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ABSTRACT

This paper introduces methods-for formulating and solving a
general class of nonpreemptive resource-constrained project |
scheduling problems in which the duration of each job is a function
of the resources committed to it. The approach is broad enough to
permit the evaluation of numerous time or resource-based objective
functions, while simultaneously taking into account a variety of
constraint types. In particular, techniqueé are presented for solving
the time-cost tradeoff problem under multiple resource constraints,
and the problem of finding the minimum project completion time under
multiple resource constraints when resource allocations affect job
performance times.

Computational results indicate the the procedures provide
cost-effective optimal solutions for small problems and good
heuristic solutions for larger problems. The programmed solution
algorithms are relatively simple and require only modest computing
facilities, which permits them to be potentially useful schedﬁling

tools for organizations having small computer systems.







INTRODUCTION

Over the past decade atteméts to solve multiple resource-
constrained project scheduling problems of either the preemptive
[10] of nonpreemptive [1, 3, 4, 8, and 9] varieties have been
restricted to certain cases. These were cases in which each job
was characterized by a unique duration and by a singular complement
of resource requirements that had to be met in each time period the
job was in process. Formulations of the more general model which
permit jobs to be accomplished using one of several complements of
resources have been kﬁown since at least 1969 [5]. But researchers
have generally been dissuaded from developing optimizing codes for
these models because of the formidable computational problems invol-
ved in implementing the formulations. Only recently has there been
a serious effort to solve the general time-resource tradeoff problem
for the preemptive case [6], while still very little computational
experience has been reported for the nonpreeﬁptive case [2, pp. 173-
183]. It is the purpose of this paper to introduce a relatively
simple yet effective procedure for optimally or heuristicélly solving
nonpreemptive scheduiing problems.

The paper will focus on two variations of the time—resource
tradeoff problem: finding the schedule of jobs that minimizes
pfoject completion time, and determining the schedule of jobs that
minimizes overall project costs. The first model was selected
because it is the natural generalization of previous nonpreemptive
resource-constrained project scheduling research [1, 3, 4, 8, 9].
The resource-constrained time-cost tradeoff problem was selected
because it bridges an important gap in the project management

literature: the gap between time-cost tradeoff scheduling techniques

and methods for scheduling
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under resource constraints. Time-cost tradeoff methods have been
based on the assumption that resoﬁrces are available in unlimited
quantities. Resource-constrained models, on the other hand, have

not been developed to explicitly treat cost or profit as a scheduling
objective while simultaneously permitting job durations to be affected
by resource allocations. The proposed formulation and solution algo-
rithm remove the above restrictions.

The nature of the time-resource tradeoff problem will first be
described and formally defined using a zero-one integer programming
approach. Next, an implicit enumeration solution teéhnique-will be
introduced for finding the schedule of jobs that minimizes éroject
completion time. Modifications to this algorithm are subsequently
described for solving the problem given monetary-related objective
functions. Illustrations of these ideas follow, with solved examples
for the objectives of minimizing project completion time and mini-
mizing total project cost within the framework of a resource-constained
time-cost tradeoff problem. The last section of the paper presents

computational results for a series of test problems.

FORMULATION OF THE PROJECT COMPLETION TIME MINIMIZATION PROBLEM

~ One can assume without loss of generality that a project can
be depicted by an acyclic activity-on-node graph where activities,
or jobs, are numerically labeled such that successor jobs always
have higher numbers (labels) than all their predecessors. Associated
with each job is a set of possible durations and the corresponding
resource requirements which would permit the job to be completed in

the stated durations. Each duration-resource combination is called

a "job-operating mode" or simply a "mode."
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In keeping with the gehéréi néfﬁre éf the model, three resource
categories are included. Using the terminology introduced by Weglarz
[12]1, and Slowinski [6, 7], these resources are defined as renewable,
nonrenewable or doubly constrained. If resources are available in
limited quantiﬁies each time period, the resources are considered
renewable. An example of such a resource would be skilled labor: the
number of skilled laborers available to work on the project each day
is limited, although no constraint is placed on the number of days
skilled labor may be used. Thus, the resource labor is renewed each
period to a predetermined level, where the level may differ from one
period to the next. If the total consumption of a resource over the
life or part of the life of the project is constrained, it is called
nonrenewable. Money islperhaps the best example of a nonrenewable
resource: overall project costs are frequently limited to a fixed
predetermined contract price. Also, cash flows within a project may
be pegged to the attainment of milestones by particular dates. If
the budgeted capital is not used before a specific time after which
it is no longer available, it is a nonrenewable resource. Finally,
resources are defined as doubly constrained if both their per-period
and total availability are limited. Money is again probably the best
example of a doubly constrained resource: cash flows per day as well
as total cash expended on a project are often restricted.

These three resource categories will be included in the model
because a variety of time and resource-based objective functions,
as well as constraint fdrms, may then be considered. This has been
very ably demonstrated by Weglarz [11] and Slowinski [6, 7] for many
different scheduling problems, but especially for the preemptive

scheduling problem.
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The general time-resource tradeoff problem can be formulated
as an integer programming problem in which a zero-one integer
variable thm = 1 if job j operating in mode m (1 < m < Mj) is

assigned a completion time in period t; otherwise, thm = 0. Jobs
are labeled from 1 to N, with job N being the unique terminal task
without successors. If such a job N does not naturally exist, then
a dummy job N having one mode with zero duration and zero resource
requirements is appended. Associated with each job j are its
critical path determined early finish time, Ej' and late finish
time, Lj‘ Both Ej and Lj are calculated in the usual way bgt using
the set of minimum duration modes for all jobs. In determining the

Lj’ L_ is set equal to a known heuristic project completion time H,

N

or, if H is not known, L_ is set equal to the sum of all maximum job

N
durations.

Equations (1) to (5) define the problem when the objective is
to minimize project completion time. Occurrence constraint set (2)
insures that each job is completed exactly once. JConstraint set
(3) insures that precedehce relationships are maintained. Here P
is the set of all pairs of immediate predecessor jobs and djm is the
duration of job j operating in mode m. Renewable resource restrictions
are enforced by constraints (4). Resource k is available in Rkt units
in time period t. Job j requires the use of rjkm units of renewable
resource k when operating in'mode m. Nonrenewable resource limitations
are imposed by (5). Here Wi is the amount of nonrenewable resource‘i
available for the project, and wjim is the amount of resource i
consumed by job j in mode m. Doubly constrained resources would appear

in both (4) and (5). For example, for a given job and mode we could

set r. = w., /d. where k and i refer to the same resource type.
jkm jim® “jm ,
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The resource requirement rjkﬁ can now be considered the rate at which
resource i is consumed by job j; thus both the rate and total usage

of resource k are constrained.

Minimize MN EE
j;- 21 thtm (1)
m=1 t = EN
Subject to M. L.
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FORMULATION OF PROBLEMS WITH MONETARY OBJECTIVE FUNCTIONS

The presented model permits one to consider several alternative
objective functions inladdition to simply minimizing project duration.
In particular, least cost schedules can be obtained, if the first term
in (6) becomes the objective function, and (7) replaces (5). Given an -
arbitrarily large project completion time T, the global minimum cost
solution can be found. Otherwise, the least cost solution will be
obtained 'such that project completion time is less than or equal to
the desired completion time T. Of course, the resource c in (6),
which we are calling cost, may be any nonrenewable or doubly constrained

resource.

By adding the second sum to (6) and dropping the constrainf set
(7), the problem becomes a resqurce—constrained versipn of the
classical CPM time-cost tradeoff problem. Here S which is usually
approximated by a constant for all t, represents project overhead
per pegiod. By making St a function of time, however, performance
penalties or bonuses may be considered explicitly.

If the project's time horizon is long, then the present value

of cash flows rather than the absolute cost of the project may
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dominate in importance. In thié cééé, the objective function would

be to minimize the present value of expenditures of resource c as
given by (8). Here, Vjtm is the present value of expenditures of
resource ¢ for job j operating in mode m if it finishes in time period

t. Of course (8) can be replaced with a "maximize net present value"

objective function if revenues are also taken into account.

. L.
N My Iy |
Min Ei }Z >L. Vjtm thm (8)
j m

Other objective functions and constraints can be incorporated
into the model‘and solved using the proposed algorithm. The inclusion
of lateness penalties and due détes or job performance constraints,
such as concurrency requirements, are some of these possibilities.
Since these variations have Peen considered in [5] and could easily
be included in the algorithm, we will not repeat them here. It is
of interest, however, to note that an important problem bridging the
gap between the capital budgeting problem and the general time-resource
tradeoff problem can be effectively formulated with our procedure. A
brief comment on this situation is in order, because it is a frequently
encountered problem that has not been adequately treated in the liter-
ature, and because it requires a new interpretation of what have been
called nonrenewable resources. |

To motivate this discussion, consider the general multiproject
scheduling problem restricted by renewable, nonrenewable, and doubly
constrained resources. Assume that the objective is to schedule jobs
in order to maximize the net present value of all projects, where all

projects must be completed. Further assume that money is a nonrenewable
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or doubly constrained resource and that the completion of certain
jobs (or projects) results in a positive cash flow. In this case,
the performance of certain jobs increases or renews the nonrenewable
resource money. This resource dependency between jobs poses no
formulation problems: positive resource flows are simply indicated
by negative coefficients for appropriate variables in (5) or in (8).
However, the nomenclature "nonrenewable" somewhat disguises the

broader interpretation of constraint set (5).

SOLUTION METHODOLOGY FOR THE PROJECT
COMPLETION TIME MINIMIZATION PROBLEM

A two-stage solution methodology is developed which builds upon
ideas presented earlier [9] for the basic resource-constrained
scheduling problem. A specialized élgorithm of this type was
selected because of the inability of general purpose 0-1 computer
codes to efficiently store and solve problems of the size we are
considering. Stage one defines the problem as a compact integer
programming problem, and stage two searches for the optimal solution
using an implicit enumeration scheme that systematically improves
upon generated heuristic solutions. Conceptually the problems are
given by (1) to (8), but operationally ﬂo constraints or objective
functions are explicitly formulated in our procedures. Rather, éll
resource and precedence data are stored in compact arrays that are
interrogated during enumeration to insure solution feasibility. This
results in a very efficient use of computer storage and also in a
reduction of computational time.

Stage One

In stage one the network is first relabeled using one of the

heuristic scheduling rules listed in Table 1. This process is

similar to that successfully used in [9], although the rules
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TABLE 1

Node Relabeling Rules

Rule Formula Description
1. MaAX ADUR. M. maximum average
J - job duration
. /M.
Z A5/
m=1
2. MaAX DURj Max {djm|m = l,...,Mj} maximum job duration
3. MIN L. L. ‘minimum late finish
J J time
4, MAX RD. M. K M.
J J Ei
Z: }: r.. /(M2k) maximum resource
djm Jkm J demand
‘m=l k=1 m=l
5. MIN E. E. minimum early
J J finish time
\ .
6. MIN(L-D). Min [L. - min {d.m]m=l,...,M.}] minimum (late
] J J ] finish time reduced
by smallest duration)
7. RAN - nodes renumbered
randomly
=
8. MIN(L-D). Min {L. - d. /M) minimum (late finish
J J J time reduced by
=1 average duration)
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are calculated differently. The effect of this relabeling procedure
is to specify the order in which jobs will be considered for assign-
ment (scheduled) duriﬁg stage two of the algorithm. Resources and
modes are also.sorted for each job~in stage one. Renewable resources
are sorted such that the resource having the maximum frequency of
highest per-period requirement relative to resource availablity has
the smallest numerical label. Specifically, for each resource and

job mode an index (9) is calculated.

Index 3km = djm for the k which maximizes rjkm/Rk (9)
Otherwise, Index . = 0,

jkn
where L.

J
Ry = X Ret/ (L. - E.+1)
t=E. b
J

\

These indices are summed ovef all jobs and modes, then the resources ‘
are sorted in decreasing order of summed indices. The effect of this
sort during the enumeration procedure is to identify resource infeas-
ibility as early as possible. This sorting procedure can markedly
reduce computational time when the number of renewable resources
exceeds two.

TDepending on the objective function selected, one of several mode
sorts is used. For example, if the objective is to minimize project
duration, modes are sorted by increasing duration. If the objective
Iis to ;inimize project cost, then modes are sorted according to increas-
ing total cost. Mode sorting propedures typically have a significantly

far greater effect on computational time than resource sorting. The

primary reason is that the order in which modes are sorted determines,
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along with job labeling, the initial heuristic project completion time

found by the enumeration procedure, and hence, the initial bounds Lj.

Stage Two

Once a problem has been prepared for analysis, the algorithm
passes to stage two. Here an implicit enumeration algorithm builds
always feasible partial solutions into complete schedules by considering
jobs for assignment in increasing numerical order. Since in stage one
jobs were. labeled according to modified priority dispatch scheduling
rules (from Table 1), the effect of this predetermined enumeration
scheme is to apply successively the heuristic to the problem defined
by the unscheduled jobs. Optimality is assured by either bounding the
solution, or by implicitly or explicitly enumerating all possibilities.
The discussion which follows will begin by considering the enumeration
procedure for the objective of minimizing project completion time as
given by (1) to (S). A demonstration of how the procedure can be
modified to take into account other objective functions will follow.

Associated with gach job j are integer variables Yj apd Uj' where
Yj = t and Uj =m, if mode m of job j is assigned a completion time of
t. Otherwise, Yj and Uj are both unspecified (since partial schedules
are always feasible). Enumeration begins by assigning mode 1 oﬁ job 1
to its earliest possible completion time. Renewable resources required,

rlkl’ are subtracted from resources available, for k=1,...,K and

Ryt

t=l,...,Yl. Similarly, nonrenewable resources consumed, w , are

lim
subtracted from Wi for i=1,...,1I.

Beginning with job 2 and continuing to job N, an attempt is
made to assign the first mode of each job to its earliest precedent

and resource-feasible completion time. Precedence and resource con-

straints are maintained by first finding t* = max {Yp]png},
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where P§ is the set of immediate predecessors.of j. To insure that
nonrenewable resources are not overconsumed, availability array Wi
is interrogated to determine whether wjim < Wi' Then the resource

availability array R,, is scanned for k=1,...,K and from t* +1 to

kt

Lj for the earliest contiguous interval d.m units in length where

rjkm < Rkt' Suppose that interval begins at t* + A; j then ends at

t' = t* +-A+-djm - 1. Consequently, we would set Yj=t', Uj=m, and

adjust resource availability arrays accordingly. Rkt would be

reduced rjkm units from t = t*+ A to t' for k=1,...,K, and W would
be reduced by w.. for i =1,...,I.
, jim
Borrowing a term from 0-1 integer programming, the process of
assigning a completion time to job j is called augmenting variable
Yj to t'. If augmentation of mode m of job j is prevented because
of either type of resource infeasibility, modes m+l, m+2,...,Mj are

considered for augmentation. If none of the modes of j is resource

feasible, then the algorithm backtracks to job j-1. Mode m=U. of

j-1
job j-1 is removed f;om solution. Array‘Rkt is increased by rj—lkm
units for k=1,...,K and t=t", t"+l,...,Yj_ll where t"=Yj_l+l—dj_lm.
Wi is increased by wj_lim for 1=l,f..,I.

An attempt is now made to reassign job j-1 mode m to the
Rkt is

earliest feasible completion time after Yj—l' That 1is,
scanned from t=t"+1 to Lj‘for the earliest contiguous interval

d. units in length where r. for k=1,...,K. If such

j-1m j—lkm-§ Ryer
an interval is found, then Yj—l is set equél to the new completion
time, resource arrays are adjusted, and so on. If no such interval
is found, an attempt is made to assign mode m+l, m+2, etc. This
process of augmentation and backtracking continues until job N is

assigned a completion time, or until an attempt is made to backtrack

below job 1. In the former case an improved (reduced) completion
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time for the project is founa. ih the latter, the incumbent best
solution is optimal.

When an improved solution with a reduced project completion
time T* is found, it replaces the incumbent solution (if any) in
the vectors B and Z, where Bj contains the completion time of job j
and Zj the mode of j actually assigned. If BN equals a known lower
bound on thée solution, such as the critical path early completion
time E_, then B contains the optimal schedule. If B_ exceeds the best

N N
known bound, the late finish times Lj are reduced by the quantity

L. - (BN +1) and the augmentation process starts anew with job 1

N

mode 1. Again, optimality is assured when either an attempt is made
to backtrack‘below job 1, or a project completion time is found that
is equal to a known lower bound.
ALGORITHM MODIFICATIONS NEEDED FOR PROBLEMS
WITH COST RELATED OBJECTIVE FUNCTIONS

The above discussion has been restricted to the case in which
(1) is the objective function. If (6) or (8) were the objective
function and constraints (7) were appended to the model, the above
algorithm could still be used after incorporating the following minor
modifications. 1In stage one during the calculation of Lj’ the desired
project completion time T replaces H, a known heuristic completion
time for the project. In stage two, several changes in the solution
procedure are made. First, the late finish times Lj are not updated
when a new completion time is found for job N. But the cost C of the
incumbent solution (if one exists) is replaced by the cost, as repre-
sented by (6) or (8), of the improved solution. The incumbent cost C
then becomes a new upper bound on the solution. This upper bound is
used in two ways. During augmentation, when mode m of job j is about

to be evaluated for resource feasibility, a check is made to insure
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that the actual cost of the current partial solution for jobs 1 to
j-1 plus the cost of job j does not exceed C. Unfortunately, this
is a weak test that guarantees feasibility but it does not exclude
the explicit eyaluation of many o£her nearly good solutions. Given
the strong ordering scheme used for augmenting variables in the
algorithm, it is possible to construct the following tighter cost
bounds.
Define a vector D with elements Dj given by (10). Dj is thus
N
D, = Z min {wgcm|m=l,...,Mg} ' (10)
9=]
the cumulative minimum cost of all'unassigngd jobs Qhen job j is
being considered for assignment, where the nonrenewable resource
c is cost. This cost bound is implemented before precedence
restrictions are evaluated. .If the actual cost of the partial
solution of jobs 1 to j=-1 plus Dj is greater than or equal to C,

then backtracking to j-1 commences immediately.

GENERAL OBSERVATIONS ON COMPUTATIONAL STRATEGIES

In this paper as in [9], the general approach to the minimum
perect completion time problem is to start with a heuristic solution
and to improve upon it systematiqally until the optiﬁal is found. The
attractiveness of this strategy is that the procedure may be stopped
before reaching optimality when the tradeoff between computational
time and potential solution improvement becomes unfavorable, yet a
good heuristic solution to the problem will still be available.

Very often, however, this is not the favored approach from a strictly
computational point of view when an optimal solution is desired. If

the initial heuristic solution greatly exceeds the optimal solution,
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then a fair amouﬂt of time méy be éxﬁéhded in generating improved

but nonoptimal solutions. An alternative stratégy in this case,

found to be useful in a zero-one approach to minimum.duration

project scheduling [3], is to search over a varying completion time
horizon. Although it has not been implemented, the proposed algorithm
could easily be modified to accomodate this approach. Regardless of
the horizon strategy used, however, a successful application of this

technique relies very heavily on heuristics-—heufistics to obtain a

good starting solution for bounding purposes (e.g., calculating Lj)

and good heuristics to use in mode relabeling and resource and mode-

sorting schemes. The computational section will report on results

using the heuristics listed in Table 1.

SOLVED EXAMPLES

The following example, adopted from Elmaghraby's excelleﬁt text
on networks [2], illustrates_ the foregoing discussion. In Figure 1,
the project is shown to consist of six jobs, each of which may be
accomplished in one of two modes. Five renewable resources are required
by each job. Resource one represents a higher level of skill than
resource two, which is reflected in reduced durations for those modes
using resource one. The resourées available in each period of the
project's duration are 1, 2, 6, and 8 for resources one, two, three,
and foﬁr respectively. Resource five will be discussed momentarily.
The scheduling problem Elmaghraby considers is to find that combination
of modes and job starting times which will minimize project completion
time given these four resource restrictions. This prOblem is specified

by (1) to (4), and the optimal solution is given in Figure 2.

RPT LRI TETTRITTAIT T T roe e e =



Job

Number

1

Mode

@/@

Renewable

Oy

(Per Period)
Resource Requirements

Duration 1 2 3 4 5
2 1 0 2 1 135
3 o 1 2 1 65
1 1 0 3 2 160
3 o 1 3 2 90
3 1 o0 1 4 170
4 o 1 1 4 100
5 1 0 1 3 155
7 o 1 1 3 85
4 10 2 2 150
6 o 1 2 2 80
1 1 0 3 4 190
4 0 1 3 4 120
0 0O 0 0.0 o0

2 6 8 300

Resources Available Each Period 1

Figure 1

A Six-Job Project

Total
Cost

$270
195 -
160
270

510
400

775
595

600
480

190
480



-18~

Job Schedule

Job Mode

1 2
2 2
3 1
L 1
5 2
6 1

XXX

XXX

XXX

XXXXX

XXXXXX
X

125456789
Time

Resource Profile

Time
Period

\O 00~J OV \N N —

Minimum Duration Solution to Sample Problem

T e T b ——————r—— Ayt . e v~ o

Resources. Consumed

1.2

L
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—l—ld—.-—e-ﬂdd-—l
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Figure 2
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In order to illustrate the notion of renewable and doubly
constrained fesources, we have modified Elmaghraby's problem by
appending to each mode its per period and total costs of operation.
Assgming that the resources are vélued at $100, $30, $10, and $15 per
period, the period cost of job 1 mode 1, for example, would be $135 =
[1(100) + 0(30) + 2(10) + 1(15)], and its total cost would be $270 =
2(135). If only total cost is constrained, cost would be a nonrenew-
able resource. If resource five, cost per period, and total cost
are constrained, theﬁ cost becomes a doubly constrained resource.

Figure 3 illustrates the minimum duration solution to the sample
problem after restrictions have been placed on per-period and total
cash expenditures. This problem is. depicted by (1) to (5) where

maximum per period cash flow R., = $300, and maximum project cost

5t
w, = $2,020.

Figure 4 shows the minimum cost solution to the sample problem
represented by (2) to (6), where the latest acceptable project com-
pletion time is T = 10, and the maximum per period cash flow R5t = $300.

t

Here, S, = 0 for all t. Perhaps the most interesting case, however,
is when St # b, since this casts the problem as a resource-coﬁstrained
project scheduling time-cost tradeoff problem. For example, if the
per period overhead cost of the sample problem is St = $250 for.all.t,
the overall minimum cost schedule is given in Figure 4. This can be
verified quite readily by noticing that if the project were extended
one period as given in Figure 3, then the marginal cost of overhead,

$250, would exceed the marginal reduction in scheduling costs, $180 =

2200-2020.

R e e o S Tl 20T o BRI —rvran t radawta Y a T EDe e e




_20—

Job Schedule

' ‘ Job
Job Mode ' Cost
1 2 XXX $195
2 1 X . 160
3 2 ):9:0.0.¢ LOO
L 2 ) 0.0:0:0:0.0'¢ 595
5 2 XXXXXA 480
6 1 X 190 .
12345678901 $2020

Time

Resource Profile

Resources Consumed
2 L 5 (Cash Flow)

5 165
165
165
185
245
165
165
165
165
165
270

Time
., Period

— O\0 CO~NI VI AN Y =
—-O00000O0—=0000 |—
L AP R AS IS RACRAVIE VR ARV R V)
UTAN AN AN W PO R
o\ ~a\ui\n

— —

Figure 3

Minimum Duration and Minimum Cost Solution to Sample
Problem with Money a Doubly Constrained Resource
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Job Schedule

Job
Job Mode ' Cost
1 2 XX $195
2 1 . X 160
3 2 XXX 400
L 1 ):9:0.0.0'¢ 775
5 2 $.00:0.0.0.( 480 .
6 1 X 190 ‘
1234567890  $2200
Time
"Resource Profile
Time Resources Consumed
Period 1 2 3 L - 5(Cash Flow)
1 0 2 3 5 165
2 0 2-3 5165
3 0.2 .3 5165
L 1 1 2 7255
5 1 1 3 5235
6 1 1 3 5235
7 1T 1 3 5235
8 1 1 3 5235
9 1T 1 5 4 240
10 .1 1 5 627
Figure 4

Minimum Duration Solution to Sample Problem with
Project Completion Time Less Than 11
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COMPUTATIONAL RESULTS

To test the efficacy of this approach the enumeration procedure
which solves the minimum project completion time problem was pro-
grammed in FORTRAN. This basic pfogram was then modified, as described
previously, to solve problems with cost-related objective functions.

No special programming effort was exercised to optimize either the
storage of data or program-running efficiency, since the basic approagh
already does a reasonably good job in both respects. Although for
testing purposes two separate programs were developed (the basic and
the modified program), with very little effort one program could 5§
written to solve all the various problems discussed in this paper.
Such a program could easily be written to run in less than 32k Bytes
for problems containing approximately thirty jobs with tﬁree modes
each, and six renewable and ten nonrenewable resources over a planning
horizon of 100 time periods.: This efficient use of computer storage
permits the approach to be adopted by potential users with only modest
computer hardware.

A preliminary evaluation of the heuristic rules shown in Table 1
was accomplished by solving 100, 10-job problems as project coﬁpletion
time minimization problems with each heuristic used as a node-numbering
rule. Detailed descriptions of these problems will not be giveﬁ here
since they are completely listed in Appendix A. Briefly, jobs in
each problem had from one to three modes of operation and each mode
was constrained by three renewable resources. The total number of
modes in each project ranged from eighteen to thirty. Network
complexity (the ratio of the number of precedence relationships

to the number of jobs) ranged from 1.0 to 1.6. Critical path early

,~ap e e e e e .- - e - ce s e e
A T I T T R = AT AT AT I ST e e .. . S ————— e .
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finish times EN ranged from 10 to 27, and optimal project completion
times ranged from 12 to 32.

Table 2 contains five summary measures of heuristic'performance
for the minimum duration problem. "Best" refers to the smallest
project completion time found by all heuristics. "Optimal" is the
percentage of problems for which the rule obtained an optimal solution.
"Worst" is the percentage of problems for which the rule yielded the
largest project completion time. Measures d and e refer to the
percentage of problems for which the enumeration algorithm found and
verified the optimal solution when the jobs were numbered with the
respective heuristics.

Certainly no sweeping generaliéies can be inferred from an
anaiysis of this small sample. It is interesting to note, however,
that all rules outperformed the random rule number 7 on all measures
except total time to optimality. Furthermore, the best overall rules;
numbers 3, 6, and 8, are based on £he minimum late finish time ;ule
which has been found to be one of the best rules for the single-mode
problem [9]. The minimum average time to find and verify the optimal
solution for all 100 problems was obtained with rule 8 at .392
seconds of CPU time for each problem on an AMDAHL 470 V/7 computer.
The range of solution times for each problem using rule 8 was from
.00l to 12.912 seconds with only two problems requiring more than
2 seconds.

To evaluate the effectiveness of this approach on larger problems
and with cost-related objective functions, ten 20-job and ten 30-job

problems were solved under a variety of resource and cost conditions.
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TABLE 2

Rule*

Percentage of Problems

on which Rule Was 1 2 3 4 5 6 7 8
a. Best 7273 83 73 76 77 57 76
b. Optimal 30 29 33 30 30 34 23 34
c. Worst 60 59 46 58 53 54 77 54
d. .Fastest to optimal 37 41 52 49 37 58 .37 55
e. Slowest to optimal 37 39 28 40 39 28 59 29

*Described in Table 1
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It was not always possible to solve these—problems optimally within
16 seconds of CPU time, which was the maximum time the program was
permitted to run for a given problem. However, in all cases good
heuristic solutions were found within two seconds by at least one
of the eight renumbering heuristics listed in Table 1 when appropriate
mode sorting was also used.
SUMMARY AND CONCLUSIONS

This‘paper has presented a computationally tractable integer Q
programming approach for solving a large class of nonpreemptive
resource-constrained project scheduling problems in which job per-.
formance time is a function of resource allocation. The approach
is general enough to permit the solution of problems with time or
monetary objective functions under a variety of resource restrictions.
In particular, the paper introduces and discusses in detail the only
solution algorithms thus far .reported in the open literature for
solving the nonpreemptive project completion time minimization problem
and the discrete time-cost tradeoff problem with multiple resource
constraints. Computational experience is reported for a series of

test problems which indicates that the methodology can provide optimal

solutionsto small problems and .good heuristic solutions to larger

problems in a cost-effective manner.
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Appendix A

Ten-job Test Problems

The one hundred ten-job time-resource tradeoff problems
used to derive Table 2 in this paper are defined on the following
pages. The problems were developed by taking all combinations of
the ten precedence diagrams labeled P-1 through P-10 and the ten
time-resource listings labeled R-1 through R-10. For example,
the computer output illustrates the solution to problem number
one (of one hundred) taken by combining P-1 with R-1l. The prece-
dence diagrams and resource characterisfics were created manually
to depict a wide variety of project scheduling situations, but

they are not intended to be a.random sample in any statistically

rigorous sense.
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EXAMPLE COMPUTER OUTPUT FOR THE PROBLEM OF MINIMIZING
PROJECT DURATION
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