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Abstract

Multi-stage stochastic linear programs can be formulated for
problems in financial planning, corporate decision making, economic
policy analysis, and many other areas. Deterministic equivalent linear
program representations of these problems, however, become excessively
large. This paper presents methods for solving these problems based on
decomposition and partitioning. Computational results on a set of
practical test problems are reported to show the algorithms' potential

usefulness,
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Many practical problems require that optimal decisions be made
periodically over time, These problems can often be formulated as multi-
stage (or dynamic) linear programs. The resulting programs have a stair-
case structure that may be exploited by decomposition (Ho and Manne [1974]),
basis factorization (Fourer [1979]),partitioning (Rosen [1963]), and other
computational techniques.,

Difficulties may arise, however, in implementing solutions from
these programs because of uncertainty about some parameters of the program.
These random coefficients are often replaced by their expected values, but
the solution of the corresponding expected value program may not be optimal
for the stochastic program. In fact, no linear program which allows for
only one value of each coefficient may lead to the optimal solution
(Birge [1981]). In this case, a stochastic program must be solved to obtain
the optimal solution. The deterministic equivalent linear program is
usually very large, and standard solution procedures may prove very costly.

In this paper, we present two methods for solving these problems
based on a nested decomposition (or outer linearization) approach and a
piecewise linear partitioning strategy. Both methods can be viewed as
approaches to the dynamic programming formulation presented in Section 1.
The outer linearization approach of Section 2 is an extension of the Van Slyke
and Wets [1969] method for the two stage problem. The piecewise strategy
in Section 3 is presented as a partial resolution of a degeneracy problem
inherent in the method of Section 2. Section 4 describes computational

experience on a set of practical multi-stage problems taken from Ho and

Loute [1981].



1. Problem Formulation

The stochastic linear program with recourse was first formulated by
Beale [1955] and Dantzig [1955]. We consider the multi-stage version of

this problem given by

i = + +...+ o e 0
min z = ¢ %) + EE [czx2 EE [c3x3 Eg [CTXT] ]
2 3 T
subject to:
A%y = by
SBE ot Ax =&y
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X, >0, t=1, 2,...,T,
E e, t=1,2..,T, (1)
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where . is a vector in R t fort =1, 2,..., T, bl is a vector in R l,
Et is a random mz—vector defined on Et’ t=2,00., T, and At and Bt are
correspondingly dimensioned known real valued matrices. The vector x.l
represents decisions made in the firét period, and vectors x_represent

decisions made in future periods dependent on the outcomes, Ez,..., Et,

and previous decisions, Xpseens Xoo "Eg"represents the expectation with

t

t
respect to Et.



The decision process in a practical problem is to determine a first

period decision which minimizes the sum of current current costs, c X5 and

1
the expected values of all future costs until some time T. Solution methods
for this problem have been most thoroughly explored for the case of dis-

k
crete distributions, where Z_= {Si, Ei,...,itt}, and T = 2, Dantzig and

t
Madansky [1961] proposed that the dual of this problem be solved using
Dantzig-Wolfe [1960] decomposition. Another approach in Kall [1979] and
Strazicky [1980] is to solve the dual using a basis factorization scheme,
Van Slyke and Wets [1969] also proposed applying outer linearization, or
Benders' decomposition (Benders [1962]) t6 the primal problem. In
Section 2 we present an extension of this method for the case of general T,

Other methods have been applied to the simple recourse problem in
which T = 2 and A2 = [I ; - 1], Everett and Ziemba [1979], for example,
suggest a modification of the Frank-Wolfe algorithm, and Wets [1975] has
suggested a method based on approximation by splines. Methods for this
class of problems are important since the general form fits many problems
in dynamic economic planning and financial planning.

For the multi-stage case, Beale, Forrest, and Taylor [1980] have
considered a specific production model. In their model, several products
are produced and either sold or kept in inventory according to the result
of a stochastic demand vector realized after the production decision has
been made, They show that an approximation procedure incorporated into a

backward recursion can produce solutions very close to the exact dynamic

program solutions,



We consider the general multi-stage problem (1) as a dynamic program

with stages, 1, 2,..., T, and states V. = Bx,t=1, 2,.00., T-1.

tt

The value at t = T is defined as

oy Opp) = B [eg0g s Ep),

where

CT(YT_l, ET) = min c_ X

subject to: A x, = 7

X
v
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The solution to (1) can then be found recursively by

Zt(yt—l) = Egt[Ct(Yt_l, gt)]’

where

Ct(yt_l Et) = min cx +z_.(y)
(Xt’yt)

]
Y
+

<

subj. to Atxt ¢ r-1°

x> 0.

At t = 1, we define o = 0 and El

bl’ and obtain
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The optimal solution, xI, of (6) gives us the optimal set of first
period decisions. Of course, the dimension of y, may make direct imple-
mentation of this procedure impossible. In the follqwing sections, we
present outer linearization and piecewise linear approximation methods

for this dynamic programming framework.,

2. A Nested Benders' Decomposition Method.

A
Decomposition methods generally cons.st of outer linearization, as

in Benders [1962], or inner linearization, as in Dantzig-Wolfe [1960]

decomposition. Geoffrion [1970] has described these relationships and
Kallio and Portius [1977] have discussed them in terms of dynamic linear

programs. Ho and Manne [1974] have also formulated a nested decomposition

approach of applying inner linearization to successive stages of dynamic
linear programs,

In this section, we describe the application of outer linearization
to the primal problem in (5). This procedure can also be described as
applying inner linearization to the dual of (5). This methdd is based on

the following equivalence:

Proposition 1. The mathematical program (5) is equivalent to:

min C X, + Qt+l(xt) (6)
| - + ]
subj. to At X, Et Bt—l X1 (6.1)
>
D, x_ 2 Xt, (6.2)
where Qt+1(xt) is a real-valued convex function, Dt is an m_ X0 real-
matrix, and At is a real m_,, vector.



Proof. See Wets [1966], Proposition 6. .

The constraints (6.2) are known as feasibility cuts and are used to

induce a feasible solution at stage t + 1. They can be constructed

sequentially by noting that if the problem at t + 1 is not feasible for §€

. o . >
a solution of (6), then for some Et+l there does not exist X4l 2 0 such
that At+l Xyl = §t+l + Bt X s and Dt+l X 2 kt+l' In this case, there
. Al a2 .
exists a vector (Ot+l’0t+l) such that:
~1 ~2
Tet1 At+1 * Ter1 D1:+1 <0 )
6 D <0 (8)
t+1 t+l - 7
and LG BE) 45 N 0 9)
t+l e+l tTt t+l “t+l ’

A constraint of the form,

Al Al g A2 A
- >
0t+l Bt e = Ot+1 E;t+l + G1:+l )\t+l’ (10)

can then be added to (6.2) and Dt and Xt can be formed row by row as

, . 1 2 i1 e
consecutive solutions X5 X e, are used to test feasibility at stage

t + 1.

The convex objective function in (6) can also be handled by successive

approximations. First, we rewrite (6) as:

min C X, + Ot (11)
subj. to Atxt = Et + Bt—lXt-l’ (11.1)
D x, > A , (11.2)
- Q(xt) + @t > 0, (11.3)
X, > 0, (11.4)



We wish to show the following proposition.

Proposition 2. Constraint (11.3) in problem (11) for t = 1, 2,..., T,

may be replaced by linear constraints of the form

-1 .
t'{"i tht @ z pt+].’ j=1, 2,..., P, (12)
< <o, gl - -1y
where p < mo o, nt+l is an m_,, + 1 - vector, and pt+l is a constant.

Proof., The significance of Ei;i and 5t+1 will become clear in the proof.

We assume that the proposition holds for all t > T + 1. Tt is vacuously

true for t = T since Q (x..) = 0, and we have OT > 0.

T+1 T

Assume that xi is an optimal solution to (11) for t = T in which

(x ) has been replaced by a zero vector.
T+1

Let the optimal solutions of the stage T + 1 problems with X = x%

T+l(ET+l) @T+l(ET+1))and let the corresponding dual multipliers

bl 3’]‘ ’ 1
be ("T+1(€T+1) r+1(51+1 b1 Gpyp)) where w2 (€ + Bx)

3,1 1 1
) (A T+l(£r+1)( T+2(£T+1)) - C1'+1 xT+l(gT+l) + OT+l(gT+l)

be (x

)+

T+l(ET+l T+1

and where 5T+2(€T+1) is the vector of (pT+2) for =1, 2,0eey P. If we

have some other feasible solution to (11), §T % xi, which leads to gptimal

A2 A
), 3

multipliers, (ﬂ T+l(€T+1)’ L)

T+1° (ET+1 (£T+l))’ at T + 1, then

Al ~ A2

TTT+-1(gr+l)(€r+l + BTXT) + ﬂr+1(€

) (A7)

T+1 T+l

A

A3 —
Tt Crgn) Cryp Gyg))

R 1
ﬂT+l(€T+l)(€T+l + BT XT) + TrT+l(gr+1)( T+l)

~3 -
toT G Prpp Gryg)) (13)



N

where 5T+2 consists of the union of linear constraints required at T + 1

1 A
for the xT and xT cases,

Since QT+1(XT) is the expected value of the left hand side of (13),

we obtain

(x ) >p ~l 1 + p2 1 + p3 1 + ﬂl B X 14)

T+l T+l T+1 T+1 ™+l "t 1

for all QT, where

-1,1
o = E [m (E ) e 1, (15.1)
T+1 £T+l T+l T+1 T+l
bt s mhle ) e (15.2)
T+1 £ TH.T+1 'Hl’ *
T+1
-3,1 _ 3,1 -
Pry1 = EE [m T+l(gT+l) T+2(€T+l)]’ (15.3)
T+l
and
EREE I L GO E (16)
T+1
-1 -1,1 -3,1 i
Letting Or41 = P14l + pﬂ_l + 0 a1 ve have that for all (xT, OT)
feasible in (11) for t = T,
-1 -1
GT 2Py Ty B¥ee an

This inequality leads to a method for constructing the constraints
in (12). We successively add a constraint of the form (12) whenever we
solve (11) where linear constraints replace (11.3) and find an optimal
. . I ad I =3 =] .
solution (XT, OT) such that @T Ort1 + WT+1 i S The constraints we

add lead to an outer linearization of QT+1(XT).



Murty [1968] showed that there is an optimal solution of (11) in

which x_ has at most m + mo + 1 nonzero elements. Therefore, the greatest
T

number of extra linear constraints in (11.3) required at the optimum is

m + 1., This completes the induction step. '

T+1

The modified version of (11) is then

min C X, + @t (18)

|
Yy

subj. to A X + (18.1)

tt =5 v B R

DXt > A (18.2)

-1.4 =] 3
-TalBx. v O 200sd=1, 2,005 (18.3)

X > 0. (18.4)

The constraints in (18,3) are successively added to (18) until a solution,

* 5
(x:, Ot) is found that satisfies Q(x:) < O:.

The outer linearization interpretation of the method can be seen in

Figure 1. Linear supports are placed under the convex function Qt+l(xt)

%
until the value of @t from (18) is such that @i = (xi). The method

Qt-l-l

can also be shown to be an application of Dantzig-Wolfe decomposition to

the dual of (5).
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The complete algorithm consists of first obtaining a feasible solu-
tion and then successively solving (11) through the approximation (18)

from period t back to period T.

Algorithm 1.

Step 0. Set up the following problem for all t =1, 2,..,, T,

and all Et,

min c. X +'@t (19)

subject to AtXt = ét, (19.1)
X > 0, (19.2)
t ~—
*
If there is no constraint on @t, we let @t = -

and let xt solve the problem omitting @t.

Step 1.  Solve (19) for period 1 and El = b Let the resulting

10

* . .
optimal solution be x If the period 1 problem is infeasible,

1.

stop, the problem is infeasible. If not, replace each

52 at period (2) by 62 + lei. Solve each of these period
2 problems. If any is infeasible, then add a feasibility

cut as in (10) to the period 1 problem in (19) and repeat.
If every period 2 problem is feasible , then let t = 2 and

go to Step 2.
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Step 2. For all distinct solutions, {xi(Et)} at period t,
solve the t + 1 period problem by replacing each

. %
£ in (19) for t + 1 by gt+l + xt(Et). If any of

t+l
these is infeasible, then add a constraint of type

(10) to the corresponding period t problem and solve
that problem, If the corresponding period t problem

is infeasible, then let t = t - 1 and (a) repeat Step 2

if t-1>1, or (b) go to Step 1 if t -1 =1, If

the period t problem is feasible, repeat Step 2.

If t <T- 2 and all t + 1 period problems are feasible
then let t = t + 1 and repeat Step 2. If t =T~ 1

and all t + 1 period problems are feasible, then set

6t = - ® to correspond with every solution, Qt,

t=1, 2,0es, T~1, and go to Step 3.

Step 3. Find T +1(X§) and p (x:) for the current solutions of

the t + 1 period problems for every period t solution

*

x . If OF

*
Y .
. ¢ < pt+l(x Y + 1 (x tht, then add a

constraint of type (12) to the period t problem (19)

for which x: was optimal. Do this for each x: and

solve each of these period t problems. Again, use

the resulting solutions and solve all period t + 1
problems, If t < T -1, let t=t + 1 and go to Step 2.

If t =T - 1, repeat Step 3.

* = é *
If @t t+l(x Y + 7 (x ) B x¢ for all x* e then if t > 1,

let t

t - 1 and repeat Step 3, and, if t = 1, then,

Stop, the problem is optimal.,
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Steps 1 and 2 in the algorithm are called the foreward pass

through all periods to obtain feasibility. Step 3 is the backward pass

in a dynamic programming type recursion. We note that we have made no
mention of unbounded solutions in the algorithm. This may be resolved
by the procedure in Van Slyke and Wets [1969], but, in practice, we

replace (19.2) by lt <x < u, where ut(i) < 4+ o for all i and Qt(i) > -

t
for all i, This bounded variable problem then does not admit an un-
bounded solution, although some adjustment for nonbasic variables at
their upper bounds must be made in the feasibility cuts (10).

We note also that the number of possible solutions in one period

-may be infinite if £ 1is allowed a continuous distribution. In practice,

t K
1 ;2 t S S |
e Et,..., Et } and that P(Et = Et) = p,. We also

we assume that E = {§
assume that gt and €t, are independent random variables for all t + t.
With these assumptions, it is clear that the algorithm proceeds back
from t to t - 1 after a finite number of steps and that hence, the
algorithm converges finitely.,

The repeated structure of the constraint matrix, At’ in (19) for
all realizations of the random variable, Et, allows us to avoid solving
each problem independently. ‘Instead, a single problem may be solved to
yield a dual feasible basis and other problems for which this basis is
also primal feasible may be found parametrically. This procedure is
described in Garstka and Rutenberg [1973]. 1In our implementation of
Algorithm 1, this has only been done for t = T since the problems for
t < T may have additional constraints. They could also be handled, however,

using -a more complex data structure, in which, a working basis cor-

responding to At was stored and updated for different additional constraints.,
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Another difficulty that arises in implementations of Algorithm 1
is that many passes between a master problem at period t and a subproblem
at period t + 1 may occur without creating éubstantial changes in the
period t problem solution. One reason for this extra work is that addi-
tional constraints on the period t problem allow more than m period t
columns to become basic. This causes degeneracy in the period t + 1
problem, Dantzig and Abrahamson [1980] observed this behavior in their
experiments on deterministic multi-stage linear programs. They noticed
that the period t problem basis changed very slightly from one pass to
the next, and they theorized that this process could be improved with
more interaction between the period t master problem and the period
t + 1 subproblems. The basic degeneracy results are in the following

propositions.

Proposition 3. If a constraint of the form (10) is added to (19) and is

binding for some optimal solution xz, then every primal basic feasible

solution of (19) for t + 1, where (19.1) is replaced by

: _ & *
Al Fer1 = Senn B (20)
is degenerate.
Proof: For the binding feasibility cut, we have
Al * _ Al 2
S M (21)
o & B . :
where it is assumed that Xt+1 = 0. Now, let At+; be a ffa31b1e basis of
. . 2 * B B -1 *
. - + .
(19) with right hand side Et+l + Bt X, and let X4l (At+l) (gt+1 tht)

Multiply each side of (20) by 8% to obtain

A1 8 B Al
=0

A *
Op Appp ¥ep = Op (Bpgp ¥ BX) = 0. (22)
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A

Al ~l ~1 ,B
, . < < 0,
Since Ot was found previously such that Gt At+l < 0, then Gt At+1 <
A N
~1 B . B . . ~1
0y Ay + 0, Eowever, since A ,, is a basis and 0 4 0. Hence, there

. B oy
exists some Xt+l(_']) =0, .

Proposition 4. If two constraints of the form in (12) are added to (19)

*
and are binding at an optimal solution, (xt, Ot), then every set of solu-
tions of (19) for t + 1 with right hand side in (19.1), €t+l + th:, such

* _ - =1 * .
= + 7
that Gt Pepr ¥ T tht’ includes a degenerate solution for some

€t+l € t+1°

{1

Proof. Let the binding constraints be

and
- Eiii Bxp + e: ) 5i+1‘ (24)
Let the optimal bases at t + 1 be the set {A§+l(€t+l)}and let the cor-

*
responding prices be {Wi;l (Et+f}(where again additional constraints have

been omitted in the period t + 1 problem), This set of prices must be

. . ~1,1 -1,2
distinct from one of the sets which generated “t+l or T .

constraint (24) was added to (19) for period t, (23) had to be satisfied

because, when

and (24) had to be violated. Without loss of generality, let the
current set of prices be distinct from those in (23) and the same as

those which generated (24).
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B

t+l ®

) and let xB

Let c (& e+l

t+l

Nt

€ ) AL )

t+l t+1 t+1 t+1 t+l

B

(At+1

€ + Bt x:). It follows that

t+1 t+l

B B

B ) Fopg Epay))]

E £4+1 e41

[’(E
€t+1 t+l " 7t+l

) (

E [’(E
£t+1 t+1 " 7t+l

) (€

*
41 T B ¥

E il JE ., +B **)1
£ t+1 e+’ e T Tt

B B

B 41 Cra1) Fetr

e T E )@ CNE (25)

e+l t+l

From (25) and the definition of cB (&

41 ), we obtain

t+l

B B B
f: (cepr Cran) - t+l(gt+l) Aer1 Cerr)) X Gean) FED =0, 26)
T+l

where F is the distribution function of £

t+1°
Now for ﬂl’ (E ) dual feasible cB &_..) - L, (E ) A A2 €.,.) >0
t+1 A = 2 R 2 o t+1 t+17 el e+l -
B
and Xt+l(€t+1) > 0.  Since {Wt+1 t+l)} + {ﬂt+l(gt+l)} as assumed above,
. e B
there exists some gt+l such that ct+l t+1) + t+l(Ft+l) t+l(£t+l) and,

therefore, x (E

41 ) must be degenerate, .

t+l
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This degeneracy can force the period t + 1 subproblem to be overly
restricted. Abrahamson [1980] suggests an alternative in the determinis-
tic model in which columns are passed foreward from the master problem
to the subproblem, This method does not directly apply to the stochastic
case as it is not known beforehand which value of €t+l will obtain a
different optimal basis. A proposal to allow for this coupling is
presented in Birge [1980] but it creates an additional intermediary
problem between the master problem of period t and the period t + 1
subproblems., This difficulty motivated the development of the following

algorithm based on the piecewise linearity of Q (xt) for discrete

t+l

r L]
random vectors gt+l

3. A Piecewise Linear Partitioning Method.

The approach followed in this section is restricted to the case
where all random variables are discrete. We again will optimize between
a master problem in period t and a subproblem in period t + 1, but the
two problems are more closely connected. The basic idea is similar to
that used by Rosen [1963]. A convex function is minimized on a sub-
region within the feasible region and a boundary or interior point solu-
tion is found. If the optimum occurs at a boundary point then optimiza-
tions are performed in all adjacent subregions to that point. If no adja-
cent region yields a better value or if the solution is interior, then
the procedure stops and the current point is optimal.

We begin the development of this procedure by discussing the basic
optimality conditions between the t + 1 subproblem and the period t

master problem. Let the set of optimal bases of (6) for t + 1 be
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B,k
B,2 el )
{At+1’ At+l""’ At+l }. We note that:
‘e 1,1 x
t+1(X ) = izl Py (€ t+l)(At+l Crpp T B2 27)

*
for X, an optimal solution from period t. Because of the dual feasibility

B,i,-1 _ i
of e 1Bl T T
Q. (x) = k§+l LB oyeh et 4 x) (28)
e T e e e e T S
as long as
B,i-1 ,,i
(A3~ By +Bx) >0, (29)

Hence, Qt+l(xt) is linear while (29) is satisfied. We can, therefore,

solve (6) on linear pieces of Q (x ) by solving:

t+1
0 kt+l j B h|
. _ . ,
min oz = Qe ¥ jil Pra Con o) B %
ket ;
+ jzl Pip t+1(At+l) gt+1 (30)
subject to
- *
Atxt Et + Bt—l X 1 (30.1)
@iy g s @Byl o (30.2)
t+1 o t+l t+1° seeesk t+1°
x > 0. (30.3)
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The solution of (30) allows the choice of X, to be optimal in one
step for a given set of bases in t + 1. The advantage over the decomposi-
tion method is that this process may avoid switching among period t
solutions which correspond to a single set of period t + 1 bases.

After solving (30), we obtain an optimal solution, xg, and consider
the set of binding constraints in (30.2). We define

T = (@, D 1esh™T a6, 9 o x = - tanh ™ 1o en

t+l t+l

where i corresponds to the binding row and j corresponds to the binding
subproblem at t + 1, a row of a matrix M is denoted M(i, *), and a
column is denoted M(*, i). These are the places of degeneracy in the
subproblems. We next order the pairs (i, j) € T lexicographically and

write T = {Tl, Tz,...,Tp}.

If T = ¢ then x: = xo and c xO +Q

0
<
t tt t+l(xt) =€

X, + Q ,.(x ) for all

t t+l Tt

. * . .
X, by convexity, so x, is optimal in (6).

If T 4 ¢, consider T = (il,jl). We have

= ™ 6 . o2
and . . ' |

et 0 9 - g o,

N3, N,3,
where X 4 are nonbasic variables in subproblem jl at t + 1 and At+l

is the partition of At corresponding to those variables,

+1
B’jl

We want to force x
t+1

(il) from the basis in order to enter an

adjacent feasible region. We find the entering variables x_,.(s), accord-

t+1
ing to the dual simplex criterion (Dantzig [1963]),
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j J'
1 .
Ceap (&)~ Mg A Gpes) . Cen ) - L+l(1l’ 2
(i,,s) j3A(i1,3) < 0 (i,,3)
t+1 1 4T t+l 1
I GRS SreR
where At+l(1l,3)'- (A At+l » )1 ). (34)
B,
) Pivoting xt+l(s) in to replace Xy (11) results in a new basis
B’jl B!jl
At = At+l * n, where n is an elementary matrix. We next form the
B,j B,j
following auxiliary problem by replacing At#l with A ll
0 kel ;B B,j 4
min -z, = [e + jzl Py Ct+1(At+l) Bt] £
fen ] B J 3
b
* jzl Pen t+l(At+l) e B39
subject to
_ *
_Atxt = Et + Bt—l X 1 (35.1)
9J J -
@ T x> - @hT L -k, (35.2)
X, > 0. (35.3)

aJ = sJ . .
where At+l At+l for all j * q-

Problem (35) has a different objective function and some different

constraints from (30). xg is feasible in (35), but may not be optimal.

The algorithm proceeds by solving (35) to obtain §2. If Eg < zg, then

- -0 e . .
we let X=X, and z =z, form a new set T for the binding constraints

in (35.2) and solve a new auxiliary problem for Ei compared with zt.
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If 22 > 22’ then we proceed to (iz, j2) €T and form a new auxiliary
problem pivoting to an adjacent basis in jz. We increment the index on 2z
, , M
whenever a better solution is found until we obtain some Z such that
-M M . . M, . .
no z, < Z e In this case, the solution X, is optimal in (6).

. 0 1 M
The procedure creates a decreasing sequence of values, z, > z, Seeed> P

so that, because there are only a finite number of basis sets for the
period t + 1 problems,it must converge finitely. An example of the route
of the optimization is in Figure 2. The problem is solved along piecewise

linear sections of the curve Q (xt). It terminates when no improving

t+l

direction is found.

Substantial reductions in storage can also be obtained in this
procedure by only using distinct bases in the sets of constraints, (30.2)
and (35.2). Many period t + 1 problems may have the same optimal basis.

B,%

We let B = {At+l’ 2=1, 2,..., q}, be the set of distinct optimal bases

in period t + 1. We define

_ i
Py = I Py (36)
jeJ(R)

— s, B,j - B,%
where J() = {j: At+l At+l}'

We also need

L. B, %.~1

0 @ = - (AT E 1) = max (-2 1@, 6n)

t+l C jer) t+1 t+1

the ith component of the right hand side in (30.2), and we store 3 (i, %)

for all i and 2, (30) then becomes:
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. 0 _ 4 9 B, 0.1
min -z, = [e, * Qfl Py St @) B %
o B,jy-1 ]
- ’
* jil P Sen i) G 99
subject to
- *
Atxt Et + Bt—l X1 (38.1)
B,%, -1 L, )

(At+l) tht 2 pt+l, 2’ = 1,0-0, q, (38.2)
x, > 0. (38.3)

The elements in T are sorted by (i, E(i, 2)) for binding constraints
on (38.2) and, whenever a new basis is found, it must be added to B. We
note that the constant term in the objective of (38) must be updated for
each individual €2+l but that this does not affect the optimization. The
same iterative procedure as above can again be applied. The modification
can, however, substantially reduce the number of constraints. A parametric
procedure can again be used to efficiently generate the set of optimal
bases in the period t + 1 problem.

The entire multi-stage piecewise algorithm proceeds as in the

decomposition by first obtaining a feasible solution and then iterating

backward to obtain optimality from period t to T for t =T -1, T - 2,...,1.

Algorithm 2.
Step 1. Follow Steps 0O, 1, and 2 of Algorithm 1 to obtain a
feasible solution for the entire problem. Let t =T - 1,

let jt =1 for all t and go to Step 2.
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J
. . _ ot
Step 2. Solve the i, problem of the form in (38) for Et Et and

* . . 3
X1 = xt_l(Jz,...,Jt_l) in (38.1), where xt-l(JZ""’Jt—l)

is the current solution corresponding to realizations,
j2 jt ,
Ez sesey Et—l’ of the random variables. Construct T,

let & =1, and go to Step 3.
Step 3. If & > p, (the cardinality of T,

A = max{lj A s.t. <k, for 2 <1<t -1}

R

If A=1and t = 1, stop, the curreﬁt problem is
optimal, If A =1, and t > 1 let t =1t -~ 1, jt =1
for all t and go to Step 2. If A > 1, let jk = jk + 1,

let jt =1 for all t > XA and go to Step 2.

If % < p, set up the auxiliary problem corresponding to (38)

-_A

with Afii substituted for Az’J. If the resulting objective

-0 0 0_ -0 0 _=0
value z, < Ze let ZoT 20 XS X, and go to Step 2., If
Eg = zS, let 2 = & + 1 and repeat Step 3.

Unboundedness is taken care of as in Algorithm 2 by bounding vari-~
ables, The algorithm converges to an optimal or infeasible solution
because each period t master-period t + 1 subproblem is solved finitely,
and t is decreased whenever all period t problems have been solved.

We note that if several bases are adjacent to a single basis in
forming the auxiliary problem, then we consider each of these and cor-
respondingly increase P to allow for duplication. We note also that
primal feasibility is maintained throughout Steps 2 and 3 of Algorithm 2
so that additional feasibility constraints are not required after Step 1.

Furthermore, we observe that the bases for period t problemssteadily
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increase in size as they are passed back from period T because they must
ensure feasibility for all subsequent periods. In this case, then,
Algotithm 2 solves much larger problems than Algorithm 1 as additional
periods are incorporated into the solution. This also makes it difficult
to use the method of only keeping‘distinct bases for any period but the
last.,

Algorithm 2, therefore, has the advantage of maintaining some con-
nections between master and subproblems and of preserving primal feasibility.
It may, however, be less efficient on these problems because of their
increased size. In the next section, we compare these algorithms on a set

of test problems.

4, Computational Results.

Two FORTRAN programs, NDST3 and PCST2, were written to implement
Algorithms 1 and 2, respectiﬁely. The linear programs in (19) and (38)
were solved using LPM~1 as a subroutine., LPM-1 was written by J. A. Tomlin
and revised by G. Kochman at the Systems Optimization Laboratory, Stanford
University. It employs compact storage of non-zero entries in the co-
efficient matrix, performs an LU~decomposition of the basis, and uses a
merit counting sort to maintain sparsity in the inverse(Pfefferkorn,and
Tomlin [1976]).

NDST3 currently handles problems with up to T = 4 periods and up to
1,000 realizations of the right hand side vector. Each period t problem
is limited to 350 rows and 600 columns. The number of nonzero elements
in any of these problems is less than or equal to 3,000, NDST3 solves
period T problems by parametrizing the right hand side and only storing

distinct bases. For t < T, however, each problem is solvedindependently.
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PCST2 currently applies only to the 2 stage case. In attempting to
implement the code for T > 2, it was found that storage requirements were
greater for the same size problem if the problem was broken into T > 2
periods, instead of solving it with T = 2, The size of the individual
problems at period t would also not be reduced. In the case of Algorithm 2,
then, it was assumed that unless a data structure is used which enables
one to keep only distinct bases for t < T, the problem should only be
solved in the two-stage format. PCST2 allows for 125 realizations of the
right hand side subproblems and handles the same size subproblems as does
NDST3. PCST2 also uses parameterization in the second period and stores
only distinct bases.

The test problems used are taken from Ho and Loute [1981]. They
are practical deterministic multi-stage problems with staircase structure,
as in the constraint matrix of (1). Thesé problems were chosen instead
of randomly generated problems because it was thought they would be more
representative of actual applications. For comparative purposes, all
problems were limited to 3 periods and the number of right hand side
realizations was limited to 8. This size limitation enabled the problem
to be solved using a standard linear programming code on the full deter-
ministic equivalent problem and provided a check on solution values. It
shouldbe noted, however, that the greatest advantage from the techniques
would probably come from problems whose full deterministic equivalent

linear programs were too large for standard mathematical programming packages.
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The problems were taken from the following areas of application:

Problem Application

SC205 Economic development,

SCAGR7 Agricultural planning,

SCRS8 Dynamic energy modeling,

SCSD8 Structural design optimization,
SCTAP1 Dynamic traffic assignment,
SCFXM1 Production scheduling.

Their statistics, where "Totals" refers to the size of the deterministic
equivalent linear program, appear in Table I,

The values in Table I are the result of solutions using the IBM
mathematical programming package, MPS/360, (IBM [1973]), on The University
of Michigan's Amdahl 470/V8 computer. The number of iterations for MPS/360
to obtain the optimal solution appears in Table IL. Unfortunately, CPU
second times for the solutions are not available for MPS/360 on the Michigan
MTS operating system., The number of iterations are given only for rough
comparisons with the results for NDST3 and PCST2. It should be noted that
these iterations are on larger problems than those in NDST3 and PCST2.

The test problems were each solved by NDST3 and PCST2 on the
Amdahl 470/V8 using the standard FORTRAN-G compiler without optimization
(The University of Michigan Computing Center [1980]). The results for
breaking the problem into 2 and 3 period problems for NDST3 are both
reported in TableIl. CPU seconds do not include problem input or solu-
tion output, "Iterations" are the number of simplex pivots and "passes"

are the number of distinct subproblems solved. (The number of
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passes is augmented only once for t = T.) Results for PCST2 are also
listed in TableII,

In the first five problems, NDS13 with T = 2 performed the best. There
appeared to be no advantage from furthering decomposing the problem into
T = 3 periods or from employing the partitioning approaching in PCST2.
These results should not be considered conclusive, however, considering
the sample size and the absence of advanced storage techniques for the
t < T cases. The basic reason for good performance relative to MPS/360
appears to be the elimination of repeated solutions for different subproblems.
In the first five problems, degeneracy also did not appear to be a problem
in- the nested decomposition approaches. PCST2 reduced the number of
passes but not enough to compensate for its solving largerproblems.

The example SCFXM1 displayed some behavior that can be especially
confounding for both NDST3 and PCST2. 1In the process of obtaining a
feasible solution, a large number of feasibility cuts (10) were generated
These cuts were very dense and hence requiréd the storage of a large
number of nonzero elements. In fact, after 23 cuts had been placed on
the period 1 problem, the maximum number of nonzero elements, 3,000,
had been exceeded. Since the period 1 problem could conceivably have m,
completely dense cuts of this type, an upper bound on the number of
elements for this period 1 problem is m,°n, or 8,100 in this case. This
number is greater than the number of nonzeroes in the deterministic
equivalent linear program.

This situation is one of the potential difficulties involved in

using decomposition or partitioning procedures. It does not appear to

be common as smaller problems have not exhibited this property Birge [1980]),
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but, in solving programs as in (1), some check on the growth of nonzeroes
should be incorporated into the solution procedure. It should also be
noted that, in general, the subproblems solved in NDST3 are much smaller

than the full linear program. For T = 2, if

(1) V(1) = number of nonzeroes in Al’
(ii) v(2) = number of nonzeroes in Bl’ and
(iii) Vv(3) = number of nonzeroes in A

3
then the linear program has V(1) + kz(v(Z) + Vv(3)) nonzero elements (plus
the objective row and right hand sides), whereas the period 1 problem in
NDST3 has at most V(1) + 0y * Il nonzeroes, where Il is the number of passes.

When [T is small as in the first five examples, this value is small.

5. Summary

Two algorithms for multi-stage stochastic linear programs were
presented. The methods were based on decomposition and partitioning proce-
dures that are common in large-scale mathematical programming. .Computer codes
for these algorithms were applied to a set of practical problems.from applica-
tions in a variety of areas. The methods solved five of these problems in
substantially fewer iterations than a standard linear programming approach,
but one problem required an excessive number of nonzero elements to be added
to the master problem, The results seem to indicate that gains in efficiency

come from reducing the number of bases stored for the subproblems and from

decreasing the problem sizes.
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Figure 1. Outer Linearization of Q
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Table I

Problem Statistics

Within period

Rows Cols Totals . ) Optimal

Problem Max Min Max Min Rows  Cols Els Den Value
SC205 13 11 14 11 190 380 701 .97 60.4
SCAGR7 15 19 20 20 320 660 | 1693 .80 832903.5
SCRS8 31 28 38 37 254 342 | 1133 | 1.3 | 123.4
SCTAP1 30 30 48 48 511 817 3814 .91 240,5
SCSD8 10 10 70 70 171 1191 4867 | 2.4 16.5
SCFXM1 92 82 126 99 1277 1915 7952 .33 | 2877.6

1 - Nonzero elements

2 - 7 of elements that are nonzero.
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Table II
Results
MPS/ |
360 NDST3(T = 2) NDST3(T = 3) - PCST2
i Ut 1t Ps CPUs It  Ps CPUs It Ps
$c205 {139 | .07 24 8 26 | 28 | 25 | .13 24 7
SCAGR7| 409 | .49 '100 |12 .61 (117 | 49 | .93 69 |11
SCRS8 | 203 | .11 28 4 29 123 | 19 | .25 28 3
scsp8 | 381 | .15 11 4 .39 |52 | 19 | .34 11 3
SCTAP1{337 | .43 64 4 76 192 | 35 | .71 63 4
SCFXML|1742 d d d e e e d d d

a - Number of simplex method pivots.
b - CPU seconds excluding problem input and solution output.
¢ — Number of subproblems solved.

d - Exceeded nonzero element limit after 40 passes and over 800
iterations. Last solution was 257 from optimal.

e - Exceeded nonzero element limit after 49 passes and over 1,000
iterations. Last solution was 357 from optimal.
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