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Abstract

A variant of Dantzig-Wolfe decomposition and basis factorization

are compared as solution techniques for block angular systems. It
is shown that the two methods follow the same solution path to the
optimum. The result has implications for the use of decomposition

and factorization algorithms together.



Iﬁtroduction

Many methods have been proposed for solving linear programming
problems with a special structure. Block angular structure, in

which subsets of the variables are only associated with certain
subsets of the constraints, is a common example. Two basic approaches
for problems with block angular structure are basis factorization
(e.g., Dantzig [4], Winkler [8]) and Dantzig-Wolfe decomposition,

(Dantzig and Walfe [5]).

Basic factorization, in general, is a procedure for simplifying the
process of finding entering and leaving variables in the simplex
method. Various types of factorization have been shown equi?alent
by Winkler [8]. Dantzig-Wolfe decomposition, or inner linearization
(Geoffrion [6]), however, simplifies the problem differently by
representing the solutions of separate blocks in terms of extreme

points and rays.

In this paper, we present a variant of standard Dantzig-Wolfe de-
composition, and show that it leads to the same sequence of basic
feasible solutions as followed by the simplex method using a pricing
scheme consistent with basis factorization methods. This result
generalizes the observation of Kallio [7] on a specific condition
for identical pivot steps to occur in the two methods. It also
extends the result in Birge [l] that Benders' decomposition and
basis factorization of the dual of a stochastic linear program with

recourse require the same computational effort per iteration.

In the next section, we describe the implementation of the methods
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on block angular systems. We then show how the Dantzig-Wolfe de-

composition variant follows the simplex method steps.

Problem Definition

Many special structures in linear programming problems can be
exploited by variations of the simplex method, We will use the
following representation of systems with one such structure,

block angularity.

kK s
Min. z =cx + I dly1 (1.0)
i=1
k11
s.t. Ax + Ty =5b (1.1)
i=1
Wyl =ho, i=1, ..., k, (1.2)
i

X;Os y ;09 i=1, ..., ks

n . n, m . m,
o i i o i i
where x € R 7, y € R ", b&€ R , hW € R, and vectors, ¢ and d;

. i i . : .
and matrices, A,Tl and W are dimensioned accordingly.

B,. B, ,
A basis for (1) is composed of columns AB from A and [T lZW l]

1 .

. The basis is square block diagonal if AB contains
B.,. B, ,

columns (and, hence, each [T Ty l] contains m, columns).

from [TlIWl]

1
exactly mo
This property is especially useful since basic solution values

B.
x7, vy l) can be found by solving

for i =1, ..., k, and then solving
k B. B,
AB XB b - I T 1y i
i=1



When the basis is not square block diagonal, there exist additional
B.,. B, ,
subproblem columns [T tw 1] that replace columns in AB. The basis

then has the form

- B B. B B
k|
ABTl”'Tle T
B B
W 1 W 1
B B,.
I W k W k 1,
p 31 By | By

where [A'T © """ T 7] is an my X My submatrix, and W = is known as

the secondary block i subbasis. The basis factorization in this

method is to observe that

B B B, B
i i-1, i i 2
y P wh et vty P 2
and A oA L
k B. B, k B. B B. B
Bl ety srtwh el -wiy Y -,
i=1 i=1
Next, let . . .
—Bl Bi Bi Bl -1 Bi
T " =T -T (W) W7,
and
By By B
T =T "(W")
This yields o
k B, B, B, .
AB XB'+ 'ZlT 1y Yap - T (3)
1=



and the system can be solved by (3) and (2). Other forward and

backward transformations can be performed in a similar manner.

This basis factorization can be implemented with a variety of
strategies. We choose a strategy that emphasizes dual feasibility

B.
relative to the x and y * variables, which we call the first block.

Basis Factorization - First Block Strategy (FBS)

1. Start the Simplex Method (Phase 1 and Phase 2) with a square
block diagonal matrix. (This may, for example, be an identity

matrix corresponding to artificial variables.)

A

B,
2. Whenever a block i subbasis changes or whenever a new y *
B,
variable enters the working basis, fix the y lﬂvariables, and
B.
choose the entering variable only from x and y 1, i=1, ..., k,

if any of these variables is eligible to enter the basis.

This amounts to solving (3) and using (2) to check foE other
leaving variable possibilites. If none of the x and ybi variables
is eligible to enter the basis then choose the entering variable

1
from y . If none of these is eligible, then continue to

i, . .
increase i until some yj is eligible to enter the basis.

The extreme point path followed by the simplex algorithm under this
startegy is also followed by a suitable variant of the Dantzig-Wolfe

decomposition algorithm. The algorithm is based on the resulution of y1

. , i, e i .
into extreme points, y ', and extreme rays, z ,p’ of the region

Yt o= {yllwlyl =ht, vy > 0}.
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If Y contains L~ extreme points and P~ extreme rays, (1) can

be rewritten as the full master program

koot i1, Pl o4 i (4)
min z = cx + I { Z (d7y )k + T (a2 Pyt Py
i=1 g=1 p=1
Pi
s.t. Ax + Z { Z (Tl 1’2’))\ o + X (lel,P)ul,P = b,
i=1 ¢=1 p=1
5 kl,l 1,
2=1
'3

i=1, ..., k,x, A0, u°P 20, all 4, 2, p,

Since (4) can contain an enormous number of columns, only a
subset of the extreme points and rays are generally considered
at a time. If li extreme points and P; extreme rays are con-
sidered, then (4) is reformulated with zi and pi replacing
Li and Pi. This simplified problem is known as the restricted

master program. Additional columns can be added to the re-

stricted master program by first finding the optimal dual

* *
variable values, (7w , Gl s eens 6k ). An extreme point column
corresponding to yl’l is eligible to enter, if
3 . Q/ * . 3 QI 3 * 5
dlyl, o lel, _el . 0, (5)
and an extreme ray column, 2P may enter if
. % 3 1
atz P _ ot b <o, (6)

(5) and (6) are generally checked by solving the subprogram

min, w = (d° -1 T)y 7)
s.t. lel = h'
i



* *
If the optimal objective value of (7) W' 3.61 for all i, then no

column is eligible to enter the basis of the restricted master program.
The optimal solution found for the restricted master is, hence, an

optimal solution of the full master.

If any basic feasible solution of (7) is found with an objective
*

value below ei for some i, then that solution may be used to

construct an entering column in the restricted master. If an un-

bounded solution of (7) is found, then an extreme ray column may

be added to the restricted master. The restricted master is then

again solved and (7) is again checked for eligible columns. The

process repeats until no column is eligible to enter the restricted

master basis.

In the variant of Dantzig-Wolfe decomposition given below, the
observation that (7) does not need to be solved to optimality to
find an entering column is used to establish the equivalence of the
algortihms under the given strategies. The variant also allows

. i,% . ' )
certain ) values to become negative as long as the solution

y1 so obtained is still feasible.

Dantzig-Wolfe Decomposition - Key Column Strategy (KCS)

1. Choose a basic feasible solution from each subprogram (7) to
include in the initial restricted master. Designate the columns
obtained from these solutions as key columns. Solve the re-

stricted master (with, perhaps, a Phase I objective).



Let the basic feasible solutions that generated the key
columns be the initial solutions for the subprograms (7). If
no variable is eligible to enter the basis for any i, then,
stop. If y; is eligible to enter the basis then add j to the
set of supplemental variables at i, Si. Pivot to the adjacent
basis and add the column generated by that extreme point to
the restricted master, or, if no pivot is possible, add the
column generated by the extreme ray found in this procedure

to the restricted master problem.

Re-solve the restricted master problem where the key column
variables are always basic and are allowed to take on negative
values. Solve until all reduced costs are nonnegative, or some

pivot step leads to a solution which violates the set of inequal-

ities
i _s . . B. -1 .
g (Wl e1,2)>\1,£< W 1) hl’ (8)
=1 Sg, -
_i By 1 i
for some i, where W = (W ) "W < for Vg the variable that
S S %

entered in the basis corresponding to Xi’g. (Checking condition
(8) represents an additional ratio test to maintain subprogram
feasibility.) Update each Si by eliminating the indexes of
variables that generated columns no longer in the basis of the
restricted master problem. Also, eliminate these columns from
the restricted master problem. If condition (8) is not
violated, then return to Step 2. Otherwise, for the subproblem

i in which (8) has been violated, let the basic variable which
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first goes to zero in (8) leave the key column i basis and,
for Ai’ﬁ, the variable entering the basis in the restricted
master, let yiA enter the key column basis for i.
2

4, For every subprogram i, in which the key column basis has changed,
let that basic feasible solution be the initial solution in (7).
Check every column indexed in Si for eligibility to enter the
basis first. For each eligible column, pivot to the adjoining
extreme point (or find an extreme ray) and add the associated
column to the restricted master problem., (It will be shown
below that all columns indexed in Si and basic in the last
restricted master are eligible to enter the basis.) Go to

Step 3.
In the next section, the equivalence of the key column strategy for
decomposition and the first block strategy for basis factorization

are shown.

Main Results

In the following discussion, it is assumed that the KCS and FBS

use the same rules for entering and leaving variables among the sets

of variables eligible in the two strategies and that the entering
variable only depends on the sign of the reduced cost and the index

of the variable (e.g., Bland's rule (Bland [27]), LRC rule

(Cunningham [3])). In the proofs that follow, it will also be assumed
that k = 1 and that the region Y = Yl is bounded to ease the exposition.
This can be done without ioss of generality, and it enables us to

drop the superscript i on all symbols associated with the subproblems.
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The first result is that the initial step of each method is the same.

Leima 1. The strategies, KCS and FBS, follow the same solution path
through the solution after the first new y variable (nonkey column)

has entered the basis.

Proof: We assume that each method starts with the same subproblem
8o
basis, W . Until every x variable has a nonnegative reduced cost,

FBS is solving the program

min. cx (9)
B. B
s.t. Ax=b-T0%?"
x > 0,
B B
where y = = (W O)_lh

The initial restricted master is

B, B

min. cx + (q Oy O)AO
s.t. Ax + (TBOyBO)kO =b (10)
KO =1
x > 0,

so the same solution path is followed by FBS and KCS until a new

column is chosen.

Let 70 be the optimal set of dual variables found in (9) and (10),

B B B
and let pO = (q 0 - nOT 0)((w 0) l). The entering variable Vg in
FBS is chosen such that

qs -1 T -p W < Q. (11)
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If the leaving variable is some Y, then W < replaces a column in W

B
and W 1 is obtained. FBS then solves

min. cx (12)

If the leaving variable is some X s then FBS solves

min. cx + 4.5 (13)
= BO Bo
s.t. Ax + T.sys =b-T "y
Xl ’ ys >= O’
where
B B
- 0, 70.-1
g =d,-qa (W7 "W
and
B B
T =T _ -T O(W 0)'lw
s 'S

In KCS, yskhas the same reduced cost in the subprogram as (11) and
is, therefore, eligible to enter.
Bo, -1 1
Since Y is bounded, there exists some (W ).” W > 0. Let 6
i. s max
be the value attained by Vg in the adjacent basic feasible solution

reached by the simplex method. The new solution is yl where

B B B
y O(i) - (W 0):l W seiax’ j basic in row i in W
Ay .
1
i) =(,1 .
0 Opax® 3 = S

0 otherwise.

0

b
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The restricted master program is then

B. B B. B B B

. 0 70,.0 0°0_ "0, 0-1 1 1 1 (14)
min., cx+ (@ y A + (q ¥y q W) w-semax + qsemax)x
B. B B, B B B
: 0 70,.0 070 0,.0,-1 1 1 1.
s.te AX+ (T y DA + (T 7y  -T (W) vOmax T Tofma)t = b
20 + we,
X, Al >0

If condition (8) is not violated, then the same solution as that in (13)
is obtained. If condition (8) is violated, then AO is replaced by Kl
and the same solution as in (12) is obtained. In this case, the basis
B 1 B9

W © corresponding to y replaces W ~, and a new key column is cor-

respondingly defined. -

Lemma 1 can be applied to any situation in which the algorithms agree
on the same single key column (secondary block subbases in y). The
next lemma proceeds by induction on the number of nonkey columns to

show that KCS and FBS follow the same path.

Lemma 2. The strategies, KCS and FBS, follow the same solution path
until the secondary block subbasis in y is changed (the key column

is replaced).

Proof: We first show that if the secondary block subbasis is unchanged
and the key column is not replaced, then the strategies follow the same
path. We proceed by induction on the number of supplementary

columns. Assume the hypothesis is true for any number of supplementary

columns less than or equal to L. Lemma 1 gives the result for L=1.
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Let the supplmentary column indexes be S ++es S FBS
has just solved
L _
min cx+ Iq ¥y (15)
9=1 8y Sy
L_ By Bo
s.t. Ax + LT y =b-T 'y
L=1 "Sg "8y
X, >0, ¢ =1, , L,
SQ—
and KCS has solved
B, B L B, B
. 0 70,,0 0o"’o0, - 2% L
min. cx + (@ 'y DA+ 2El(q y o+ qsgemax)k (16)
B. B L B b
s.t. Ax + (T Oy O)AO + I (T Oy 0 + T . )A2 = b,
2:1 'szmax
L
WV or s Ve
2=1
L
X,)\: _>_O,Q/=l’ ’L

* %
Let (x , Vg ) be the primal optimum found by FCS in (15) and let
2
*
m be the dual optimum. An equivalent basic feasible solution

A~

(&, A) can be found in (16) by letting

*
X =x,
9 * A
A=y /emax, L =1, , L,
2
~ L .
012 ¥t

where we note that AO is basic according to the assumption. To

. *
show complementarity, define a dual solution (fi,d) in (16) by ff ==
and

B. B B. B
A 0 * 00
o=q vy 0. ™ (T "y ).
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This implies that

A *
c-TA=c~TA,
B, B B, B
o0 ~,0°0 "
qy =-=m(T7%y )=-0=0,
and
B. B B. B
00, - .2 ~ 070 "= 2 "
q 'y ta o - (T "y 7) - LU R
L 2
= *= L
= (qsgl -7 T-sz)emax’ L =1, y L

Hence, complementarity and dual feasibility hold in (16) and in (15)
since eiax > 0, showing the equivalence of the optima of (15) and (16).
Note that this also implies that, whenever (15) and (16) have cor-
responding bases then the same set of reduced costs are negative,

hence the same entering variable will be chosen by any rule that only
considers the sign of the reduced costs and the indexes of the

variables.

Note also that for a basis Din (15), the comstraints in (i5) can be

reduced to

B, B L B, B )
I x40 twx, + 0i(T Oy %%+ 1 ol Oy O) + 1., omax'\
x B N 1=1 ()
L B. B
1 0ta %% o lf. ot =iy,
p=L'+1 Sy Max
1
L
L
Voot ) % =1,
p=1 =L +1

1
where I is the identity corresponding to basic variables in x, L of

the supplementary variables correspond to basic variables in D, and
the 2th supplementary variable is basic in row j(2). This can be

further reduced to



where

and

Hence,

15

Di‘(b_T N ),

B. B !
l(b - Oy 0)/62

D,
i. max

B, B
1 00
(b -T y )s

1s2 Di

1 1
,i=j(2)’ 2

-1 g L -
+ D NXN + z I,(Q)X + § T-s
g=1 J g=L'+1 "5y
XO
-1- 3 . P L
Di.T-sgemax for i $ (2 ), & =1,
%
-1 6max ! !
D, T ——=for i = j(2 ), =1,
i.".s 2
L6
max
-1 B, B, ,

i430), ¢ =1,

1 -

so, the choice of leaving variable in (15) and (16) is the same

for the same entering variable.

A new column, Vg

enters in FCS if

-0 w.<09
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s By xBy Boogo
where p = (¢ -7 T )W ") . This is again the reduced cost of
. B0« By By
Vg in the subprogram and we note that since 6 =(q -7 T ")y , then
the value of the subprogram solution including Vg must be less than

0, showing that the column correspoding to yg can enter in (16).

. 0 o . .
Since A remains in the basis by the assumption, the column correspond-

ing to Yg can be placed in (16) incrementing L to L+l. The solution
of the augmented restricted master in (16) will have an equivalent
solution to the augmented problem (15) by the same reasoning as

above. This completes the induction.

The proof is completed by noting that if KCS leads to a key column
replacement then (8) is violated for some Xg that corresponds to

the supplemental variable ysg. This is exactly the condition for

the leaving column to be from the secondary block subbasis and,
therefore, the secondary block subbasis will be changed. Similarly,
if the secondary block subbasis is changed, then (8) would be violated
in KCS and the key column would be replaced. Therefore, the two

strategies lead to the same solution path until a key column (secondary

block subbasis) replacement. -

The only remaining obstacle is to show that the solution paths will

be equivalent after a key column is replaced.

Lemma 3. The two algorithms are equivalent through the iteration
B
following the replacement of the secondary block subbasis W 0 in

FCS (the key column in KCS).
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Proof: First, we check that the basis generating the new key
column is the same as the new secondary block basis. 1In KCS, if

xl enters to force a key column replacement, the Vg replaces yj
1

where
B L
j = argmin {{(W 0);lh - Qézwis GQXQ}/WiS 6L+l}, an
' '3 L+l
W, >0
is

-2 2
and A~ is the current value of . 1In FBS, the leaving variable is
chosen as Vi where

B L

k = argmin {{(W O);lh - 3

ZoVis Vs Wis T (18)

g SL+L

W, >0
1s

The result that j = k is clear since % 7% = y

Let the new subprogram basis be Bl and let L-1 supplemental columns
(labeled & = 2, ..., L) be basic. The L-1 supplemental columns

that were in the previous restricted master problem can be written

as
T Y TR
qQ y +q 6, +q_ 6
s. ] S, Sy
------- .o --2.2. (19)
B, B
lel+T_se +T.Sel
________ Il
L L d
_ _ By L 2
where T and T, are now found relative to W = and ej and es are the
J 2 2
values of yj and Vg o respectively in the corresponding subprogram
2

solution. The new restricted master problem is found by adding columns

for the new supplemental variables prescribed by the algorithm as
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B L B
1 1 ;11 -
min ecx + (@ "y DA + L (q Ty + q GQ)K2 (20)
=2 2
B, B L B. B
1 -
stoax+ (T oy nbe zaly t+d et o,
g=2 )
L
vz ! -1,
=2
2
x, A" >0, L = 2, , L,
B
where GQ is the wvalue of Vg in the solution adjacent to y
2
The equivalent FBS problem is
L—
min cx + Z 4g Vg (21)
2=2 "4 "%
L _ Bl Bl
s.t. Ax + I T's ys =b-T"7y ",
=2 "4 R
X ¥y 2 0, £ =1, , L
4

If system (20) is initiated with the basic supplemental columns
that were in the previous restricted master problem's basis, then
(20) and (21) have the same initial solution. Note that for nl

the dual vector corresponding to the first basis in (21) and for

1 BB BB
o] q'y -1T 7y

= , then
a e? - an.s e§ >0, (22)
] N

since yj just left the basis in the FBS problem. Therefore, every
column (19) would have a positive reduced cost in problem (20)
relative to the new basis. Hence, it is justifiable to discard

these columns from the basis. -
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Lemmas 1, 2 and 3 lead to the following main result.

Theorem. The strategies, KCS and FBS, follow the same solution

path in solving linear programs with a block angular structure.

Proof: By Lemmas 1 and 2, the strategies are equivalent if no

key column is replaced. By Lemma 3, after key column replacement,
the strategies obtain the same solution. This implies the two

strategies are equivalent for all pivots. .

Conclusion

The equivalence of the FBS strategy for basis factorization and the
KCS strategy for Déntzig—Wolfe decomposition shown here displays
some differences and similarities between standard Dantzig-Wolfe
decomposition and basis factorization in their approaches to solving
structured linear optimization problems. By fully optimizing in
the subprogram, Dantzig-Wolfe decomposition takes a larger step
toward the optimum than that taken by a single pivot in the KCS
strategy. Hence, initial convergence to an optimum may be faster.
Difficulties may arise, however, if the new extreme point columns
contain elements of columns not in an optimal linear program basis
as in (19). The algorithm may require many iterations to eliminate

all of these "contaminated" columns and obtain an optimum.

The KCS strategy also suggests that some hybrid technique between
basis factorization and decomposition may be possible. If some
notion of a key column is maintained, it may be possible to determine

whether wholesale replacement of "contaminated" columns is
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reasonable in order to speed convergence and maintain accuracy.
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