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ABsTraCT. In this paper, we highlight properties of Bayesian models in
which the prior puts positive mass on all Kullback-Leibler neighbour-
hoods of all densities. These properties are concerned with model
choice via the Bayes factor, density estimation and the maximisa-
tion of expected utility for decision problems. The results suggest
it is appropriate to label a prior with this Kullback-Leibler prop-
erty as a true Bayesian model. In our illustrations we focus on the
Bayes factor and show that whatever models are being compared, the
[log(Bayes factor)]/[sample size| converges to a nonrandom number
which has a nice interpretation.

Keyworps: Bayes factor, decision theory, exchangeability, expected utility
rule, Kullback-Leibler divergence.

1. Introduction. Recent Bayesian nonparametric literature has focused on
consistency properties of Bayesian procedures. See, for example, Wasserman
(1998), Barron, Schervish and Wasserman (1999), and Walker (2002). Based
on the results from these papers, we argue that it is practically realistic to
define a true Bayesian model as one in which the prior puts positive mass
on all Kullback-Leibler neighbourhoods of all densities. Our reasons for this
position are the theme and point of the paper.

We consider solely the case when fy is a density function and X" =
(X1,...,X,) are available as a random sample from fy, the first n obser-
vations of a possibly infinite sequence Xi, Xs,.... Since fy is unknown, the
Bayesian constructs a prior distribution on the relevant space of density func-
tions, or distribution functions, reflecting available prior information about
the location of fo. Assuming all the densities under consideration are dom-
inated by some o-finite measure, which we will take to be the Lebesgue
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measure, Bayes theorem and the data X™ combine to update the prior to the
posterior.

There are compelling reasons why a Bayesian should use a prior distribu-
tion which puts positive mass on all Kullback-Leibler neighbourhoods of all
densities; in particular, on all Kullback-Leibler neighbourhoods of f;. Ob-
viously, if fy is unknown a priori, to guarantee the prior puts positive mass
on all Kullback-Leibler neighbourhoods of fq, it is required to put positive
mass on all Kullback-Leibler neighbourhoods of all densities. We shall refer
to this as the Kullback-Leibler property for the prior II. In order to achieve
this, a nonparametric prior is required. For specific examples of priors with
the Kullback-Leibler property, see the recent paper by Barron, Schervish and
Wasserman (1999). We should point out that all Bayesian models, that is,
M = {f(z;0), n(6)}, define a prior probability IT on the space of density
functions. A random density function from IT is chosen by first choosing a 8
from 7 and putting f(-) = f(-;6). Hence, for us, a Bayesian model is pre-
cisely the prior II. A parametric model of finite dimensions will not satisfy
the Kullback-Leibler property, unless fy is known to belong to a particular
parametric family.

The following reasons suggest that I should have the Kullback-Leibler
property:

1 . Many practising statisticians would argue that parametric models are
sufficient when combined with model checking and model comparison
diagnostics. See, for example, Bernardo and Smith (1994). However,
Draper (1999), in an insightful discussion of the paper by Walker et al.
(1999), points out that allocating probability mass one to parametric
subsets of densities should not be done lightly. The reason being that
on switching models, when the original model under consideration is
found to be deficient in some sense, exposes the statistician to the very
real possibility of poor calibration. Therefore, there is a very practical
reason for assigning mass one to the set of all densities; the data can
offer no surprises.

2. It is shown that if IT does have the Kullback-Leibler property then the
Bayes factor comparing this model with any other model will always
eventually support (under mild regularity conditions) the prior with
the Kullback-Leibler property. The precise result is stated in Section
2. The conclusion is that there is no motivation to put the prior II
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under the scrutiny of a Bayes factor, unless it is with another prior
which also shares the Kullback-Leibler property.

3. Decisions made via the maximisation of expected utility are consistent
when using a prior with the Kullback-Leibler property. This is proved
in Section 3. That is, with a utility function and fy, there is a well
defined correct action, unknown just as fy is unknown. Decisions are
consistent if the decision rule eventually sticks on this correct action.

4. For those interested in density estimation, there exists a Kullback-Leibler
consistent sequence of predictive densities based on a prior with the
Kullback-Leibler property. This is precisely stated in Section 4.

Before proceeding, we introduce the notation used throughout the paper.
We let II" denote the posterior distribution given X"™. Then define I, =
[R,(f)T(df), n > 1, and [y = 1, where R,(f) = [Ii=; f(X:)/ fo(z). De-
fine f, = [ fII"(df) to be the predictive density, and also define D(f) =
[log(fo/f) fo to be the Kullback-Leibler divergence between f; and f. In
the following, a.s. will be with respect to the infinite product measure Fy°.

2. Bayes factors. Bayes factors are widely used in Bayesian model selection
problems. See, for example, Bernardo and Smith (1994) for a review. To
date, asymptotic studies of Bayes factors have only been formulated when
one of the models is “correct”. See, for example, Gelfand and Dey (1994).
The Bayes factor for comparing model 1 with model 2 is given by

Bn = [ln/IQRa

where I;;, = [ R,(f) I1;(df), and the Bayesian models are fully characterised
by IT; and II5. Recall that all Bayesian models induce prior distributions on
the space of density functions.

Bayesian models, characterised by II, will be associated with a § > 0.
This 6 is such that II{f : D(f) < d} > 0 only for, and for all, d > 4.

THEOREM 1. (WALKER, 2002). If
L. I{f : D(f) < d} > 0 only for, and for all, d > ¢;.
2. Y ,n~*Var(log Ijn/Ijn-1) < 00



3. liminf, D(f;s) > ¢; a.s.

then
n"tlog B, = 0, —; a.s.

Consequently, B, — oo a.s. (preferring model 1) if, and only if, 6; < do. This
makes sense. Note that the rate will be exponential; that is, B, ~ exp{n(d,—
61)}. Obviously, if §; = 0, then B, — oo a.s. for all , > 0. Condition
2. is an extremely mild condition to be satisfied. Condition 3. is also a
realistic assumption to make; one would not anticipate the predictive density
to get closer than ¢ to fy in a Kullback-Leibler sense, if the prior has no
densities this close in the Kullback-Leibler support. We present illustrations
of theorem 1 in Section 5.

If II has the Kullback-Leibler property and the competing model does
not, then the Bayes factor will eventually prefer the model which does have
the Kullback-Leibler property. A model with this property can therefore
rightly be defined as a true model. There is no point in comparing it with a
model which does not have the Kullback—Leibler property.

3. Bayes decision theory. Here we provide further support for the notion
that a prior IT with the Kullback-Leibler property can be called a true model.

Taking the notation from Hirshleifer and Riley (1992), the elements of a
decision problem are as follows :

(1) a finite set of actions indexed by a and for practical purposes we assume
a € {1,...,N}, for some integer N. While much of decision theory is
written up with the notion of a continuous set of actions, in practice
the number of decisions that can be made are finite, see Lindley (1985)
for a discussion.

(2) a set of states of nature, which we take to be the appropriate space of
distribution functions, say G. !

(3) a consequence function ¢(a, F') showing outcomes under all combinations
of actions and states of nature.

1\We assume that the relevant unknown state of nature is the distribution generating
the data. This gives us a general framework to work with. Certainly, knowing the true
distribution will solve all decision problems associated with the data.



(4) a preference scaling function v(c) measuring the desirability of the con-
sequence c.

(5) a probability distribution on G representing beliefs in the true state of
nature. In a Bayesian context this probability is the prior IT in the no
sample problem and is II" once the data X" has been observed.

The Von Neumann-Morgenstern (1947) expected-utility rule then asserts
that the best decision is to take the action a which maximises

Un(a) = / v {c(a, F)} T"(dF).

This expected-utility rule is applicable if and only if the v(-) function has
been determined in a particular way which leads to v(c) being bounded,
specifically 0 < v(c) < 1. That is, the v(c) has a probabilistic interpretation.
See Hirshleifer and Riley (1992). There are differing opinions on the point
of a bounded elementary utility function. See for example De Groot (1970)
who relaxes the axioms of Von-Neumann-Morgenstern. We would point out
that with unbounded v(-), it is not guaranteed that U, (a) even exists, and
since this depends on fy which is unknown, the bounded v(-) makes most
sense.

It is not our intention to discuss the expected—utility rule further. Our
aim is to show that if IT has the Kullback-Leibler property then the decision
rule eventually sticks to the action which maximises Up(a) = v{c(a, Fy)},
which can be classified as the correct action, obviously unknown because Fj
is unknown.

THEOREM 2. If [T has the Kullback-Leibler property then Uy, (a) — Up(a) a.s.
for all a.

Proor. If IT has the Kullback-Leibler property then I1" converges weakly to
I, a.s., where Il is the probability measure with point mass one at Fp. See
Schwartz (1965). The Portmanteau theorem (see, for example, Billingsley,
1968, Theorem 2.1), then gives the desired convergence result for U, (a),
assuming that v is suitably smooth.

Clearly, if U,(a) — Up(a) a.s. for all a then the maximiser over Uy(a), say
an, will obviously eventually stick to ag, which maximises Up(a).



4. Predictive density. Here we demonstrate that if [T has the Kullback-
Leibler property then there exists a Kullback-Leibler consistent sequence of
densities f™. That is, D(f™) — 0 a.s.

THEOREM 3. (WALKER, 2002) Suppose that II has the Kullback-Leibler
property and
S n*Var(log I,/ I-1) < cc.

If
N_ 1l
then D(fV) — 0 as.

Hence, for those who see density estimation as an important statistical pro-
cedure, f™ is an easily available Kullback-Leibler consistent sequence of den-
sities. Nonparametric predictive densities are often hard to construct but are
not hard to sample from. So, if it is possible to sample from f, then it is
obviously also possible to sample from f".

If IT has the Kullback-Leibler property then the condition

S n *Var(log I /In-1) < 00

is an extremely mild constraint. If I, = exp(—nt,) then ¢, — 0 a.s. if II
has the Kullback-Leibler property. See Barron, Schervish and Wasserman
(1999). It is therefore sufficient that

Y E{(tn = ta-1)’} < 0.

If, for example, t, = O(n™*) for some s > 0 then |t, — t,_;| = O(n™'%) and

the condition will be easily satisfied.

5. Illustrations. Here we present four examples illustrating theorem 1.

EXAMPLE 1. In the first example we take the true density function to be
fo(z) = exp(—z). We take model 1 to be fi(z;8) = 6 exp(—=f) with prior
m1(0) = exp(—0) and take model 2 to be fixed at fo(z) = 0.5exp(—0.5z). It
is easy here to see that §; = 0 and d; = log2 — 0.5 = 0.193. It is calculated
that

T n!
/i:Hlf(fi) Mi(df) = AT sy
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where s, = Y, z;, and
J T £ @) mdf) = (1/2)" exp(=s./2)
i=1

Following a simulation of data from f;, figure 1 plotting n~'log B, for
n = 1...3000 is presented at the end of paper, where the convergence of
n~1log B, to the correct value of 0.193 is evident.

ExAMPLE 2. In the second example we consider the case when both models
are wrong, in the sense that neither prior has the Kullback-Leibler property.
We now take fo(z) = zexp(—z) and keep model 1 as in the first example.
The second model is Weibull, fo(z) = 26 exp(—0z?/2) with 75(8) = exp(-90).
Then 6; = 0.116 and §, = 0.099 and so d, —d; = —0.017. Again, a simulation
was performed of n~!log B, and figure 2 plotting the convergence to the
correct value is also at the end of the paper. It should be noted in this case
that the convergence is very slow and we took 1,000,000 samples. The figure
shows every 350th value of n~!log B,,.

EXAMPLE 3. In this example we take a nonparametric prior, not infinite
dimensional, but with a large number of parameters. With samples from
[0,1], we have model 1 to be fi(z;6) = 02°~ with prior m1(f) = exp(—0).
We take model 2 as a histogram on m = 1,000 bins, with each bin of length
1/m. The density function is fo(z) = mgy 1((k — 1)/m < z < k/m) and we
take (g1 . . .¢gm) to have a Dirichlet prior with parameters all equal to 1. Then

" -l Tt
/gf(xi) I (df) = W,

where t, = — Y1, logz;, and

/foz J5(df) = ( HFnk+1)

(+m

where ny = Y0, 1((k — 1)/m < z; < k/m). If fo is uniform on [0, 1], then
both §; = 0 and &, = 0. As can be seen from the simulation of n~!log B, in
figure 3 at the end of the paper, the Bayes factor always prefers the parametric
model although asymptotically it prefers neither model, since n™* log B, — 0
a.s., although the convergence is extremely slow. This exposes the myth that
Bayes factors always select the more complex model.
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ExAMPLE 4. This is a slight variation of example 3. Here we retain model 2
and fy as in example 3 and take fi(z) = 2z to be fixed. Then ¢; = 0.306 and
figure 4 shows the convergence of n~!log B, to -0.306. Again, very slowly.
Note in this case that the Bayes factor always prefers the nonparametric
model.

6. Discussion. In this paper, we have demonstrated how the Kullback-
Leibler property for a prior II provides good large sample properties for a
number of Bayes procedures. We argue that Bayesians should be constructing
priors with the Kullback-Leibler property, at the very least when there is
doubt about the underlying shape of the density function generating the
data. Although the results are based on large samples, the notion of having
all densities in the Kullback-Leibler support of the prior must be an appealing
one for all Bayesians. Indeed, from the Bayes factor perspective, there is no
reason to compare a model with the Kullback-Leibler property with any
other model, and so practically speaking meets the requirements of a true
model. Barron, Schervish and Wasserman (1999) demonstrate that a number
of nonparametric priors which are in use, such as Pdlya trees and infinite
dimensional exponential families, do have the Kullback-Leibler property.

For those interested in subjective issues, consider the following. Walker
et al. (1999) show that it is possible to take subjective information from a
parametric model and incorporate it into a nonparametric model. Then, for
those who would acknowledge the existence of fy, this paper demonstrates
the practical relevance of a nonparametric model. For those who would not
accept that an object such as fy does exist, the nonparametric approach
using the Kullback-Leibler property offers the surprise-free approach (see
point 1. in Section 1), and at a minimum avoids the poor calibration that
may confront the statistician who is happy to hand out probability one to a
host of possible models. See Draper (1999) for a detailed discussion of this
point.

For those concerned with working in high dimensional spaces, the message
from the collection of applied papers edited by Dey et al. (1998) is that it is
no more difficult to routinely implement Bayesian nonparametric procedures
than parametric ones, following the advent and rapid growth of user-friendly
Markov chain Monte Carlo methods.

Other ideas for avoiding the model merry-go-round include Bayesian
model averaging (Draper, 1995) and model selection, both ideas based on



a fixed set of models with associated probabilities of plausibility, rather than
probabilities of correctness. Practically speaking it may not be difficult to
assign probabilities to models; if there is a finite set then assigning equal
probability is one option. A number of recent researchers have pointed out
that model averaging usually outperforms model selection, and intuitively it
is easy to see why this might be the case. We see model averaging as an
attempt to construct a prior with large support (the idea being that at least
one of the models may be close to fy) using a collection of parametric models,
and this could be seen as equivalent to a Bayesian nonparametric statisti-
cian who makes finite the infinite dimensional nonparametric model. This
often happens, such as in the case of Pélya trees and the infinite dimensional
exponential family; indeed it is necessary in these cases.
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Example 1: Convergence of Bayes Factor
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Example 3: Convergence of Bayes Factor
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