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Abstract

In this paper we compute Karmarkar’s projections quickly using Moore-Penrose g-inverse and
matrix factorization in stochastic linear programming. So computation work of (AT D2A4)~! is
decreased.
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1 Introduction

Since Karmarkar proposed a new polynomial time algorithm for linear programming in 1984 [1],
some research workers have started applying it to special large size problems of linear program-
ming. One of them is block angular linear programming, especially, two stage problems of linear
programming with recourse [2] (3] [4] [5] [6] [7].

In all variations of Karmarkar’s algorithm, the major work is repeated computation of (AD2AT)-!,
All Karmarkar’s algorithms applied to stochastic linear programming either reduce the number of
dense columns that are in coefficient matrix of the linear programming or separate them explicitly
from the other (nondense) columns to decrease computation work. [2] has discussed them in detail.

In this paper we compute (AD2AT)~! using Moore-Penrose g-inverse and QR factorization and
taking advantage of the sparseness of A to decrease computation work.
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In section (2], we review structure of stochastic linear programming to be discussed. In section
3 we review some characters of Moore-Prenrose g-inverse and QR factorization. Karmarkar’s algo-
rithm is formulated in section 4. In section 5, we give numerical method for computing (AD)* to
compute (AD?AT)~1, The complexity of the algorithm is analyzed in section 6.

2 Stochastic linear programming

We consider two stochastic linear programming with recourse that is defined over a discrete prob-
ability space (2]

min fzo + Q(z)

st Agzo = bo (1)

Zo

v
o

where

N
Q(z) = Y piQ(zo, £(wi))

i=1

Q(zo,€(ws)) = min dfz
st Wi = b—-Tizo (2)
r > 0

where £(w) is random vector defined on the discrete probability space (€2, F, P), p; is the probability
of w;. 7o is ng—dimensional decision vector of the first stage. z; is n;—dimensional decision vector
of the second stage. Ao, bo,co, W, T;, b; and b; are matrices of size mo x mg,mo X 1,m0 X 1,m; X
ni, m; X no,mi X 1 and n; x 1 respectively. m; < n;,i = 0,1,...,N. N is the number of the
scenarios.

For purposes of discussion, we assume Ag and W; have full row rank.

Deterministic equivalent formulation of problems (1) (2) is

: N
min 2520 + YL, ¢ %

st Agzo = b 3)

Tizo + Wiz;, = b i=1,...,N

z > 0 i=0,...,N
where ¢; = pid;.
Let
Ao
A= n Wi ’

Tn Wn



b= (b01b1)' '-:bN)T)

c= (bchl)"')cN)T’

.’E=(.’I:o,:1:1,...,z‘1v)T.

Problem (3) can be written as

min Tz
st Az = b (4)
z 2 0

where A, b and ¢ are matrices of size m x n,m x 1 and n x 1 respectively, where

N N
m= Z mi, n= Z n;.
i=0 i=0
Its dual problem is
max bTy 5)
st ATy <e

where y is m—dimensional dual variable vector.

3 Moore-Penrose g-inverse

In this section, we review some characters of the Moore-Penrose generalized inverse ( g-inverse )
[8] [9] which are useful in following sections.
We consider real m x n matrix A. Let At be the Moore-Penrose g-inverse of A.

Character 1 a) ATAAT = ATAA* = AT,
b) AAT(AT)* = (AT)*ATA = A.
¢c) (ATA)*t = AH(AT)*.
d) (AAT)* = (AT)*+A+,

Character 2 a) If rank(A) = n, then

At = (ATA)1AT.

b) If rank(A) = m, then
At = AT(AAT) L,



Character 3 Let A = BC, where A, B and C be m x n, m x r and r x n matrices respectively,
and
rank(A) =rank(B) =rank(C) =r, then

At =C*Bt.

Let A be m x n matrix and rank(A) = r < n < m, utilizing Householder transform A can be
factorized into

A=Q<g)=QrU; (6)

where @ is m x m orthogonal matrix, U is an upper trapezoidal matrix and rank(U) = r, Q, is
a matrix composed of the first r columns of Q. If r = n, U = R is an upper triangular matrix.
Equality (6) is written as

A=Q(§)=an ¥
If rank(A) = r < m < n, equality (6) and equality (7) become
a=(v , 0)Q=UQ (8)
and
A=(R , 0)Q=RQn )

where U and R are lower trapezoidal matrix and lower triangular matrix. Q, is a matrix composed
of the first r rows of Q.

4 Karmarkar’s algorithm

We focus on a variation of Karmarkar’s algorithm which is generally called the dual affine scaling
method [11] [2]. This algorithm requires that dual problem (5) has an interior feasible solution 1°.

Algorithm 1 (A,b,c,y°,stopping criterion0 <y < 1)
1. k=0.
2. stop if optimality criterion is satisfied.
3. vk =c— ATy,
4. DF = ding {1/vF,...,1/vk}).
5. hy = (A(D¥)2AT)~1p.



6. hy =—AThy.

7. a =+ x min{-vf/(h)i|(hv)i < 0,i =1,...,n}.

8. yktl =% + ah,,.
9. pktl = (D")2h.,.

10. k=k+1, goto 2.

The major computation work of the algorithm is computing (A(D*)2AT)-1.
Since D* is m x m full rank diagonal matrix, then rank(AD*) = m, and
(AD*)* = (AD*)((AD*)(AD¥)T)™,
(ADMH)T(ADF)Y = (A(D*)*AT)"'(AD¥)(AD¥)((AD*)(AD*)T)™!

= (A(Dk)2AT)_1.

Thus step 5 of algorithm 1 can be written as

hy = ((AD*)*)T(AD*)*.

In following section we will discuss computing (ADF)* quickly. For simplicity, we write D¥ as

D.

5 Computing (AD)*

Thus
Ao Do

TyDy WD
AD = 1. o 1Dy
TnDo
where AgDg and W;D; are full row rank matrices.

Wn

WnDn



Algorithm 2 (QR factorization)

1. Do QR factorization for AoDo

AoDy = (Ro, 0)Qo.
Thus
Ry 0
™! 7% WD
AD = 1 4 1 11 } QO,
' T3 WnDn
where
Qo
Q= !
I
setk=1.

2. Do QR factorization for (T,f‘l’z, Wi Dy)

(T:—1,2’ Wi Di) = (R, 0)Qx.

Thus
[ Ro
R
AD = T,?’l T,:'l I 0
e Ten o Teny TEL Wit Diw
\ Iv' Ty - TN T WxDn |
where

(I' \

QPR



3. If k = N, terminate.
otherwise k =k +1 go to 2.

The result of the algorithm is

AD = (R7 O)Q = R(_Q—rmo) (10)
where
Ry
T R

' Ty’ Rw
is a full rank lower triangular square matrix,

Qo
Q1
Q=Q0Q1...QN =
QN
is an orthogonal matrix, and
[ Qo
Q1
Qm= :
Qs
\ Qs+1
is a matrix composed of the first m rows of Q. @, is a matrix composed of first some rows of
Qs+1-
(From (10) we can compute (AD)*.
Theorem 1
I
(D =@mO"| R

(Qs+laz‘+l)-l

proof. By character 3 we have

(AD)* = (R@pm,0)" = @m,0)"R*
(@ 0)T (@m@r) " RT(RRT)™

= (@m0 (@mQr) 'R

1
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Since @Q; (i =0,1,...,s) are orthogonal matrices we have

( Qo QF
Qn@n) ™! =
(nln) ) &
\ Qs+1 Qs+1
[ QuQF -
B @uf
\ Qs+1§s+l
( I
B I
\ (Q',+lf2'f+1)“

This completes the proof of the theorem.

Theorem 1 shows that to compute (AD)*, we just have to do QR factorization of AD and
compute (Q,_,_{QT_,_Q‘I and R~1, @,+1§f+1 is a very small matrix, R is full rank lower triangular
square matrix. So the major work of computing (AD)* is QR factorization of AD. Since this
factorization is implemented by block, computation work is greatly decreased.

6 Arithmetic complexity
For the purpose of the discussion we suppose that
Mo =m; =--+=my, Mg =N ="+ =N0N.

Theorem 2 If computation of (AD*)* is implemented using algorithm 2, then the arithmetic
complezity of computing Karmarkar’s projections is

O(NmJ + N%(ng — mo) + N?m2).
proof. The major operations of computing (A(D¥)2AT)~! are:
The QR factorization of (T;-"'l'z, W;D;) needs
i—1

2md(es-+ 3 =) = S+ 7+ 3 (s — ) + L)
k=0 k=0

= 2(m§(no +i(no — mq)) - -21-m3(mo +no +i(no —mo)) + %m%)
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arithmetic operations [10].
The QR factorization of AD needs

N
. 1 . 1

)" 2(m(no + i(no — mo)) — §m§(mo + ng + i(no — mo)) + gmg)

i=1

(n0 — ) + 3m)

N-1 1
= 2N(mf(no + —5—(no —mo)) - §m§(mo +no+
arithmetic operations.
Computing R~! needs

m? = ~(N +1)°m?

N =
N =

arithmetic operations.
Thus the arithmetic complexity of computing (A(DF)2AT)-1 is

O(Nm3 + N%(no — mg) + N*md).

This completes the proof of the theorem.

Algorithm 1 finds an optimal solution to problem (4) and problem (5) in O(y/mL) iterations
[12] [13], where L is a measure of problem’s size. So the arithmetic complexity of algorithm in
which algorithm 2 is used to compute (A(D¥)2AT)~! is

O(vVm(Nm3 + N%(ng — mg) + N’m3)L).
But the arithmetic complexity of the general Karmarkar’s algorithm is
O(m3*3L) = O(vmN3miL).
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