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SUMMARY

Implementation of a full Bayesian nonparametric analysis involving neutral to
the right processes (apart from the special case of the Dirichlet process) have
been difficult for two reasons: first. the posterior distributions are complex
and therefore only Bayes estin ites (posterior expectations) have previously
been presented: secondly, it is difficult to obtain an interpretation for the
parameters of a neutral to the right process.

[n this paper we extend Ferguson and Phadia (1979) by presenting a gen-
eral method for specifving the prior mean and variance of a neutral to the
right process, providing the interpretation of the parameters. Additionally,
we provide the basis for a full Bayesian analysis. via simulation. from the
posterior process using a hybrid of new algorithms that is applicable to a
large class of neutral to the right process (Ferguson and Phadia only provide
posterior means). The ideas are exernplified through illustrative analyses.

Keywords: Hierarchical models. Lévy process, Neutral to the right process.
Beta-Stacy process, Infinitely divisible law, Latent variables. Gibbs sampler.
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1 Introduction

A large section of the Bayesian nonparametric literature is concernec with
the construction of prior distributions on the space of probability istribn-
tions on (0. x). One particular application which has received a great deal of
attention includes survival analysis. Animportant and rich ¢lass of prior dis-
tribution is the neufral to the right process {Doksum. 1974: Ferguson. 1971)
which includes the well known Dirichlet process (Ferguson, 1973).

DEFINITION (Fergusen. 1974). A random distribution function F(¢) on
(0. ) is neutral to the right (from now on NTR) if for every mand 0 < #, <
.. < tn there exist independent random variables V1,.... ¥7, such that

(1= Flty)ewe = Fltn)) = (W V¥ I8,

If £is NTR then Z(t) = —log(1 — F(t)) has independent increments. The
converse is also true: if Z(f) is an independent increments process. non-
decreasing almost surely (a.s.). right continuous a.s.. Z(0) = 0 a.s. and
lime— Z(f) = +2 a.s. then F(t) =1 —exp(—Z(t)) is NTR. For the pro-
cess Z(.) there exist at most countably many fixed points of discontinuity at
f1.ty... with jumps Ji., . ... (independent) having densities f;,. fi,..... Then
Zt)y=Z(t)— ZUS! J, has no fixed points of discontinuity and therefore has
a Lévy representation with log-Laplace transform given by

—logEexp( - oZL.(t)> = /:J (1 — exp(—éz))d:\i’t(z).

where Ny(.). a Lévy measure, satisfies: V,(B) is nondecreasing and contin-
wous for every Borel set B: .Vi(.) is a measure on (0.0c) for each ¢ and
Jio.50) 51 +2)71dNy(z) < 0. In short we have

F(t)=1—exp{-Z(t)}.

with Z an independent increments (Lévy) process.

There has only been limited application invelving NTR process priors
in the statistics literature (besides the well known Dirichlet process). The
reason for this is the difficulty in obtaining anything more than an expres-
sion for the posterior expectation F (Ferguson and Phadia, 1979. Section
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6i. Applications with a full Bayvesian analyvsis have appeared involving rhe
extended gamma process (Laud et al.. 1996) and the beta process { Damien
et al.. 1996). neither of which are NTR processes.

A primary aim of this paper is to construct a simple and easy-to-interpret
method for specifving the prior mean and variance of a random distribution
function. e develop such a method for NTR processes in Section 2. .\
second aim is to present a new hybrid sampling based approach for making
inferences on the posterior NTR process and in particular we provide an
algorithm for sampling Fla.b) from the posterior distribution.

2 Prior and Posterior Distributions

Prior Specifications

Central to any nonparametric Bavesian analysis is the ability to use available
prior information to obtain expressions for the mean and variance of the
random distribution function. F(¢). For the Dirichlet process it is only the
mean of F. say Fy. which can be modelled arbitrarily since. given Fy. then

varF(t) = FO(t){Cl_i__]_FU(t)} ‘

for ¢ > 0. The parameter of the Dirichlet process is then defined as a{.) =
cFo(.). Ferguson and Phadia (1979) point out that for other NTR processes.
the interpretation of the prior parameters of the process tends to be nebulous.
(We return to this later.)

Noting from the previous section that any NTR process is defined by
a Lévy process. our goal is to describe the prior mean and variance of the
random distribution function in terms of the Lévy measure that characterises
the process.

Consider then the expressions for —log{ £S(¢)} and —log{ £[5%(¢)]} where
Sti) = 1= F(t). Using the Lévy representation in Section 1 {with no fixed
points of discontinuity) it follows that

utt) = —log{ ES(t)} = 4[0(1 — e dN(2)

and

A(t) = —log{E[SX(1)]} = /0”(1 — )N ().
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Note that it is necessary for
0 < p{t) < A(t) < 2u(t)

which derives from the condition { ES(#)}? < E[S%(#)] < ESI(t).
We want to find a Lévy measure .Ny(.) which satisfies these two equativns
and in particular we consider Lévy measures of the type

AN(z) = d={l1 =7} /Ot e.\'p( - :.3(3))da(5).

where .J(.) is a nonnegative function and o{.) a measure. This type of Lévy
measure characterises beta-Stacy processes which are considered in greater
detail in Walker and Muliere (1995). Our motivation for working with the
heta-Stacy process stems from the fact that this process encapsulates virtu-
allv all of the NTR processes mentioned in the literature. As examples. the
Dirichlet process arises when «f.) is a finite measure and J(¢) = a(f.x).
The simple homogeneous process (Ferguson and Phadia, 1979) is obtained
when J is constant.

LEMMA. There exists a(.) and 3(.) such that

p(t) :/Ox /Utexp(—:ﬂ(s))da(s)d:

and

o pt 1 _ 6—2:
At) =-[] /o { - }exp( - :J(s))da(s)d:.
PROOF. It is obvious that the first of these conditions is satisfied when
{
fﬂ da(s)/3(s) = u(t).

that is. when

da(t) = 3(t)dp(t).

The second condition becomes. using the transformation y = 1 — exp(—=z}.

Mo = [ {2 = 1/ 35D s
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gIving ‘

dAE)/dutt) =2 = 1/{1 + 3(1).

concluding the proof.

In particular the result allows ns to obtain an interpretation for the pa-
rameters of a simple homogeneous process. not resolved by Ferguson and
Phadia. If 3 is constant then we have u(t) = a(t)/3 and At) = ca{ti; ]
where ¢ = (1 +23)/(1 + J).

Erample 1.
Ifit is required that ES(t) = exp{—at}.a > 0. and E[S*(¢)] = exp{-h(t)}.
b(0) = 0. b nondecreasing and b(¢) — 20 as t — . then

Jt) =1/(2 —a"'dbfdt) — 1

and

da{t) = ad(t)dt.

Note that here we need the condition 0 < a < db/dt < 2a which corresponds
to the necessary condition 0 < g(t) < A(t) < 2u(t). (Note also that the two
conditions are in general impossible for the Dirichlet process which has the
extra constraint of 3(f) = a{t. x)).

Erample 2.

Suppose we wish to center. up to and including second moments. the
nonparametric model on the parametric Bayesian model given by S(¢) =
exp(—at) with @ ~ gamma(p.¢). Then we would have pu{t) = plog(l + t/q)
and A(t) = plog(l + 2t/q) giving

J(t) = ¢/(2t) and da(t) = pedt/{2t(q + t)}.

Firstly. since J(t) # «(t,>c). the Dirichlet process is not applicable. Sec-
ondly. one could use different gamma(p. ¢) densities along the time axis.
Thirdly. some other parametric model could be chosen resulting, of course.
in different forms for a(t) and J3(¢). Al these aliow for greater modelling
flexibility.

Erample 3.



For a two-parameter Weibull “centering” we have ES(}) = exp{—(af1*}
leading to gt) = 1at)’. Since we require g < A < 2u it seems appropri-
ate to take \#) = c(at)® for some ¢ € (1.2). It is now easy lo see that
) =3 ={(c—1/(2=c)and da{t) = Ja’ht*~'dt. Here we have a simple
homogeneous process. We could consider uncertainty in ¢ via a prior dis-
tribtuion on (1.2) which would result in a mixture of simple homogeneous
processes.

Thus. our method allows one to specify the mean and variance for £. which
is not., in general. possible for the Dirichlet process. or other well known NTR
processes. Ferguson and Phadia (1979. Remarks | and 2) discuss the prob-
lems associated in interpreting the mean and variance of F{t). They rely on
such ideas as prior sample size and strength of belief when considering uncer-
tainty in the centering of F. and conclude they are not satisfactory. In fact.
as a consequence of the Lemma. their assertion that ¢ = a(0.oc) represents
a prior sample size, which tends to become noninformative as ¢ — 0 is ques-
‘tionable. For if J(f) = a(t,oc) = cFy(t. ) then du(t) = dFy(t)/ Fo(t. )
and as ¢ — 0. it is clear from the Lemma, that A(t) — u(t) implving that
. Yit)] — ESit). (See. also. Sethuraman and Tiwari (1982) for further
insight on this point.)
We next provide details of the posterior distribution of a NTR process.

Posterior Distributions

THEOREM 1 (Ferguson. 1974). If Fis NTR and X|...., X}, is a sample from
F'. including the possibility of right censored samples (where X, represents
the censoring time if applicable). then the posterior distribution of F given
N X, is NTR.

The prior distribution for Z{(.) is characterised by

M= {tite e {fo S

the set of fixed points of discontinuity with corresponding densities for the
jumps. and Vy(.). the Levy measure for the part of the process without fixed
points of discontinuity. The posterior distribution is now given for a single
observation .X. The case for n observations can then be obtained by repeated



application In the following, we assume the Lévy measure to be of the type
ANy (2) = d= [ g N (=.5)ds (the beta-Stacy process with parameters a(.) and
3(.) arises when A'(z,s)ds = (1 — e77) " texp{—z.3(s) }da(s)).

THEOREM 2(Ferguson. 1974; Ferguson and Phadia. 1979). Let F he NTR

and let X be a random sample from F.
(1) Given X > & the posterior parameters (denoted by a ) are W= = /.
fz( ft( ) iftjgl.'
& ft,( ) iftj>l,'~

and K™(z.s) = exp{—zI(x > s)}\'(z, s) (here c is the normalising constant).

(i1) Given X = ¢ € M the posterior parameters are M~ = M,

ce” fi (=) iftj <z
ft’;(:) { (I—e7*)fy,(2) ift;j=2z
ft]( ) lft]'>:L‘

and, again. A™(z.s) = exp{—=I(2 > $)}K(z,s

(iii) Given X = x ¢ M the posterior parameters are M* = M U {z}, with
fo(2) = el - ) (2. 2),

1 {ce“"ft (z) iftj<a

ftj( lftj>l'

and, again. A™(z,s) = exp{—zI(z > s)}K(z,s)

With this general characterisation of a posterior NTR process, a procedure
for sampling the posterior process is developed in the next section.

3 Simulating the Posterior Process

We are now concerned with simulating from the posterior distribution of

Fla.b). Since F(t)=1 —e\p{ Z(t)} we have
| F[a,b):exp(— O,a)){l—exp(—-Z[a,b))}

{




and note that Z(0.a) and Z[a.b) are independent. Therefore we only need
to consider sampling random variables of the type Z[a.b). This will involve
sampling from densities {ft} : t; € [a.b)}. corresponding to the jumps in
the process. and secondly. the continuous component. the random variable
Z[a.b).

The type of densities corresponding to points in M=, the jumps. are de-
fined. up to a constant of proportionality, by

f7(=) x (1 - exp(—:))l\exp( - p:)f(:). Aie >0 (integers)

and X
fz)x (1 - e.\'p(~:))' K(z.x). A >0 (integer)

where the subscripts ¢; have been omitted.

Stmulating the juinp component

The second of these two types of densities for the random variable corre-
sponding to the jump in the process will most likely be a member of the SD
family of densities (Damien et al., 1995) and algorithms for sampling from
such densities is given in Walker (1995) and Damien and Walker (1996).

However. the first of these two types can be done by introducing latent
variables, whose densities are of the form described in Damien and Walker
(1996), and setting up the conditional distributions required to implement a
Gibbs sampler (Smith and Roberts, 1993).

Define the joint density of =, u = (uy,...,uy) and v by

flzyu,v) o e™ (v > z){ﬂ?;le"”‘f(uz < :)}f(:)

(learly the marginal density of = is as required. The full conditional densities -
for implementing Gibbs sampling are given by

fluluoyvyz) xe ™Iy < z2), 1=1,..,A,

flolu,z) x e™I(v > z)
and
fz]u,v) f(:)[(: € (max;{u,},v)).
So. provided it is possible to sample from f(z), this algorithm is easy to

implement. In the next section, we show that, for all the well-known NTR
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processes. simulating from f*(z) is trivial.

Simulating the continuous component
The random variable Z = Z7[a.b) corresponding to the continuous com-
ponent is infinitely divisible (id) with log-Laplace transform given by

o0 b n

—logEexp(—0Z) = / (1—e.\'p(—o:))/ e.\'p(—: Z IxX; > .s))[\'(:.s)(l.sd:.
0 a i=1

There are two algorithms for simulating an id random variable with a

given Laplace transform: Damien et al. (1993), which relies on the char-

acterisation of an id random variable as the limit of sequences of sums of
Poisson types. and Walker (1996), which uses the fact

,CZ:E(/OOO:dP(:)),

where P(.) is a Poisson process with intensity measure dz f[a‘b) K™(z.5)ds.
The Walker (1996) method is described in some detail in the Appendix since
it is an improvement to the Damien et al. algorithm, and hence was used to
analvse the example data in the next section.

In summary we have:

1. Specify the prior mean and variance of a neutral to the right process, F(t)
via the mean and variance of its corresponding Lévy process using, say, a
hierarchical parametric model.

2. The posterior process is given by Theorem 2. This process is comprised
of a jump component and a continuous component. The jump components
are random variables that can be simulated via latent variable substitutions.
and. if necessary, a Gibbs sampler.

3. The continuous component for any NTR process, always, has an infinitely
divisible distribution. Simulating from such a distribution is described in the
Appendix.

4 TIllustrative Analysis

Walker and Muliere (1995) developed the beta-Stacy process and showed that
it is a generalisation of the Dirichlet process. Unlike the Dirichlet process.
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the beta-Stacy process is conjugate to arbitrarily right censoved data which
commonly avise in survival analysis. Moreover. Walker and Muliere prove
that if the prior process is Divichlet. then the posterior process is beta-Stacy
if the data include right censored observations. Here these resnlts are used
to model exact and right-censored data.

The Kaplan-Meier (1953) data was chosen because Ferguson and Phadia
(1979) examined these data previously. thus offering a basis for comparison.
The data consist of exact observations at 0.3, 3.1, 3.4 and 9.2 months and
right censored data at 1.0. 2.7. 7.0 and 12.1 months.

Evample |

We follow Ferguson and Phadia and take 3(s) = exp(—0.15) and da{s) =
0.lexp(—0.ls)ds. The prior therefore is a Dirichlet process but. with the
inclusion of censored observations within the data set. the posterior process
is not Dirichlet but a beta-Stacy process. We take M = § a priori: ie..
there are no jumps in the prior process. Then, given the data. the posterior
parameters are given by

.\,[' = {X’i . (5,‘ = 1}.

where 8, = | indicates that X; is an exact observation.

Jitzyx (L= exp(=2)) " exp( = +{3la) + ¥(2) - N{2}}).

where v € M*. V{z} =T, 6 and Y(z) =L, [(X; > 1).

A striking consequence of the beta-Stacy process model in this first illus-
tration is to note that if Z, the jump random variable has density f(.) then
Z =4 —log(l — Y') where

N{z}-1

¥ ~ beta(V{r}), 3(z) + ¥ (2) - ¥{z}).

however. if V{r} = | then Z has an exponential density with mean value
1/(3{x) + Y(r) — 1). From a simulation perspective, this obviates the use
of both the latent variable steps required for simulating the jump random
variable. and a Gibbs sampler.

The continuous component of the posterior process has Lévy measure
siven by

KN{z.s)ds = (1 - exp(—:)>_lexp( —z{3s)+ Y[s)})(la(s).
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>0 note theretore that the posterior process is also a beta-Stacy process. We
obrain <amples from the posterior distribution of Ft0. 1). This will involve
sampline Z710.0.8). Z7[0.8. 1), which is done using the algorithm of Walker
(1996). and sampling Jos from the density f;(.1. the exponential density
with mean I/ {exp(—0.08) + 7}. A required sample from the posterior distri-
bution of 710,11 is then given by | —exp{=Z27(0.0.8) = Z:[0.3.1) — Jo3}.

We collected 1000 samples from the posterior and the resulting histogram
representation with kernel density estimate 1s given in Figure 1. The mean
value is given by 0.12 which is the (exact) value obtained by Ferguson and
Phadia.

Evample 2

We also reanalyse the data set using the "base” hierarchical centering
model given in Section 2. Here. with p = ¢ = 1. in an attempt to he
noninformative with the gamma parametric prior, we have 3(t) = 1/(2¢) and
do(ty = dt/{2t(1 +1)}. Again. we collected 1000 samples from the posterior
and the resulting histogram representation with kernel density estimate is
given in Figure 2.

We compare this with the posterior distribution of the Bayes model given
bv F(0.1) = 1 — exp(—a) with ¢« ~ gamma(l + 4.1 + 41.3). 1000 samples
from the posterior were collected and the resulting histogram representation
with kernel density estimate is given in Figure 3. The distributions are
fundamentally different even though mean values are identical at 0.11.

5 Conclusions

Neutral to the right processes form a wide class of prior distributions for
the space of distribution functions. An intuitive way for specifving prior
expectations of a random distribution function via hierarchical parametric
models was developed. From a practical perspective. this method enables
the statistician to try different prior models for the mean and variance of
the Lévy measure that characterises all neutral to the right processes. The
form for the posterior process was stated using a general and well-defined
Lévy measure. A full Bayesian solution was then obtained by simulating
the posterior process using a hybrid of sampling methods. and which was
exemplified with exact and censored survival data.
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Figure 1: Histogram representation with kernel density estimate of posterior
density of F{0.1).
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Figure 2: Histogram representation with kernel density estimate of posterior

density of F(0.1).
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Figure 3: Histogram representation with kernel density estimate of posterior
density of F(0.1).
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Appendix

Here we consider sampling an infinitely divisible variable Z with log-Laplace
transform given by

log Eexp(=0Z) = /; (7 = 1)dNal2),

where

dNa(z) = & _/Aexp(—:J(.s))da(ﬁ].

1 —¢~°
Recall £Z = L:(fw’x, zdP(z)) where P(.) is a Poisson process with intensity
measure d.N1(.}. For a fixed e > 0let Z = X, + Y, (X.. Y, independent!
where X, is the sum of the jumps (times) of P(.) in (e.c) and Y, is the
sum of the jumps (times) in (0.€¢] and has log-Laplace transform given by
Juwglexp(=0z) = 1}dVa(2). The aim is to approximate a random draw Z
by sampling an X,. The error variable ¥, has mean £}, = fl0.e] sdNy(3)
and variance varY, = f(o.el =2dNy(z). Now € can be taken as small as one
wishes and it is not difficult to show. for very small e. that EY, < ¢ and
vart, < ¢*/2.

Let \, = Vi(e.>¢) < o and take v ~ Poisson(A.). Here v is the (ran-
dom) number of jumps in (¢, o¢) and therefore the jumps 7y, .... 7, are taken iid
from G,(s) = A7 Va(e s], for s € (e.5¢). Then X, is given by X, = Y{_, .
To implement the algorithm therefore it is required to (a) simulate from (7.{.)
and {b) calculate A,. For the beta-Stacy process the density corresponding
to (v, is given, up to a constant of proportionality. by

ge(z) x {l - exp(—:)}_ll(: > e) /; exp( - :d(s))da[s}.

(a). To sample from g, define the joint density function of =, s and u by
flz.sou) x l(u < {l- exp(—:)}'l)exp( - :d(s))a(s)[(: >e€8€ A).
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where n ix a random variable defined on the interval {0. {1 — exp{~¢)}~".
~ 1s a random variable defined on (0, x) and als)ds = da(s). Clearly the
marginal distribition for = s given by ¢..

We now describe a hybrid Gibbs,; Metropolis sampling algorithm { Tierney.
199:4) for obtaining random variates {:(""} from ¢,. The algorithm involves
simulating a Markov chain {z". 5% 4"} such that as [ — x then =¥ can
be taken as a random draw from g,(=). The algorithm is given. with starting
values {1 1 M} by

(i) take ="+ from the exponential distribution with mean value 1/3i<%))
vestricted to the interval (e. —log{l — 1/u!"}) if «!¥ > | and the interval
fe.xc)if o' < 1

(i) take v+ from the uniform distribution on the interval

CRTRENE)

and

(iii) (for example) take s~ from a(.)/a(A) on A and € from the uniform
distibution on the interval (0, 1). If

E< rnin{l.e.\:p( - :“+”[3(S') - -3(-5(1))])}

then s = 5= elge sl+1) = 510

(b). To calculate \L define the joint density function of z and s by
flz,8) x exp( - :J(s))a(s)](: > €5 € A)
and let the right-hand side of this expression be h{z.s). Then
x x
Al =/ / {1 — exp(—z)} " h(z. s)d=ds
o Jo

30

A= E![{l —exp(—:}}"lJ X fox /an h(z,s)dz=ds.

Now Ef[{l —exp(—=z)}~"] can be obtained from L~! .k {1 —exp(—z")}!
where {!): { = 1.2....} are obtained via a Gibbs sampling algorithm which
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involves sampling from f{zy5). which is the exponential distribution wirh
mean valie 1 9i~1 restricted to the interval {¢. oc ). and sampling from f(s.21.
which is done as in (i) from (a). Finally

X XN
/ / h(z.s)dz=ds = / F_‘Xp(—(ijf.i))(/(}(.}?),/.ji..\'].
Jo U JA
s0 Monte Carlo methods. if an analytic expression is not available. can he

used to calculate this term (it should also he adequate to take this to he
[ydais)/ Jis) —eal ).
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