules among these three investigations may be explained by the
lack of explicit (or at least stated) tie-breaking rules used by Mastor and
Dar-El. We have observed that the effect of the tie-breaker rule can become

quite significant, and that the tie-breaker's performance is highly dependent

upon the main scheduling heuristic used. This is largely because of the
heuristic discretion the tie-breaker is or is not able to exercise, a concept
addressed previously for the project scheduling problem (Patterson, 1976).

For example, when MINTSLK is the main scheduling rule employed, there are
usually numerous opportunities for the tie-breaker to exercise its influence
(discretion) because several tasks available for scheduling at a given station

will possess equal amounts of slack. 1In this instance, the tie-breaker rule



_40..

becomes the dominating heuristic because of the inability of the main heuristic
to discriminate among the competing tasks for assignment to a work station.

The use of a heuristic such as RANDOM, on the other hand, produces relatively
fewer opportunities to break ties since it is unlikely the random numbers
assigned for task priority will be equal. To illustrate this point, in Figure
3 we give the Average Percent Increase Above the Minimum Heuristic Result
Obtained using the single-pass scheduling heuristics of MAXDUR, MAXIFOL, and
MAXUB with the other single-pass decision rules serving as tie-breakers for

the literature problems data set. Apparent in this figure is that the perform-
ance of MAXDUR varies 1ittle'regard1ess of the tie-breaker used because it
leaves little discretion to the tie-breaker. However, the performance of
MAXTFOL and MAXUB are strongly influenced by the tie-breaker employed because
of the large number of ties these rules produce. Figure 3 also illustrates
that a tie-breaker's effectiveness is a function of the main rule it is paired
with. Two rules, MAXAVGRPW and MAXTFOL/SL, have been highlighted in Figure 3
to illustrate this point. If one were to evaluate these tie-breakers using a
main scheduling heuristic such as MAXDUR, then one might conclude that
MAXAVGRPW isn't a very effective tie-breaker. However, when paired with
MAXIFOL and MAXUB, this tie-breaker actually delivers the best results. Dif-
ferences in reported results previously may have been due simply to the manner
in which ties are broken, or in the order in which tasks are labeled numerical-

ly as data input.

6.0 Conclusions and Recommendations

Twenty-six heuristic decision rules are evaluated in this paper, which
are designed to assign tasks into work stations such that given a cycle
time, or production rate, the number of stations is minimized. The

procedures vary from simple list processing prioritizing schemes, which




-41-

FIGURE 3

7

AVERAGE PERCENT INCREASE ABOVE MINIMUM SOLUTION

FPFERCENT

llllllJLLlllIlLlJ lJIlPll!llll]llllJl,

LITERATURE PROBLEMS

MMMMMMABRMMMMMM
AAAATITTIAAAAIII
RKXXXMNNXXXNNN

MMMMMAMMMMMMM
AAAATIAAIIATAI
HXXIMNNXNNXNXN

MMMMAMMMMMMMM
AAAAAATAAIIII
HKXIXNXNXXNINNN

DRTTUUDADILTT
UPFFBBOVUFRFBSS
AWOO /MGRO Ki.

ADDRUDTTUTTIL
VUUFPBOFSBFSFB
GRRAW MOL /0KO

ADDRADTUTILUTT
VUUPRPOFBFFBBSS

GRAWMO /00 KL METHOD

/ LL T R L NK A / LK TLNL R/ LTLL MK
U /s F P o P U / F o P U =/ o
=} S O W w B s o w B os
[N oL (S
-— m~MaxouR — MAXIFOL F— ™Maxus — HEURISTI

TIE BREAKER XXXXXXX) MAXAVGRPW
] MAXDUR/UB
C- " MaxArPw

SrSrsd MaAaXTFOL /S

C—_—1 MAXDUR
Co—=—/3 MAXIFOL.
3 MAXTFOL.
C.—— 3 MINLSB
MINTSLK

C—"" MINTSKNO. Sam—— |
T MINUBSTFOL.

CTIT3 MmINUB
LT3 RaANDOM

L —_

consider a single attribute of each work task, to optimal-seecking procedures
which have had the amount of time permitted for search limited. These methods
are tested on four data sets, one large set consisting of 1,320 balances, one
set of problems found in the open literature, and two specially constructed
sets of problems.

A randomized complete block, full factorial analysis of variance was per-
formed to assess the effects of number of tasks, network density, method of
generating precedence relationships, and cycle time on heuristic performance.

The results indicate that heuristic performance is not significantly affected

by network structure, but that performance does vary with the magnitude of the

cycle time.



42—

In general, our evaluation demonstrates that methods exist which will
give optimal or near-optimal solutions to large line balancing problems with
very little computational effort. Of the pure heuristic methods, variants of
Hoffmann's Precedence Matrix approach (1963), followed by Dar-El's MALB (1973),
appear to be among the best procedures. Of the optimal-seeking methods,
Magazine and Wee's branch and bound procedure (1981b) using the heuristic
IUFFD (MAXDUR), and Talbot and Patterson's implicit enumeration procedure
(1984) initialized with the Hoffmann procedure yield the best overall results.

On the basis of our analysis and experience in using the computer imple-
mentations of each of these procedures, we make the following general recom-—
mendations. 1If one is constrained in terms of computer storage and computa-
tional speed (for example as with a personal computer), then solving the
problem with HOFFMANN-0.5 first, and then improving upon it with an always-
feasible optimal-seeking approach such as ALBHOFF (with or without the
additional cutting based rules) and using a time trap, would seem to return the
best results for the effort expended. If computer storage is not a limiting
factor, then MAG-1 (used with a time trap) is likely to give among the best
results. To reduce the risk of not determining a good solution, multiple
methods should be attempted. This is especially true for balances with cycle
times close to the largest task time, which appear to be the most difficult

for which to find and verify an optimal solution for a problem.



ACKNOWLEDGEMENTS

The authors wish to extend their appreciation to the following individ-
uals who assisted in the effort required to complete this evaluation:
Professor Michael Magazine and Dr. Thomas Wee provided us with copies of their
branch and bound computer program, their version of MALB, and their version of
Schrage and Baker's dynamic programming procedure. They additionally responded
to a number of questions we had about the operation of these algorithms.
Professor Ezey Dar-El provided us with a copy of MUST. Ms. Kay Miller and
Mr. Ronald Howren of the University of Missouri-Columbia provided much help in
coding, running programs, and preparing final results for analysis. Finally,
the anonymous referees gave us a number of constructive comments oun earlier

drafts of this paper.



[1]

(2]

(3]

[4]

[5]

(6]

(7]

(8]

[9]

REFERENCES

Arcus, A. L. "An Analysis of a Computer Method of Sequencing Assembly
Line Operations.” Ph.D. dissertation, University of California, Berkeley,’
1963.

. "COMSOAL: A Computer Method of Sequencing Operations for

Assembly Lines.” In Readings in Production and Operations Management,

edited by E. S. Buffa. New York: John Wiley and Sons, 1966.
Bowman, E. H. "Assembly-Line Balancing by Linear Programming." Opera-

tions Research 8 (May-June 1960), 385-389.

Dar-El, E. M. (Mansoor). “Assembly Line Balancing—-An Improvement on the

Ranked Positional Weight Technique.” Journal of Industrial Engineering

15, 2 (March-April 1964), 73-77.

"MALB--A Heuristic Technique for Balancing Large Single-Model

Assembly Lines.” AIIE Transactions 5, 4 (December 1973), 343-56.

"Solving Large Single-Model Assembly Line Balancing Problems--A

Comparative Study." AIIE Transactions 7, 3 (September 1975), 302-310.

, and Rubinovitch, Y. "MUST--A Multiple Solutions Technique for

Balancing Single Model Assembly Lines.” Management Science 25, 11

(November 1979), 1105-1115.

Davis, E. W. and James H. Patterson. "Resource-Based Project Scheduling:

Which Rules Perform Best?" Project Management Quarterly, 6, 4 (December

1975), 25-31.

Fishburn, P. C., and Gehrlein, W. V. "Alternate Methods of Constructing

Strict Weak Orders from Interval Orders.” Psychometrika 39, 12 (1974),

501-16.



[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gehrlein, William V. “Generating Random Partial Ordering Relatiouns.”
Proceedings, Northeast American Institute for Decision Sciences,
Philadelphia, PA (April 1980), 119-22.

, and James H. Patterson. "Balancing Single Model Assembly Lines:

"

Comments on a Paper by E. M. Dar-El (Mansoor),"” AIIE Transactions 10,

1 (March 1978), 109-12.

. "Sequencing for Assembly Lines with Integer Task Times.”

Management Science 21, 9 (May 1975), 1064-70.
Held, M., R. M. Karp, and R. Sharesian. "Assembly-Line Balancing--

Dynamic Programming with Precedence Constraints.” Operations Research

11, 3 (May-June 1963), 442-60.
Helgeson, W. P., and D. P. Birnie. "Assembly Line Balancing Using the

Ranked Positional Weight Technique.” Journal of Industrial Engineering

12, 6 (November-December 1961), 394-98.
Heskia, Heskiaoff. "An Heuristic Method for Balancing Assembly Lines."

Western Electric Engineer 12, 3 (October 1968), 9-16.

Hoffmann, Thomas R. "Assembly Line Balancing with a Precedence Matrix."

Management Science 9, 4 (July 1963), 551-62.

Jackson, J. R. "A Computing Procedure for a Line Balancing Problem."”

Management Science 2, 3 (April 1956), 261-72.

Jaeschke, G. "Eineallgemaine Methods Zur Losung Kombinatorisher

Probleme."” Ablaufund planungforschung 5 (1964), 133-53.

Kilbridge, M. D., and L. Wester. "A Heuristic Method of Assembly Line

Balancing.” Journal of Industrial Engineering 12, 4 (July-August 1961),

292-98.



[20] Magazine, M. S., and T. S. Wee. "Fast Algorithms for the Assembly Line

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Balancing Problem.” Working Paper 149, University of Waterloo, Department

of Management Science (June 198la).

and . "An Efficient Branch and Bound Algorithm for an

Assembly Line Balancing Problem--Part I: Minimize the Number of Work
Stations.” Working Paper 150, University of Waterloo, Department of
Management Science (June 1981b).

and . "An Efficient Branch and Bound Algorithm for an

Assembly Line Balancing Problem--Part II: Maximize the Production Rate."”
Working Paper 151, University of Waterloo, Department of Management
Science (June 1981c).
Mastor, Anthony A. "An Experimental Investigation and Comparative
Evaluation of Production Line Balancing Techniques.” Ph.D. dissertation,
University of California, Los Angeles, 1966.

. "An Experimental Investigation and Comparative Evaluation of

Production Line Balancing Techniques.” Management Science 16, 22 (July

1970), 728-45.
Merten, P. "Assembly Line Balancing by Partial Enumeration." Ablaufund

Planungforschung 8 (1967), 429-33.

Moodie, C. L., and H. H. Young. "A Heuristic Method of Assembly Line
Balancing for Assumptions of Constant or Variable Work Element Tirmes."

Journal of Industrial Engineering 16, 1 (January-February 1965).

Patterson, James H. "Project Scheduling: The Effects of Problem

Structure on Heuristic Performance.” Naval Research Logistics Quarterly

23, 1 (March 1976), 95-123.



(28]

[29]

[30]

[31]

[32]

[33]

[34]

. "A Comparison of Exact Approaches for Solving the Multiple

Constrained Resource, Project Scheduling Problem.” Management Science

30, 7 (July 1984), 854-67.

Sawyer, J. F. H. Line Balancing. Washington, D.C., Machinery and Allied

Products Institute, 1970.
Schrage, L., and K. R. Baker. "Dynamic Programming Solution of Sequencing

Problems with Precedence Constraints.” Operations Research 26 (May-June

1978), 444-49.
Talbot, F. Brian, and James H. Patterson. “An Integer Programming
Algorithm with Network Cuts for Solving the Assembly Line Balancing

Problem.” Management Science 30, 1 (January 1984), 85-99.

s , and William V. Gehrlein. "A Comparative Evaluation of

Heuristic Line Balancing Techniques.” Working Paper No. 415 (Revised),
The University of Michigan Graduate School of Business, Aunn Arbor,
Michigan, 1985.

Tonge, F. M. A Heuristic Program of Assembly Line Balancing, Englewood

Cliffs, NJ: Prentice-Hall, 1961.

« "Summary of a Heuristic Line Balancing Procedure.” Management

Science 7, 1 (October 1969), 21-42.



Appendix

Listing of Literature Data Set

Note: The format of the problems listed is as follows:
1. Problem title, number of tasks (N), cycle times.
2 - N+1, Task time, immediate successor tasks.

One blank record separates consecutive problems.




SL

14°]

(44

(24

vce

ot

=1=14

O€E

=194

LT

=14

oe

9T v¢ 6+ 8 €C CC T S
S0¢ 8€+ 8C ‘W3n3-se

ElL T}

9 ¢
L Ot
LI 94 6}
ck b L
S v 8
AIN3W3IT3I-0E S, dIAMVS
cL
8¢ ¢
LC €
8C LO}
GC 1T
8C €
8C 8
8T LI}
8¢ LS
oT Ly
8C 8
8C L6
8C 8
8¢ S
8T TS
9t viI 801
€l 61
St ¢
ck LI €S
Ol e
6 ¢9
8+ LI
L LT
8T |
8¢ 9
8C €€
LI 9 6§
v € OL

S, 440VINS3IH

L

€

[4

6L S
ocC €l

LI €

8t 91 §
61 €

8k LI S
St I

St €

St |

L O S
6 L

vi 8 8
8 v

L 9 6
Il & &
v 6

1T €

€E ¢ v

9t

6€

[ X4

8t

SE

vi

8}

St

=14 [ X4 St vi (X4

v6 [4=) 8y b

€t Ol 6 L [
(o] 8 L ] 6

oc 6
(o)2 8 L 9 L

N3IW313-+2 S,T13HOLINW

S

w3inaoad

S v €

ve

Lt O}
oL ¢
oL Ot

4

ot

o~~~ NOOIDID T

IN3W33-+E S,NOSHOVP

€
1IN3W313-6 S,

w3180dd

S
v
IN3IW33-L

naOnO~0Nn

HH

save

OWwoNOMmMO onoTITNr-rTO
- -

~
-~

[
+NVWNMOG

1d3an

"TANOILNON~ON



LTS

Ev ST
zv 9t
cy €}
oy €
6€
8E T
LE OV
19 29 09 95 €S v¥ 8F LS OE SE
SE ov
vE ZOk
SE 08
ZE LE
LlE LI
se 92
Se vL
SE SV
SE 2v
62 8T LT 9T TS}
sz Tl
€E IE ST €L
€T oY
€C 0§
T vS
LS zT OZ 6}
61 EVI
6+ OS
8L LI 06
9l v6
€C SE}
€2 VEL
vl €L 1T
zi S8
bt OL
O 89
zh 8TH
8 12
8 88
oc vz 9 9
L 9 TS
89 ¥ vS
E 99
oL 69 v T L}
89y Oiv VOE 9LF OL IN3INI13-0OL S,3IONOL
o s
O s
o 9
O st vy T}
o v T
o v ¥
o v s
o ov L
O EVv ¢
0 8t 6
o Oor L
O 8E E
O 9t SE PE S
o v v

[4 %4
tET
o] 74
6TT
8CT
Lce
9ze
=144
vece
€CT
cee
[ X414
oce
-] X4
8i¢C
LT
=1x4
[-1%4
vic
>} ¥4
[4 X4
tic
otc
60T
80¢
L0T

[4:13
[3:1
o8l
6L1
8L}
LL}
oLt
SL1

v8i

8€}

c6

6L

LS

(¢]

Sy

O vc €cC

Lt ST CE tE
o

(e}

[e}e]

o
[©)
YILSIM

O(DO()%()O(DO

6¢

ve

ot

v L
v S
v v
8€ T
8¢ §
8€ 9
9z 9T
€E 62
€E LT
82 vl
zz S
tz v
oz L
6+ €
o9z ¢t
61 61
9t i
6T ¢Z
vL 9
EL L
gL Ot
Iy OC
I OC
oI €
6 El
ot Lt
6 LI
9 Ol
s Ol
v 6
€ 6
5
(4
OE vi
L
8z Sz
LZ 6
9z LI
sz L
LT 9%
€z vi
ze 1T
1z o
81
6t O}
81 ¢
oz Ol
zz 6
s Tk
vL S
E} S
v
ve b
9z I
6 Of
8 vi
L 9

vLl



LOOLIBLELLEVLOLLTOOLLYBB GGLS i

(4

IN3IW3T3-+ 4L

'8

8L

SL

LL
SL

8L
8L

8L
SL vy EV

9€ GE VE

€8
23:]
c8
o8
6L

0961
+SNOAV

169¢€
ootE}
oSy
ootLe
o8¢C
oLt
1oL
LSE
voL
EVST
[ele]
96T}
26¢€
L88
LOYV
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
8LS
v9S
8LS
cco
8LS
[ 4531
8LS
c6L
88C1
vev
€99
[o] ¥4
[ 2-143
ceL
99¢C}
EViL
vET!H
6C9
cvo
[4
Y001
viL

8VvE
LYE
ave
SvE
vve
EVE
(24
[ 34
orve
6EE
8EE
LEE
9€€
SEE
vEE
EEE
CEE
LEE
Ote
6CE
8ceE
LTE
aze
Sce
vece
€CE
[44>]
LCE
oze
6i€
8I€
LiE
S1€E
SIE
viE
ELE
[4 3]
L E
OLE
60€
80€
LOE
20¢€
G0€E
voe
€0E
[40]
LOE
(ele]
66¢C
86T
L6T
96¢
S6¢T
vec
£6C
(4514
+6C

918018688 CIv8 |LSL Tr89 £S8S 8Y0OS E8

6¢c

8T ¢c

oc 8t

sc vi

8L

ol

L

s v

AIN3IW33-E

L9 99

CE €98}
69 8vL
vL THE
CE 0O8L
8C 0G8
vL LOL
LT LV8
L2 80V¥
9¢ EET
vz 009
€C L99
tc 088
LL EBV
OoZ LLS
61 EELI
L+ 00S
9} YoV
S+ 0O0L
€} OSClH
Ck EBLI
LL OvVOl
L+ LECC
1 88C
Q0L
€L6
9€8}
586
L9}
+SNOAV

DNMYVWOWOOD

LT
€¢C
cL

o6¢
68¢
88¢
L8C

S8¢C
v8¢C
€8T
[4:14
8¢
[03:14
6LC
8LT
LLe
oLC
GLC
vLe
ELT
cLe
LLT
oLc
69¢C
89¢
L9C
99¢
S9¢
voc
€9¢
(414
19¢
o9tc
65¢
86T
LSC
9G¢
=314
14°11
154=14
[4°14
(X1
0S¢
6vc
8vc
LyC
ove
Sve
vve
eve
cve
tve
ove
6ET
8ET
LET
9€T
GET
vee
EET



yOL001 66 86

ve

t6

ce
6L 16

L6

8
16

8
8L

6

8L

oL
6

16

tHECOL
FELLCH
OL1Z9l
FHEPCE
601 C9l
LbibvLT
LHETOT
801 LOILEOT
LOL 90 20T
[={e] Yol:}4
LLLOLOY
LHLOLOY
€01 89L
coi69L
101 SCCH

96
S6
S6
G6
c6

6508
8S
LLE
Eve
O6ES

Lb192ZE
SOL 426
SOL06Y

06

SEL

[N %el34
LHEBED

88
16

688¢C
0961

LHISEL

L8
o8
S8
ve
€8
08
LL
oL
SL
vL
6
€L
LL

SiLL
oLV}
819
ooct
89G€E
8CSE
SC8
o6v
20¢ccT
§0ce
vETZE
98€EE
SvS

LLISEL
LHESEL
LEHLSEL
LHESEL

cL

666C

LIV VLT

b L
69

810V
[={el A4

89 096}

o9y
53=14
8Sv
LGPV
=11 4
114
14°14
ESY
[4°14
[ 314
oSy
(5344
svv
Lyy
ovy
Svy
1444
EVY
244
(244
(0] 44
6EY
8EY
LEY
=134
SEV
vEY
EEY
(4534
LEY
(o134
144
8Zv
LCY
9Cy
=144
[ 444
ecy
cecy
XA
oty
6iv
-1 84
Ly
otvy
Sty
viv
ElY
[A %4
[ 224
oLy
60V
80OV
LOYV

€9

09 65 85 LS 9S

tz ot 6}
Lec Oz 61}

=14

8L LI 91
8+ LI 9}

Ot 6 8

6

ve

St
Si

L6
(35
L6
vo

oL

=3°]

34
oL
+6

+6
16

oL
€€
€8

ET
vi

[

L9 EOET
99 OLv}
S9 OLvi
€9 OtOov
19 geit
69 GiLt
LELEBS
LEELTH
FLESE
LEELT
16 LO
€S 6€
vs 00¢s
¢S I8
1S O}
oS 8}
8¥ 89
LY 689§
69 £96C
LLLOLY L
Oov 866V
ov vot
Sy CTv
vy €9
Ev 89
cy LEOV
FLLOLYE
Ly LTiC
6E SiL}
8E T}t
LE G}
9€ LT
GE 6C
c8 0961}
vE OEVE
69 €V
CE 6¢CvE
LE GTI
L+ 1090€E
+6 SOV
Ot voE
6C IS
8C 68
LT LL
9¢ 0GLZT
¢c i8¢t
LL SEL
€} 0O8B6
€L SILI
L+ BLET
CE Sttt
LL Z&ce
€8 69}
6E §Zcl
6 O6v
S SHLE
v SEL
€ SHL}

20v
SOV
yov
{024
cov
LoV
oov
66E
86€
LBE
96¢E
=1°1
vee
EBE
(41
| 6€
o6¢e
68E
88E
L8E
98€
S8E
14:13
€8€
[4:]
+ 8€
o8E
6LE
8LE
LLE
oLE
SLE
vLE
ELE
CcLE
LLE
oLE
69€E
89¢E
L9E
99¢€
S9€
voE
€9€
(41
[3=1
09€

8SE
LSE
=1=1
GGE
vse
191°14
[4=1
I SE
0OGE
evE



