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Abstract:

Capacitated stochastic production problems can be modelled as multi-
stage stochastic programs. Simple solution procedures for these problems
do not exist. Some simplification procedure is generally applied to allow
their solution. In this paper, we apply the principle of aggregation to
stochastic production problems by aggregating over random variables and
fime periods. The solution of the aggregate problem is then used to obtain

bounds on the value of the full stochastic program,






I. Introduction

The optimization of multi-stage production-inventory control systems
with uncertain demands and capacitated production represents a challenging
problem that most production planning methods have not considered.

This problem is an example of a multi-stage stochastic program for which
few computational procedures exist. When only two periods are present,
the methods of El Agizy [6], Everett and Ziemba [7] and Wets [9] may

be applied. For threeor four period examples, Birge’sv[B] general
stochastic programming code may be applied for random variables with

discrete realizations. The only approaches to specifically consider the

production problem are Beale, Forrest, and Taylor's [2] and Ashford's [1]
approximations for normally distributed demands. Large general problems

are still, however, not readily solved.

To simplify these models to some solvable form, the general approach
of aggregating variables and constraints (Zipken [10, 11])may be applied.
When the weights of these aggregations coincide with the distributions
of the random variables, it has been shown (Birge [4]) that the resulting
aggregate problem is the stochastic problem with expected values replacing
random variables. This expected value problem has been analyzed in
Bitran and Yanasse [5] under different assumptions about the distributions
of the random variables,

Other types of aggregation are also possible. In this paper, we
show that bounds on the value of the full stochastic problem can be
found from solutions of aggregate problems that combine both random
variables and time periods. The assumptions usually necessary for these

bounds in general aggregation are shown to be true by virtue of the problem



structure in Section 2, In Section 3, a specific aggregation for
combining random variables and time periods is given and the bounds
resulting from this aggregate problem are presented. Section 4 presents

an example and other potential aggregations.
2, Problem Definition and Variable Bounds

The formulation we consider is similar to that in Beale, Forrest and,
Taylor [2] and Bitran and Yanasse [5]. We write the single product multi-

stage stochastic production problem as

T
t-1 .+
max z=E[ ¥ p (pt X, = 4q 0, - ht 1t)] (1)
t=1
subject to
Xt - Ot < kt (1.1)
Vo1 + X, - Y, = 0, 1.2)
Ve > bt’ (1.3)
-+ - + -
+i, - it—l +ox, -io+ i = dt’ (1.4)

o,
Xp0, ¥ i, 1, > 0, t=1,.0.,T3

where the decision variables are X, s production in time period t, O
+ . L =
overtime used in period t, i inventory after period t, i, back

orders after period t, and Vs total production through period t.

P is net production revenue, q, is overtime cost and ht is inventory costs.,



These costs and the capacity kt and minimum total production bt are

assumed known. The demand dt is a random variable defined on an interval

[d?in, dzax] with distribution function Ft(dt)° _The random variables dl""dt

«e,d ). E[ ] signifies mathematical

have a joint distribution function F(dl,. .

expectation with respect to these random variables. The decision variable$

depend on past outcomes so X0 for example, is really xt(dl""’dt)' The

The expected value can then be written as
T

t-1 +
E(CZ o (pxt - qo, - ht it)
t=1
= I p { oo f (px_(d,ye00,d. ) = qo. (d;yu0n,d)
. s, t' 1 t t' 1 t
t=1 min Jmin
d d
t 1
-h it d ))dr(d d)
t l’..., t l,..., t L]

The constraint (1.3) has been added to (1) as in Bitran and
Yanasse [5] as an alternative formulation of a constraint for demand
satisfaction with some confidence. Constraint (1.2) is used to keep
the staircase structure of the problem so that period t is only linked
directly to pefiods t =1 and t + 1 through the constraints.

In order to obtain bounds on the optimal value,
2% = E[ g pt_l(pt x: - qo, - ht it*)], bounds on optimal primal variable

t=1

levels, x:, o*

- %
e y: y it:*, it’ , must be found. The general conditions

in Zipken [11] and Birge [4] may be met by assuming the variables are
bounded. The structure of problem 1, however, provides bounds on the
variables without extra assumptions on the variable values. For dual
variables, (ﬂt,Vt, Oy ut) associated with (1.1), (1.2), and (1.4) respectively,

*
optimal dual variable levels T \V:, Ot, and u: can also be found.






First, note that total production will never exceed total demand

over the planning horizon for O to T. Hence,

L ox. < rd_ . (2)

y, < I d‘:ax; t=1,0..,T, (3)
t=1
T T max
)X o: < pX dt - min kt’ (4)
t=1 t=1 1< t< T

* .
where (4) follows because X, must be nonzero in at least one period
so that at least one period's capacity (without overtime) was used in
producing the total production.

Constraint (1.3) forces back orders to be bounded above by
t
<z d -2, (5)

Inventory is also constrained in the last period by

. max in
i< dp - dy , (6)

since having any inventory in the event of d?ln would be sub-optimal.

For periods t < T, the inventory is at most the remaining demand,

max min) max 7

T=t+l



The dual variables can be bounded in a similar manner. First,

observe that

0 < m < e, @)

for all t, Dual feasibility in the inventory variables in period T

implies

Hp > 0. (10)

Iterating backwards, we obtain

T T-1
w o < Ip h_s (11)
T=t
ut > 0. (12)

Constraints on V¢ and Ot are obtained through dual feasibility

corresponding to the x and y variables, Note that

o, <0, (13)

\)T f UT _<_ 0, (14)

\)t_l =V f Ot-l’ t=2,...,T, (15)
t

(13), (14) and (15) imply

v, < 0, t=1, ee, T. (16)



For the dual constraint corresponding to Xs

t-1
R L Vi
{e]
t-1 t-1 £ o
Ve 2 PT P P Q. - L P h . (17)
=t
From (14), (15), and (17),
£-1 t-1 T
> - -
O, 2 P TP, -P T T__Z_tp h_. (18)

Equation (8) - (18) represent upper.and lower bounds on the dual variables

that will be used in obtaining bounds on z¥,

3. Stochastic Production Aggregation

Problem (1) will be simplified by aggregating both random variables
and time periods. The resulting problem will be a single period determinis-
tic approximation of the original multi-stage stochastic problem., Our
procedure is similar to those in Zipken [10, 11] and Birge [4]. This
will represent the most extreme aggregation possible, although less
extreme aggregations involving conditional means and the aggregation of
a subset of the.periods may be possible.

For constraints (1.1), (1.3) and (1.4), our aggregation procedure

is similar to the method in Birge [4]. We define

Ri = {Rows corresponding to constraint (l.i) in periods

1,...,T for i =1, 2, 3, 4},



The rows in Ri are summed together using a weighting function fB(i) where

it is some constraint (l.i) in period t and

t-1

fB(it)= ot ar(a,, ...,

D (19)

for i =1, 3, 4.

Columns are grouped together as

8 = {Columns corresponding to variables i = 1l,...,5
in periods t = 1,...,T},
where 1 =1, 2, 3, 4, 5 corresponds to X5 05 Voo i:, and i; respectively.

These columns are summed directly with a weight g0 = 1 for each column.

The rows corresponding to constraints (1.2) are treated differently
because of the problem structure. The y variables represent total
production and, therefore, should increase each period. If a given x
is used throughout the horizon then the y variables increase exactly in
multiplies of x. This observation leads to a definition of weights
att) in (1.2) where

Ee(i ) = a(t)dF(d,,ee.,d )
t 2 t
for 1 = 2,
To see this, we first observe that constraint (1.3) in the aggregate

problem becomes

(Zp )y > ¥ b, (20)



where y 1s the aggregate variable, The left hand side considering dis-
aggregated variables is
T T 1

- t-
(L o™Hy= T 07 vy, (21)
t=1 t=1

Now, in constraint (1.2) in the aggregate problem, we have

T
( 2 a(t)) X -Y=0,. (22)
t=1
Now, we would like X = vy and Ve = t X. From (21), this would lead to
T
y = |t X. (23)
T
t=1
By defining,
T
5 pt—l
a(t) = =t ’ (24)
T
7 pt-l
t=1

(23) is obtained and (20) and (22) are, therefore, consistent with the

problem structure.

Given these weighting functions, the aggregate problem is:



mx z=( 5 o p) X- (I pFl 0-(x o"hh) 1T ()
t=1 -1 t=1
subject to
T T T
(z o"Hx- oz o"ho < oz oy, (24.1)
t=1 =1 t=1
T
(L a(tHX - ¥ = o, (24.2)
t=1
T T
(z ot hy > 1 o™, (24.3)
t=1 t=1
T - t-1=
( T pt'l)x - I+ + 1 = glp dt’
t=1 t= (24.4)

X, 0, v, I, I > 0,

- X %k % *
where dt = E[dt]‘ Optimal primal variables in (24) are X, 0 , Y , s R

- %k

I’ and the optimal dual variables are H*, N*, Z*, M*. The disaggregated
A A A A= * % 4.k o %k

solution obtained from (24) is (xt, 0, it’ it) =X,0,I?”,I”)and

Ve = tX* for all dl""’dt' For dual variable disaggregation, we have

A A A ~ t-1 & t-1 t-
™, a(t) gk ptlpk ool MA)dF(d,0nesd,). (25)

Note that dissagregating is not performed exactly as in aggregation due

to the particular problem structure of (1).



t-1 A
o (ct X
1

We let 2 5, -h i
e le = - -
t z g "9 O TR 1)

t
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and wish to find € and €~ such that

2 =em < z¥< 8 4 et (26)

To simplify the exposition of these bounds, we assume first that the

problem data is stationary, except for demand. That is, P, = P> 4. = qs

t
h, = h, kt =k, b, = tb for all t. Without this assumption, bounds are

t t
still attainable, but they will involve more complicated formulas for
€~ and €, We, therefore, assume stationarity as a simplifying device.
In obtaining values for et ande~, we first check primal and dual

feasibility. By stationarity and the definition of X and 8t’ (1.1)

t
is always satisfied. Also by the definition of Qt and §t’ (1.2) is
satisfied. For constraint (1.3), note that (24.2) and the definition

of a(t) imply

X pt—lt x*
Y* _ t=1 ’
T
5 pt—l
t=1

so (24,3) can be re-written as

T _ T £-1
(Z o )Xx* 2 (I p " t)b.
t=1 | t=1
Hence, Ve = tx* > tb, and constraint (1.3) is satisfied. The only remaining

infeasibilities may occur in (1.4) as demand varies.
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For dual feasibility, stationarity implies that

A t-1 t-1
mo=p I*< p g, (27)

A
and ﬂt > 0. For constraints associated with the variables Yes for

feasibility, we need

A A

-V +4
0 < C+(7t+ \)t+l’
or
t t
pN*(1-p) < p I,
or
* *
N (1-p) < I, (28)
However, dual feasibility in (24) implies
/ L \ < g%
T i
! t-1 ;
N® Lp ;
TN = / A el
and 1/ I p < (1-p) implies (28). We also have g =90 o* < 0.
t=1
A similar argument applies for the i: variables where we want
ot h <-4y
- t t+l’
or
M*(1-p) < h. (29)

From (24), we have
T
M* < I pt-l h,
t=1
which implies (29).
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For i:, we require

A A
0 < M= Hep

or 0 M¥(1-p), (30)

IA

which, for p < 1, and dual feasibility in (24) is true.

The only dual infeasibilities may then incur in the constraint

. associated with the X, variables., The possibility for this infeasibility

must be considered in calculating bounds on z*, We are now able to

state bounds in the optimal value of the solution in (1). We first assume
that no duality gap exists in (1) by assuminy that d?ax < 4o for all t,

In this case, for any realization of dl""’dt’ the function

T
t-1 * *
Z p (p Xt(dl,.-.,d ) - qO

(d ,oco,d )
=1 t t 1

t

*
-h it(dl’“.’dt))

is bounded. This implies that no duality gap exists in (1) (Rockafellar

and Wets [8]) and that

dmax dmax
i T E ot r*a 4,k
z¥ = I ( i dmin t 1"t
g=1 Yq™" 1
t
+ 0% (dyyeeesd) b+ u*(d,eeeyd )d )}
t 1 Tt t 12 S

for (ﬂ:, vk, g%

s ¥ u:) optimal in the dual of (1).
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Proposition : The optimal value z* of (1) is bounded by

where

and

Proof:

A A +
z -¢g~ < z%¥ z + €7,

T ; T
% % - %
g~ = ¥ f max{-d_#X - I+’ +1°, 0} (2 p’E-]h YAF (d.) (30)
.t : T t t
t=1 d T=t
t
- *
et = max{ o l(p -1 - N - M%), 0} 3 anex, (31)
I<t<T e=1
To show (30), we first note that
max
2* >, f f (Tr’:(d yeessd )k+c*(dl,...,d )b,
t= l
*
oW (dl,---,dt)dt)]
max dmax
T d 1 t-1
[N N A - * \)*
+ Z {fmit Lmiﬂ (p p 'Tft (dl,olo,dt) (dl’-oo,dt)
g=1 Jg™h 1
t
- u: (dyseeerd) X ((dsenesd)]
max
e T ,
+ 2 { (-p "q+ 7T (dyeee,d)) 0 (dyyeee,d )}
t 1 t t 1 t
t=1 vdmln dmm
t 1
max max
Y R ot h+ vt a)
min min ; t T 12"t
t=1 dt dl

\)t+l(dl,...,d )) i (dl,...,dt)}
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T d;nax d?ax
+ LN ] g * - *
E { . min (+ vt(dl’lol’dt) Gt(dl’coo,dt)
t=1 min
dt 1

* A
- \)t+l(dl,...,dt))yt(dl,...,dt)}

max

T qmax fdl
\ t o
+3 { Jnin (- ut(dl,...,dt) +u (dl,...,dt)) 1t(dl,...,dt)}

=1 dmin 1 tH
t
. T fdzlax deax R
=z+ I (T (dyyeeesd Yk +0 (d yuee,d) = X (dryeneyd )
=1 dmin dmin t 1 t t1? 't t 1 Tt
t 1
T dt:ax dI]I-lax . .
+ I ses . Vo(d seeasd )y (d,,eee,d))
sl nin min t 1 t" Yt 1? >t
dt 1
- xt(dl,.co’dt) - yt_l(dl,ooc,dt))
max max
T Jdt fdl .
+ L min " Jmin O¢ldpreeend )by -y (dgheend )
t=1 d d1
T fd?ax dmin . ~
+ Z 1 uT(dyyeee,d ) = i (d,yee.,d.)
=1 min / t 1 t’ "t t 1’ Tt
dt dm1n
1
+ it(dl,oun,dt) - xt(dl,coo,dt) + it-l(dl’...,dt)
- 1t—l(dl’...’dt)) (32)
> z-¢,

*
since only the last term in (32) can be negative and ut is bounded as in (11).
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For the upper bound, we follow a similar development.,

z% § fmin jmin p X (dl,...,dt) q O*(dl"”’dt) - b,
. %
lt(dl,o.l,dt))dF(dl’.oo.,dt)]

min t
t 1

max max
+ [dt ...fdl R
. Y * *
min dmln v(dl,o.o,dt)(yt(dl,-c.,d ) - Xt(dl,.o.,dt)

t

max max
T dt dl ; . N
+ I ( soe f Wt(dl,...,dt)(k + Ot(dl,...,dt) - xt(dl""’d )

(dy5eeesdy))

- %*
Ve-1 t

d

I

t

“"~x
é?'-s

max
dmax dl R _ %
X -1 ?
+ [ S0 (seend )@ - 1Ay e,d)
dmln dmln
1 1
+10%a@ d) - x*@ ) +1i %@ d)
t l’l.., t t l,..., tl l,...’ t
+, %
it (dl’°"’dt))
< z+¢f

by rearranging terms and noting dual feasibility in all but the constraints

corresponding to x variables. ]
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The bounds given for the aggregate problem represent the simplest
problem attainable from (1) with the same basic structure. Other possible
aggregations are presented in Birge [4]. One of these amounts to the
expected value approach in Bitran and Yanasse [5]. Another possibility
is to allow the random variables to remain but to aggregate time periods.
The result from this aggregation is a simple recourse problem that can be
solved by the methods in Everett and Ziemba [7] or Wets [9]. The problem

has the basic form:

T T T

max z = (Zp"p) X- (Zp" )0 +El-(z oM O]
t=1 t=1 _ t=1
subject to T 1 T 1 T -
Ep )X -(Zp 7O < Lp Tk,
=1 t=1 t=1
(33)
T
(Z a(t))X -Y = 0,
t=1
T T
. pt-lY >3 pt—lbt’
t=1 t=1
T -1 + -
(Zp MX -1 () +1I(M =D,
t=1
+ -
X, 0, Y, I (D),I (D) > O,
T
where D is random variable equal to I pt_ldt. The value of (33) can then
t=1

be used as in the development provided above to give a tighter bound on

the optimal value z¥,
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4, Example and Extensions

In this section, we present an example to demonstrate how the
bounds may apply. The example is similar to those in Bitran and Yanasse
[5] where they have given bounds from the expected value problem for
various distribution assumptions., We assume in this example that p

represents cost of production., The parameter are

p =-19/unit produced

h = ,4/unit/time period
0 = 1,9/unit of overtime
k = 20000 units/month

b = 9500 units,

and demand is uniformly distributed on [8000, 10000].

The aggregate problem as in (24) is

max z = - 51.5X - 5.150 - 1.08 ' (34)
subject to
2.71X - 2.710 < 54,200,
l.93x - Y = 0’
2.71 Y > 49,685 ,
+ -
2,71X 1T+ 1T = 24,390,

4+ -
X, 0, Y, I, I >0,
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The value obtained from (34) is 2=-490684., From Proposition, we obtain

e =11 and et = 243600.
-490695 < z* < =247084.

In this example, €t is very large because of the loose bound in (2)
on x: . If some other bound (such as x: < d?ax) is available then this
error could be reduced  significantly., This shows that additional
information may help bound the problem. In many problems, less extreme
aggregations, such as keeping a larger number of periods or possible values
for the random variables, may be used.

The general approach in bounding z* may also be used for multi-product
multi-stage stochastic production problems. The basic difference in these
problems would be in identifying constraints such as (1.2) which require
special consideration in aggregations. Otherwise, the general procedures

of Birge [4] may be used.

5. Conclusions

A method for simplifying multi-stage capacitated stochastic production
problems has been presented. The method employs the principle of aggrega-
tion and combines both random variables and time period. The solution of the
aggregated problem provides bounds on the optimal value of the original
problem, These bounds may be improved by using the same principles on less
extremely aggregated problems that may allow for more than one period and

for some randomness in the demands.
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