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SUMMARY

We obtain characterisations of distributions on the real line and solve stochas-
tic equations using the Gibbs sampler. Particular stochastic equations con-
sidered are of the tvpe X =; B(X + ) and X =4 BX + C and we will be
considering solutions when B and C are not necessarily independent.

1 Introduction
Dufresne (1996) considers the stochastic difference equation

—\'n+l = Bn-{-l(‘\’n + Cn)s

where {B,.n > 1} and {C,.n > 0} are independent iid copies of B and C
having densities fg and fc. respectively. Vervaat (1979) provides

E(logB) <0, E(log|C|); <o
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as being sufficient conditions for the existence and uniqueness of the limit
distribution of X,. Under the above conditions let X, —4 X. then the limit
X satisfies the stochastic equation

X = B(X+C).

where B. (' and X are independent. Solutions to this stochastic equation
are apparently hard to come by (Dufresne. 1996). In this paper we will
characterise solutions via the Gibbs sampler (Smith and Roberts. 1993). A
closely related stochastic equation is given by X =4 BX + C. We will find
<olutions to this stochastic equation when B and C are not independent.
However, the paper is firstly concerned with characterising continuous
densities on the real line. for example. the normal. gamma. exponential and
beta distributions. We do this by considering a Gibbs sampler over the joint
density f(x.u). As is well known the Gibbs sampler generates a sequence
{\.} by taking L', from f(.|X,) and then taking Xp4 from f(.|(7,). In
many instances it is possible to define U, = ho(V3. Xy). for some appropriate
random variable 15 and function h,. and also to define X, 4 = hy(17.05%).
acain for some appropriate random variable 17 and function h;. Putting
these together it may be possible to construct the sequence directly via

Ny = h(12X0).

[t is well known that under mild regularity conditions X; —4 X and the
limit variable X satisfies
X =, h(1LX).

This is a stochastic equation with solution fy(x) = [ f(x,u)du. Moreover.
thi> solution is unique and therefore X' =4 h(1.X) also characterises X
rprovided f(x|u) and f(ujr) define fy(r) uniquely).

We start in Section 2 with the characterisations of some well known den-
sities on the real line. The characterisation of the exponential density leads
to a solution of the stochastic equation X' =4 B(X + C) when B is uni-
form on (0.1) and C has an exponential distribution. The characterisation
of the gamma distribution leads to a solution of the stochastic equation
X =; BX + C when B has a beta distribution and C an exponential dis-
tribution. In Section 3 we obtain new solutions to the stochastic equation
X =, B(X + C) including a solution with B and C not independent.
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2 Characterisations of densities

Let X be a random variable defined on the real line, 2(0.1) represent the
uniform distribution on the interval (0.1). £(A) represent the exponential
distribution with mean 1/\ (A > 0), and =, denote equality in distribution.
Our characterisations are of the type.

X =4 1V, X),

where h is a function and 1™ a collection of independent variables. also inde-
pendent of X.

Erponential(1) density

THEOREM 1. Let V) and 15 be U(0.1). Th_en
N =W (X =logl?) (1)

if. and only if. X ~ E(1).

PROOF. First we describe how such a characterisation arose. The den-
<ity for a £(1) variable is given up to proportionality by exp(—x)I(x > 0).
We construct a joint density for X and {'. a random variable defined on
). 1). given up to proportionality by I{0 < u < exp(—x).0 < z). Clearly
the marginal density for X is £(1). We can now construct a random se-
quence {X,} such that X, —; £(1) using the Gibbs sampler (Smith and
Roberts. 1993). This involves sampling X,4; from f(.|U;) having taken [,
from f(.]X,). We can define U, = V3, exp(—~X,) where V2, ~ U#(0.1) (inde-
pendent of X;) and X,4; = =V, logU, where 4, ~ U(0.1) (independent
of 13, and X,). Joining these two together gives

X1 = Vin(Xn — log Von).

From the convergence properties of the Gibbs sampler and provided the se-
quence is uniquely associated with the exponential density (that is, the two
conditional densities uniquely determine the joint density of .X and U) then
the Theorem is proved.

However, we will only use the above arguement to propose the charac-
terisations and will rely on more traditional methods to prove the result.

3



Therefore let us assume that X ~ &(1) and consider the Laplace transform
of 7= 11(.\ = log 13) noting that —log 15 ~ &(1). If oy () = Ey exp(—0Y)

theu clearly
1[G
o,..(a)=/0 [O-‘w")] du. (2)

1+ 6u

It now ox(f#) = 1/(1 + 8) then 0y-(8) = 1/(1 + 6) proving the "if” assertion.
To prove uniqueness we consider moments. Let y; = [a'dFy(x). First.
it is straightforward to show using (2) that if (1) is true then

b

S (=1)" 8 /nl = i i (=1)" ™™, [ [0} (m + n + 1))

n=0 n=0m=0

Therefore for all 7

(=Df/it= 3 (=)™ "/ [nfm + 0 + 1))

m+n=t
leading to

pifit=(+ 1)) w5l
j=0

from which the result gi; = i* follows. Since ¥, yi;t'/i! is absolutely convergent
lor i1 < 1 the moments characterise the distribution of X which is identified
a~ being & 1). completing the proof.

C'OROLLARY 1. Let Vi and V; be iid U(0.1). Then
X =17 (X = A log 1) (3)
o and only if. X ~ E(N).

The proof to this follows the same procedure as outlined in the proof to
Theorem 1. It is clear that (3) provides a solution to the stochastic equation
N=;B(X+C()

The characterisation of £(A) given in Corollary 1 is not new (Kotz and
Steutel. 1988). however. that a proof is available via the Gibbs sampler is
intriguing. :



PROPOSITION 1. If B ~ U(0.1) and C ~ E(N) then the unique solu-
tion to the stochastic equation X =4 B(X + C) is given by X ~ E(N).

Normal(0.1) density.

In this section let \"(v.0?) represent the normal distribution with mean
v and variance o2. Proceeding as for the exponential density we define the
joint density of X and ' up to proportionality by I(0 < u < exp(—2?/2)).
The Gibbs sequence is defined as follows; {7, = 15, exp(—=X?/2) and X,4; =

213, = 1)v/=2log l',. Putting these together gives

Xog1 =2V = 1) X2 - 2log 15,.

Therefore.
THEOREM 2. Let V) and 15 be iid L((O.l)..Thcn

= (217 = 1) /X2 -2log (4)
if. and only if. X ~ \'(0.1).

PROOF. First we note that if X is symmetric about 0 and X? is chi-
~quared then X is normal and note that if () defines a random variable X on
t—x2. +2¢) then it is symmetric about 0. Define ¥ = (217 -1)?(X?—2log 13)
and note that (217 — 1) is B(1/2.1). where B denotes the beta distribution.
and —log 17 is £(1). Therefore

. Yy [Ox2(0
oy (8) = B(1/2.1)™! /0 u~t? [—1—‘;(—);—2} du.

[fnow X' ~ \7(0.1) then oy2(8) = 1/V1 + 20 leading to 6y () = 1/v/1 + 28,
provided |2] < 1, proving the "if* assertion. To show uniqueness we need to
consider the integral equation

1

oy(0) = 1/2/0 u"2(1 + 20u) ! oy (Bu)du, (5)

where 1" = X2 Our aim is to show the unique solution is given by oy (8) =
VI+20 or fir(y) = (27)"Y2y~Y2exp(—y/2)I(y > 0). The moments for



this density are given by y; = 2'T(i +1/2)/T(1/2) and since ¥; uit'/! is
absolutely convergent for |t| < 1/2 it follows that these moments characterise
fi- uniquely. It is easy to show that (3) leads to

Z(—l)"ﬂn;ln/lr! =1/2) z(—l)”+m2m9"+’"ﬂn/[n!(n +m+1/2)).
n=0 n=0m=0 -
Therefore

pifit= 20+ 1) 2 /5
ar

the unique solution being given by p; = 2'T(¢ +1/2)/T(1/2), completing the
proof.

("OROLLARY 2. Let V7 and V5 be iid U(0,1). Then

\ =4 {1/-{-('2"1 —1)\/(_‘{'—1/)2—2cr2log"1}} (6)
if. and only if. X ~ \'(v.c?).

Gamma(a.l) density.

Let G(a.b) (a.b > 0) represent the gamma distribution with mean «/b. In
the following we will additionally assume that « > 1. If X ~ G(a,1) then the
density for X is given by 1/T(a)x*texp(—x)I(x > 0). Here we introduce
the variable [” which has joint density with X given by f(x.u) < (0 < u <
"L > 0)exp(—x). The Gibbs sequence is given by [7 = 13, X27! and
N1 = UCH=0 _og 14,. Combining these leads to

X = X, 1500 ~log 14,
Therefore,
THEOREM 3. Let V3 and V3 be iid U(0,1). Then

X = X157 ~log 14 (

-~1
N—

if. and only if, X ~ G(a.1) (a>1).



PROOF. Define 1" = X1;/™Y —log 7 and note that, for a > 1, 1577 is
B(a—1.1). Then we have
— 1
oy(8) = (11_*_; A w28y (Qu)du. (8)

If X ~ G(a,1)then ox(8) = (14 68)™* and with this -

oy(0) = (ll ;; z\: (=1)"T(a +m)6™/[C(a)(m + a = 1)],
m=0

for |0| < 1. leading to

6y (0) = (1+0)" S (=1)"T(a = 1+ m)d™/T(a — 1),
m=0
and hence oy () = (1 4 6)* proving the ‘if" assertion. To show uniqueness
we consider /

'(9) «=lr =24 (91 )du

ov() = —— [ u -(Qu)du.

. 1468 Jo .

This leads to
Z(—l)”&"pn/n! =(a—1) Z Z (=1)" 0", [0l (n 4 a — 1)),
n=0 n=0m=0

and hence

pifit=(a=1) 3w/ +a = 1)]

J=0

the unique solution heing given by ; = I'(i+a)/T(a). Again. since ¥_; pit'/1!
is absolutely convergent for [t] < 1 this implies ‘these moments characterise
uniquely the distribution for X'. which is identified as being G(«, 1), complet-
ing the proof.

COROLLARY 3. Let 1y and V3 be iid U(0,1). Then
X =, N1/ o 9)

if. and only if. X ~ G(a.b) (a > 1).
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(learly (9) provides a solution to the stochastic equation X =4 BX + C.
This solution is already known (Vervaat. 1979. 3.8.2). The use of 1"/ta=1)
to represent the B(a — 1.1) distribution in Vervaat (1979) takes on added
significance. A characterisation of G(a, 1) exists for all « > 0 by considering
the joint density f(x.u) x 2* ' (u < exp(—x)). For the Gibbs sequence we
obtain {7 = Vs, exp(—X,) and X,y = —Vlln/a log [, leading to the charac-
terisation/stochastic equation

X = UM X = log 13}

Betafa.b) density.
We state without proof the characterisation for B{a,b) for a > 1.6 > 0.

THEOREM 4. Let 1y and V3 be iid 4(0.1). Then
X o= {1- 1 (1= eyl (10)
if. and only if. X ~ B(a.b) (a > 1).

This provides a solution to the stochastic equation X' =4 BX + C when
B and (' are not independent. i.e. B = 1-'11/b1"'2l/(°'1) and ('=1- Vll/b.

Lrtreme value density

The extreme value density is given up to proportionality by f(r) x
exp(—exp(x)} (x> 0) and consider the joint density f(r.u) ox exp(—u)l(u >
exp(x) > 1). The Gibbs sequence is given by {7, = —log V4, + exp(.X,) and
exp(X,41) = [}, leading to the characterisation/stochastic equation

exp(.X) =4 {exp(X) — log 1'}}"3 .

For some general theory. let fx be a strictly monotone decreasing den-
sity on (0.oc) with inverse ¢ = f~!. Define the joint density of X and
- U by f(e.u) = I(0 < u < f(r)). The Gibbs sampler is then given by
Ca = V1f(Xy) and Xoyy = Vag(0). where 1] and V; are independent 24(0,1)
variables. leading to the stochastic equation X =4 15¢[Vi f(X')]. This has the
solution fy. Therefore.



PROPOSITION 2. 4 random variable X defined on (0.>c) has a strictly
monotone decreasing density f if. and only if. X =4 Vof 1VIf(X)]. where
1) and V5 are independent uniform(0.1) variables.

3 X=(B(X+C)and U = BU +C

The aim in this section is to provide a solution to the above stochastic equa-
tions via the construction of a suitable Gibbs sampler. An example of this
solution has already heen given in Proposition 1. Solutions are based on the
following Theorem,

THEOREM 5. If f(x.u) is a joint density with conditional densites f(x|u)
and flulx) such that f(x|u) = 1/ufp(x/u) and f(ulr) = fe(u—1x) where fg
and fc arve the densities for independent B and C, respectively. then fy(r)
is the unique solution to the stochastic equation X =4 B(X + C). fr(u) is
the unique solution to the stochastic equation U =y BU + C. and X =, BU
and U=, X +C.

ENAMPLE. Let f(x.u) x 2% Hu —2)*texp(—cu)I(0 < x < u) for a.b.c >
0. Then
Flafu) x 2 Hu =2 {afu < 1)

and
fluje) x (v —x)bt exp(—cu)I(u—x > 0).

Therefore B ~ B(a.b) and C ~ G(b,c). Therefore X ~ G(a.c) solves
XN = B(X+C)and ' ~ G(a + b,c) solves U/ =4 Bl + C'. Mloreover,
we deduce G(a.c) =4 B(a.b) x G(a + b.c).

In fact we can show that the solution in the example is the only one available
via the Gibbs sampler for which C > 0 a.s. and 0 < B < 1 a.s. To find
solutions we need to identifv independent random variables B and C such
that the conditionals f(x|u) = 1/ufp(x/u) and f(ulr) = fc(u - z) uniquely
define the joint density f(x.u). The result is contained in the following The-
orem.

THEOREM 6. f(x|u) = 1/ufp(xr/u) (0 < B < 1) and f(ulz) = fo(u - 7)



/(" > 0) define f(x.u) uniquely if. and only if. C ~ G(b,c) and B ~ B(a.b).

PROOF. Clearly the -if" assertion is trivial. Now suppose that

flx,u) =1/ufp(a /u fr(w) = fe(u=2)fx(x),

from which it is immediate that {7 and X/U’ are independent as are X and
["— X (note that I' > X > 0). f welet " =0 —X and 1" = X we see that
1711 and 1" 4+ 11" are independent. Since 1" and T¥ are independent Lukacs’
Theorem (Lukacs. 1933) states tha: 17 and 11" are both gamma variables with
the same scale parameter, say c. and let U — X ~ G(b,c) and X' ~ G(a,c).
Therefore (' ~ G(b.c).

flecu) x {u— x) Vexp (—c(u = x))a* texp(—cx)I(0 < & < u),
o flrfu) x e Hu—2)H(0 <2 <u) which implies that B ~ B(a.b).

\Ve can obtain a further solution to the stochastic equation X' =4 BX + ('
when B and C are not independent (see also Theorem 1) by considering
the Pareto distribution with density f(x) x +™*"'(x > a) and parameters
a.a > 0.

THEOREM 7. If B = 131574 nd € = a(1 = V}) where 15 and V3 are
iid 1(0.1) then the unique solution to the stochastic equation X =4 BX +C
i given by the Pareto distribution with parameters (a, a).
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