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Summary

In this paper we introduce a new estimator for the coefficients of a linear
regression model. The estimator is based on the characterisation of a normal
distribution as a scale mixture of a uniform, the mixing distribution being a
particular gamma distribution. The Student ¢ and exponential power distri-
butions are also characterised as scale mixtures of uniforms; these, in turn,
are seen to be a special case of a new (and general) family of distributions.
It is shown that this new family of distributions coincides with the class of
unimodal, symmetric distributions.
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1 Introduction

This paper considers the familiar linear regression model
k
yi:zxijﬂj‘}'civ 2=1,"'>na (1)
=1

where the y; are observable dependent variables, the z;; are known covariates,
the fB; unknown regression coeffecients and the parameter of interest, and the
e; are independent and identically distributed (iid) error terms. We make the
following assumptions about these errors:

1) Ee; = 0 and the e; are symmetric about 0, and

2) var(e;) = o,
The most popular and widely used estimate for the regression parameter
B = (1, ,P) is the ordinary least squares (OLS) estimator:

Bors = [Z XX Zini,

where X; is the column vector with entries (z;;,---,z;). The OLS is the
maximum likelihood (ML) estimator under the assumption that the e; are
normally distributed.

It is well known that the OLS estimator is likely to be unsatisfactory in
a number of possible sampling scenarios. For example, if the errors have a
heavier tailed distribution to that of the normal, or if there are outlier ob-
servations: in the latter case, the OLS estimator gives too much influence to
outliers; that is, it is not robust. ‘Moving’ a response observation to infinity
would drag the estimator to infinity as well. It is desirable to have an estima-
tor that ‘downweights’ the effect of outliers. A number of alternative (ML)
estimators are available by considering non-normal error models; for exam-
ple, the Student ¢ distribution; see Meng and Van Dyk (1997) for a recent
likelihood based approach and O’Hagan (1988) for a Bayesian treatment.

In this paper we propose a new estimator, Latent Weighted Least Squares
(LWLS), for the parameters in a linear regression model in cases of outlier
and/or non-normal error models, using an EM type algorithm that is both
simple to code and fast to execute. The development of the LWLS estimator
starts from a characterisation of the normal distribution as a scale mixture of
a uniform, the mixing distribution being a particular gamma distribution. We
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are therefore able to characterise any scale mixture of a normal distribution
(Andrews and Mallows, 1974; West, 1987) as a scale mixture of a uniform
distribution. In Section 2 we characterise the Student ¢ and exponential
power distributions as scale mixtures of uniforms. These characterisations
lead to a new family of distributions and a characterisation of the Weibull
distribution.

In Section 3 we introduce the LWLS estimation method which is based on
the characterisation of the normal as a scale mixture of a uniform. Section 4
contains a simulation study and real data analyses to investigate the LWLS
estimator by, comparing with the OLS estimator.

2 Scale mixtures of uniform' distributions

We can write the model (1) in a different way: first, introduce the latent

variable u = (u,--+,uy), with each u; defined on (0,00). Consider the
model \ .
yilui =Y @B + i/, 1=1,--0,m (2)
J=1

where the 7; are iid from the uniform distribution on (—1,41), and the v;
are iid from some distribution fy defined on (0,00). The 7; and the u; are
also independent of each other.

Theorem 1. For the model given in (2)
(i) Byi = ¥5_, 7i;; and y; is symmetric about the mean; and
(ii) if Eu; = 3¢? then var(y;) = o2.

The proof is straightforward, and is omitted.

Therefore provided Eu; = 302 then the conditions 1) and 2) will be sat-
isfied. One possibility is the normal distribution which arises when fy is a
particular gamma distribution:

Theorem 2. (The Normal error regression model). For the model in (2),
if fy is the gamma distribution with parameters (3/2,/2), and mean value
3/), where A = 072, then marginally each ¢; is normally distributed with

mean 0 and variance o2,



Proof. This follows from the result
| exp(—u)du = exp(-y?)
udy?

and noting that model (2) is equivalent to y;|u; being uniformly distributed

on the interval (p; — \/ui, i + \/ui), where p; = E_’;::l ;85

We have noted that the normal distribution can be represented as a scale
mixture of a uniform distribution. Here we note that two other distribu-
tions, the Student ¢ and exponential power distributions also arise as scale
mixtures of uniform distributions. Both of these distributions have a scale
mixture of normal representation (West, 1987); for example, the Student ¢,
with v degrees of freedom, has the representation :

ylé ~ N(g,o?/E),

§ ~ ga(v/2,0/2).
We can write the normal first stage as the scale mixture of uniform distribu-
tion:

ylu ~ Up - ov/u, p + o\/u),
ulé ~ ga(3/2,¢/2).
We can then combine f(u|é) and f(€), integrate over €, to obtain the marginal

distribution of u and hence obtain a scale mixture of uniform representation:

Theorem 3 (The Student ¢ distribution). If fy has density given up to
proportionality by
\/ﬂ
flu) o 0+ )

and

ylu ~ U(p — o/u, p 4 o/1),
then y has a Student ¢ distribution with mean p, scale parameter ¢ and v
degrees of freedom.

We state the result for the exponential power distribution:



Theorem 4 (The exponential power distribution). If fy has density pro-

portional to
flu) w12 exp (_ul/f)

and

ylu ~ Ul = ov/u, p + 0v/u),
2/1)

This characterisation of the exponential power distribution appears to be
more tractable than the alternative scale mixture of a normal characteri-
sation (West, 1987), which is only valid for 7 € (1,2]. We can obtain an
interesting result by combining the result of West with ours:

then

a

(y) o exp (—]y"‘

where 7 € (0,2].

Theorem 4 (West, 1987). If y|A ~ N(0, A), here A denotes 1/(variance), and
FO) & A2y ,.(N), (1 < 7 < 2), where p,(.) denotes the density of the pos-
itive stable distribution with index a (0 < a < 1), then f(y) o exp(—|y|*7).

We can now insert the uniform and gamma mixture to replace the normal,
leading to the following 3 stage mixture:

ylu ~ U(—\/’Ea +\/"'_L)
ulA ~ ga(3/2,1/2)

and
FA) o< A2y (N).

Combining the last two stages implies:

W72 g (7Y o 12 [ N2 exp(—0.50u) A" 2py/r(N\)dA.
=0

Therefore,

Theorem 5. If u|A has the exponential distribution with mean 2/) and
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f(A) &< p1yr(2), (1 < 7 < 2), then f(u) o ¥/ Lexp(—ul/"), a Weibull dis-
tribution.

In fact any distribution which has a scale mixture of normal representa-
tion also has a scale mixture of uniform representation. This is easy to see;

if z|]A ~ N(0,)) and A ~ g then z|u ~ U(—/u,++/u) with u ~ f where

fu) o v /A °:°0 X312 exp(—0.5Xu)g(A)dA.

There does not seem to be any reason why we should just consider the Stu-
dent t and exponential power families.

Consider the general family of distributions:

ylu~ Up — ov/u, p+ cfﬁ)

u~ fy.
Then the following hold: Ey = y, var(y) = ¢?Eu/3 and
, 9E[u?]
kurtosis(y) = SEaf

So the mean and variance of u determine the variance and kurtosis of y. To
obtain var(y) = ¢ and kurtosis(y) = 7 we require Eu = 3 and var(u) =
67 4+ 6. Note that we must have 7 > —6/5 which is the kurtosis for the
uniform density. A particular distribution which satisfies these requirements
1s given by
fU = ga’(gav 30))

where o = (57 + 6)~'. This new family of distributions has parameters
(p,0,7), with mean p, variance o2 and kurtosis 7. We recover the normal
distribution when 7 = 0 (a = 1/6).

In fact the scale mixture of uniform family coincides with the class of
unimodal, symmetric distributions:

Theorem 6. If fx is a unimodal, symmetric density about 0 and fy(z)
exists for all z then

Ix(@) =12 ] folu)du/ Vi
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where fy(u) = —fy(Vu).

Therefore, we can write zlu ~ U(—+/u,++/u) with u ~ fy, provided fy
is a density on (0,00). Note that — [/ fy(v/u)du = 1 which follows from

+Vu

SR Ty A T M P

and fy(u) > 0 iff fx(z) is unimodal.

Theorem 6 is a consequence of a theorem of Feller (1971, pp. 155); see,
also, Brunner and Lo (1989). We note that our approach appears to be more
general and simpler than the one provided by Feller. Feller (see, also, Brun-
ner and Lo) considers the different scale mixture of uniform model, given
by

zglu ~ (b —u, p + u),

un~ @,

for some distribution G' with support on (0, 00). Brunner and Lo then assign
G a Dirichlet process prior. However, this model only provides the unimodal,
symmetric distribution for X and the first four moments of U are all required
to specify the first four moments of X. With our model

-'L'Iu"’ (p——aﬁ,u%—a«/ﬂ),

u~ fu;
it is clear that since we are explicitly modelling the variance of X, only the
first two moments of U are required to define the first four moments of X.
We can ‘improve’ on the Brunner and Lo (1990) model by considering the
following model:

(BIUN (}C‘U\/E,/l-l—o'\/’(—t_),
u~ G,

with G taken from a Polya tree prior, which happens to generalise the Dirich-
let prior. For this we would need to fix the location of G, which would oth-
erwise be confounded with 0. We can achieve this by fixing the median of
G, an easy task, and this development will be reported elsewhere.



3 Latent weighted least squares (LWLS)

The advantage of introducing the latent model (2) is the availability of the
‘natural’ weights (u1,- - -,u,) for a weighted least squares method, based on
var(yi|u;) = u;/3. Given the u;, the standard estimator for the regression
parameter is the weighted least squares (WLS) estimate;

Bwrs(u) = [Z wi X X;] ™ Z w;y; Xi (3)

where w; = 1/u;. This will ‘downweight’ extreme observations since it is
clear from (2) that for large y; the larger u; will need to be.

In principle, we have a linear random effects model not unlike the original
linear random effects models considered by Laird and Ware (1982). A slightly
modified version of their hybrid EM algorithm is used to obtain a LWLS esti-
mate. We treat the u; as missing data so that (y,u) represents the complete
dataset. With this complete dataset we have, with fy as ga(3/2,/2),

k
E(yilu;) = ) 2i;B; and var(yi|ui) = wif3
j=1
and we take § = Bwrs(u) given by (3). Following Laird and Ware we then
obtain the expectations of the sufficient statistics for the missing data; that
is, 4; = E(ui|B,0,9), s0

k
4 = (3 — Y ziiB5)° + 207 (4)
i=1

Finally, we maximise the complete data likelihood /(0?|y,u) to update o:
& = Zu,-/(3n). (5)
g

Combining (3), (4) and (5) together gives our algorithm for oblaining the
LWLS estimator for the linear rzgression model:

1) ,@ = [21 w,-X,-X;]‘l Y w,-y;X;, where w; = 1/11,',

2) 6% = ¥; 1/ (3n) and,

3) 6 = (yi = iy 2i5085) + 26,
The algorithm iterates over 1), 2) and 3) until convergence. Suitable starting
values should be the OLS estimator for § and the sample variance for o*.
A simulation study and real data analyses, comparing LWLS with OLS, is
presented in Section 4.



4 Examples

To begin our investigation of the LWLS estimator we simulated 50 standard
normal random variates and computed the OLS estimate and the LWLS
estimate. We repeated this exercise 1000 times and computed the mean and
variance of the sample estimates: for the OLS these are (5.9¢ —04,0.02), and
for the LWLS these are (—1.1e — 03, 4.4e — 06).

At the other end of the scale, we simulated 50 standard Student ¢ random
variates with 2 degrees of freedom and, again, repeated the exercise 1000
times. The corresponding mean and variance for the sample estimates are
(—5.4e—03,0.22) and (7.2e—03, 5.5e—05) for the OLS and LWLS estimators,
respectively.

It is quite obvious from these results that the LWLS estimator improves
quite remarkably on the OLS estimator in these two fundamental, yet com-
mon, sampling scenarios.

How does the LWLS estimator cope with contaminated data and out-
liers? To investigate this point we sampled 50 random variates from the
contaminated standard normal, obtained by adding 5 to any of the standard
normal random variates with probability 1/10. The corresponding mean and
variance for the sample estimates are (0.49,0.06) and (0.11,1.1e —04) for the
OLS and LWLS estimators, respectively.

For an analysis involving a real dataset we turn to Box and Tiao (1973,
Table 3.4.1). The data consists of 20 experiments relating the rate of a
chemical reaction to the temparature at which the experiment was conducted.
The linear model

Yi = B + fazi + €,

1s used where y; and z; denote the log reaction rate and a a measure of the
temperature for the ith experiment, respectively. Box and Tiao, within a
robust Bayesian framework, use the exponential power family for modelling
the error distribution, which includes the normal distribution.

They conclude that the normality assumption, by consideration of the
power parameter of the exponential power distribution, is valid and under
this asumption obtain an estimate for (8, ;) as (—4.013,-0.203). Our
LWLS estimator turns out to be (—4.008, —0.202).

In the same chapter of their book, Box and Tiao reanalyse the Darwin
dataset (Table 3.2.1) consisting of 15 iid observations. They again make use



of the exponential power family to model the observations. They conclude in
this case that the normality assumption is not valid and the true distribution
shows signs of leptokurticity.

The mean of the data is 20.933 and the LWLS estimate is given by 26.469.
This higher estimate is in keeping with the results of Box and Tiao (see,
Figures 3.2.3 and 3.2.6).

5 Discussion

In this paper, we study scale mixtures of uniform distributions: which coin-
cides with the family of unimodal, symmetric densities on the real line. We
introduce a new (mixture) family of distributions which is ideally suited to
the modelling of location, scale and kurtosis.

A new estimator for the linear regression model, the Latent Weighted
Least Squares (LWLS) estimator, is developed which is simple to code and
fast to execute. Illustrative analyses exemplifying the method are provided
and demonstrate vast improvement on the OLS estimator in a number of
sampling scenarios. We encourage its widespread use.
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