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Abstract

Solving deterministic equivalent formulations of two stage stochastic linear programs using
interior point methods may be computationally difficult, due to the need to factorize quite dense
search direction matrices (e.g. AAT). Several methods for improving the algorithmic efficiency
of interior point algorithms by reducing the density of these matrices have been proposed in the
literature. Reformulating the program decreases the effort required to find a search direction,
but at the expense of increased problem size. Using transpose product formulations (e.g. AT A)
work well, but are highly problem dependent. Schur complements require solutions to poten-
tially near singular matrices, and so suffer from numeric instabilities. Explicit factorizations
of the search direction matrices eliminate these problems while only requiring the solution to
several small, independent linear systems. These systems may be distributed across multiple
processors. Computational experience with these methods suggest that substantial performance
improvements are possible with each method, but the least computational effort is required by

the use of explicit factorizations.



1 Introduction

Many practical problems with uncertain parameters can be modeled as stochastic programs. Some
examples include cash and portfolio management models (Mulvey [34]), electric power genera-
tion capacity planning (Louveaux [28]), and forestry management (Gassman, [19]). A survey of
documented stochastic programming formulations can be found in King [27]. Most basic among
stochastic programs are Stochastic Linear Programs (SLPs) which are the stochastic extensions of
standard linear programs.

Even small linear programs may lead, however, to large SLPs and extensive computational
requirements since the size of these problems typically grows exponentially with the number of
stochastic parameters in the formulation. The recent advent of interior point methods for the
solution of large linear programs (Marsten, et.al. [30], Carolan, et. al. [10], and Monma and
Morton [33]), however, holds great promise for the efficient solution of these problems. The basic
requirement is the efficient solution of a sequence of large, symmetric, positive definite systems of
linear equations. Generally, the solutions to these systems are obtained by factoring the coefficient
matrix into some equivalent triangular matrix and back solving with a given right hand side.
The ease with which the factorizations are obtained decreases significantly as the density of the
coefficient matrix increases. Unfortunately, the structure of SLPs can lead to quite dense systems,
limiting the use of interior point methods for their solution.

The purpose of this paper is to review various methods for improving the efficiency of solving
the linear systems associated with (two stage) Stochastic Linear Programs, and report both serial
and parallel computational experience with one particularly promising method described in Birge
and Qi [6]. This method has been shown to have a worst case computational complexity at least an
order of the number of variables better than that of the standard Karmarkar algorithm. In Section
2, we review the structure of stochastic linear programs with fixed recourse and the computational
requirements of interior point programs. In Section 3, we look at methods for improving the running
time of the interior point codes, and focus on the Birge and Qi method. Computational results
appear in Section 4. A brief summary is contained in Section 5.

2 Preliminaries

2.1 Stochastic Linear Programs

Two-stage stochastic linear programs with fixed recourse that are defined over a discrete probability
space have the general form

minimize ¢¥zo + Q(o,¢)
subject to Agzg = bg, (1)
Zo Z 07

where Q(zo, ) is a recourse functional describing the expected costs of undertaking a specific action
zo before the uncertainty characterized by the random variable £ is resolved. The expectation of
the recourse cost is obtained by

N
Qzo,€) = Y pQ(z0, &),
=1
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where p; is the probability that the [th scenario occurs (i.e. p; = P[(§) = &) where § is a realization
of the random variable £, defined on (Z, A, P)), and Q(zo, &) is the recourse cost obtained by solving
the following recourse problem:

Q(zo,&) = inf{diy | Wiys = by = Tizo, 1 2 0,1 € R™}, & = (di, b, T, W), (2)

for each scenario { = 1,...N. Here, a decision zq is made before £ is known, and a “corrective”
optimal action y; is taken after £ is known. The cost of the second action is Q(z¢,&;), and the
expected cost with respect to the random variable £ is Q(zg,€). Note here that the solution to
Q(zo,&) assumes that zo has been fixed. This nonanticipativity restriction requires that all first
stage decisions are invariant with respect to future outcomes.

Substituting the recourse program into (1) and simultaneously minimizing over (zo,y1,...Yn),

we obtain N
minimize ¢lzo + i cfu

subject to Aoz =0 3)
Tizg + Wiy =b I=1,...N
Zo, (] Z 0’

where cg, 29 € R™, T € R™X"0 Ay € R™OX™0 W, € R™MX™ clT = plle € R forl=1,...N. Note
that this problem has n = ng + Y1, n; columns and m = mg + YIv.; m; constraints. For purposes
of discussion, we assume that Ay, W; have full row rank, m; <n;,l =0,...N, and ny < Z{il ny.

This problem, classified as a dual block angular linear program, was first studied by Beale [4]
and Dantzig [14]. Several special purpose algorithms for solving linear programs with this special
structure have been developed, including the L-shaped method of Van Slyke and Wets [39] and the
decomposition method pioneered by Dantzig and Madansky [15]. Interior point algorithms such as
those proposed by Karmarkar [26] and Marsten, et. al. [30] applied to these problems have been
discussed by Birge and Qi [6], and Carpenter, et. al. [11].

2.2 Interior Point Methods

In the last decade, several breakthroughs in general purpose linear programming algorithms have
been made using path following methods [21]. Karmarkar [26] pioneered these breakthroughs with
the first algorithm that could be proven to converge to an optimal solution in polynomial, or
O(n?m?L) time, where n is the size of the problem and L is a measure of the problem’s data. By
contrast, the worst case complexity of the simplex method cannot be bounded by a polynomial.

For the purposes of discussion, we focus on what is generally called the dual affine scaling method
[1] as applied to the dual-block angular program described above. Consider a linear program in the
following standard equality form:

(P) minimize ¢’z

subject to Az = b,
z >0,

where A € R™*™ and has full row rank, b € R™ is a resource vector, and ¢ € R" is the objective
function vector. The dual affine variant finds an optimal solution to the dual (D) to the problem



(P):
(D) maximize b7y
subject to ATy <eg,

where y € R™ is a dual vector to the equality constraints of (P). In general, we could also re-write
(P) in the polyhedral inequality form of (D) and apply the same algorithm. In this case, the
method performs the same steps as the procedure called primal affine scaling ([40] [3] [16]). The
only difference is in the form of the matrix factorization ([8]). We can, therefore, use simply affine
scaling to refer to these methods.

Applying affine scaling to problem (D) requires an initial interior point y° that satisfies dual
feasibility (ATy® < ¢), and successively iterates on a current point to find another interior point
with a better objective function value. The algorithm proceeds as follows:

1. k = 0. Select a stopping criterion (e.g., Stop if 6Ty*+! — bTy* < €, where € > 0 is a small
positive number.

2. Stop if optimality criterion is satisfied.
3. Calculate dual slack variables: v* = ¢ — ATy*.

4. Calculate the search direction, which is a function of a Newton step taken toward the “center”
of the feasible region and a steepest descent step in some transformed space:

(a) Let DF = diag{(1/vf),...,(1/vk)}.
(b) Let dy = (A(D*)?AT) b
(c) Let dv=—-ATdy

5. Calculate a step size:

(a) Let @ = ¥ x min{v¥/ - (dv); : (dv); < 0,i=1,...,m}
Here, 0 < v < 11is a step size parameter to insure that the next iterate will remain interior
to the feasible solution set. For most practical purposes, 0.95 <y < 1 is sufficient.

6. Update dual variables, primal variables, and counters:

a) Let y*t! = ¢* + ady
b) Let zF+! = (D*)Xdv
c) Let k=k+1

d) Goto 2

(
(
(
(
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The vast majority of the computational effort required in the above procedure is to calculate a
solution to the system (AD2AT)dy = b (the iteration counter will be dropped whenever the context
is clear), or to calculate some factorization of the matrix to enable quick solution of the system.
These computations are common to every interior point algorithm developed thus far (Shanno and
Bagchi, [37]). The matrix M = AD?AT is a large (M € R™*™) symmetric, positive definite matrix
for which several solution methods have been developed (see, e.g. Golub and Van Loan [23]).
Generally speaking, a direct inversion of M is an inefficient solution method, and is seldom used in
large scale implementations.

There are two main strategies for solving the system (AD?AT)dy = b. They are iterative
methods and direct methods.

1. Iterative methods generate a sequence of approximations to dy. Since these methods only
involve vector-matrix multiplication, they are computationally more attractive and require
less storage than alternative solution procedures. Convergence to solutions of these linear
systems can be unacceptably slow, unless special tricks (e.g., matrix preconditioners) are em-
ployed. Examples of iterative methods include the Jacobi, Gauss-Seidel, Chebychev, Lanczos,
and conjugate gradient methods. Meijerink and van der Vorst [32] discuss the use of these
methods in interior point algorithms.

2. Direct methods calculate the exact solution to the set of equations (AD?AT)dy = b by factor-
ing the matrix (AD2AT), and using backwards/forwards substitution to find dy. The most
common schemes in use are (LU) factorization and Cholesky (LLT) factorization. The effec-
tiveness of these methods depends on the use of special data structures and pivoting rules, and
on the characteristics of the coefficient matrix itself. Examples of software implementations
include YSMP (Eisenstadt [18]) and SPARSPAK (Chu, et. al. [13]). Direct and iterative
methods can also be combined by using ideas from the direct solution procedures to generate
an effective preconditioner that improves the convergence of iterative methods. This paper
will focus on implementations of interior point algorithms that use direct methods only.

The ease with which direct methods may be used depends heavily on the amount of fill-in, or density
of the factorized matrix. Matrices which can be rearranged to minimize fill-in can be stored using
less memory, and hence require fewer operations to update the factorization or obtain a solution.
However, matrices that are ill-structured will generate an extremely dense matrix M, and hence
can be quite inefficient to solve.

The density of the matrix (AD?AT) largely depends on the number of dense columns that are
contained in the original matrix A. Unfortunately, the dual block angular program (3) described in
§2.1 (potentially) contains many dense columns. To see this, let D3 € R™0*™0 and D? € Rm™xm
be defined by D = diag {(v{)~2,...,(v%,)72},1 = 0,..., N. Suppose further that T = T, W' =
W,l=1,...,N. Then the required system to solve is:

Ao D} AV 1717t

2 T

AD?AT = T W. X b ' X W
T w D} wT



[ AgD3AT Ao D2TT AoDETT AgDATT ]
TD{AT TDITT + wDwWT TDTT TDoTT
— | TDiAT TDTT TDATT + wDwT ... TDoTT
| TDZAT TDTT TDTT -+ TDoTT + WD WT |

Clearly, the presence of the columns associated with the T matrices creates an extremely dense M
matrix to factorize. For this reason, Arantes and Birge [2] found that dual block angular programs in
the primal form are expensive (if possible) to solve, even with basic preprocessing or row reordering
to reduce fill-in. The extent to which the fill-in affects computational performance will be explored
empirically in Section 4. As we will see in the next section, there are many ways to approach the
problem of dense columns in a coefficient matrix to reduce fill-in and improve solution times.

3 Methods for Reducing Computational Requirements

Several modifications to both the formulation of the block angular program and the implementation
of the interior point algorithm required for its solution have been proposed. Their intent is either
to reduce the number of dense columns that are in the coefficient matrix of the linear program or
to separate them explicitly from the other (non-dense) columns. Four alternatives will be explored
in this section: reformulation of the program to split up dense columns (Carpenter et. al. [11]),
solution of the dual to the program (or a factorization formed from the dual, Arantes and Birge [2]
and Birge, Freund and Vanderbei [8]), the use of the Schur Complement to remove dense columns
(Lustig, et. al. [29]), and direct solution by a special factorization of the matrix AD?AT (Birge

and Qi [6]).

3.1 Reformulation of the Program

Carpenter, Lustig, and Mulvey [11] consider a two-stage generalized stochastic network derived
from a portfolio management model (developed in Mulvey and Vladimirou [35]). The model can
be written in the standard form given in (3), where A constrains the flow of capital between assets
in the first stage of the problem, and W contains the stochastic arc multipliers that describe the
yields of each asset modeled.

To remove the dense columns associated with the first stage decisions, they split the first ng
columns into scenario dependent variables. Whereas nonanticipativity in the original formulation
(3) is enforced by the fact that the first ng columns are invariant with respect to each scenario, they
enforce nonanticipativity by including explicit constraints that guarantee the invariance. Specif-
ically, if zo(l) is the first stage decision given that scenario ! occurs, nonanticipativity requires
that

zo(l+1)==zo(l) foralll=1,...,N - 1.

The resulting formulation (called the full-splitting formulation) removes nonzeros from the first
stage columns for scenario [ from all constraints except those associated with first stage columns



for scenarios [ — 1 and [ + 1, and is

min cgzo + clTyl + - + c,TVyN
st A()IL‘O = bO
Iil?o —1131 = 0
Tz, +Wn = b (4)
Il‘l —[.’112 =
Txy +WyN = bN

By concentrating the non-zero elements of the constraint matrix of ( 4) around the diagonal,
the density of the matrix AD?AT is reduced. However, the full-splitting formulation also increases
the overall size of the problem. In a set of ten portfolio test problems run in [11], the average
increase in the number of rows was 47.2% and the average increase in the number of columns was
12.8%.

Further improvements to the full splitting formulation can be made by only splitting those first-
stage variables which have non-zero elements in the rows of T}, and leaving the remaining first-stage
decision variables in the A matrix only. This partial splitting representation can effectively limit
the increase in problem size that occurs in the full splitting formulation. For the stochastic network
test problems in the paper, the average row and column growths for the partial splitting model
were 12.8% and 5.2%, respectively.

Although reformulating the dual block angular problem increases its size, the resulting im-
provement in AD2AT fill-in can be substantial. On the same test problems mentioned above, the
original formulation ( 3) had (on average) 2.47 times more nonzeros than the partial splitting rep-
resentation. As a result, the Cholesky factorizations of the AD2AT matrices are also less dense (on
average 2.8 times less), and can be solved more efficiently. As might be expected, the reduction in
matrix density also has a substantial impact on solution times. When solved using a commercial
implementation of a primal-dual interior point algorithm (OB1 [29]), the full splitting formulation
was (on average) 4.65 times faster than the original formulation. The partial splitting formulation
was (on average) 10.8 times faster than the original formulation. The average speedup of the partial
splitting model over the original formulation run on a well-known simplex based LP solver (MINOS
5.3, developed by Murtagh and Saunders, [36]) was 5.58.

Unfortunately, the effectiveness of reformulating the linear program is largely dependent on the
relative sizes and forms of the first stage coefficient matrices. In general, two-stage stochastic linear
programs may have large first stage coefficient matrices or many first stage decision variables which
are in linking constraints to recourse decisions. Since Carpenter, et. al. only considered one type
of stochastic decision problem, other methods which are not as problem specific might be more
robust.

3.2 Using the Transpose Product Factorization

The density of the matrix AD?AT was shown in Section 2.2 to be quite high when a problem
which exhibits a dual block angular structure is solved using dual affine scaling. Arantes and
Birge [2] suggested that reformulating the primal problem in the polyhedral inequality form would
allow more efficient computation since the relevant matrix for computation is ATD?A which is
much sparser than AD?AT. Reformulation is in fact not necessary (see [8] where it is shown that

6



computations with the AD?AT matrix structure can always be replaced by computations with the
AT DA structure).

It is, however, illustrative to think of this approach as solving the dual to the original problem
using again the dual affine scaling method. The dual of ( 3) is

max  blyo + T, by
st Alyo+ T Ty <o (5)
WlT!/l <g¢

Since the resulting coefficient matrix B of (6) has n = ng+ Y1, nj rows and m = mg + Y my
columns, BD?BT is of order n x n, and so may be considerably larger than the coefficient matrix
of (3). However, the matrix BD? BT exhibits the AT D?A matrix structure and enables an efficient
Cholesky factorization. Specifically, the matrix BD?BT is

ATD3 A+ YN, TTD,T TTDIW ... TTD4W
_ wTD?T wD,wT 0 0
BD*BT = : . . ) (6)
WTD%T 0 0 WDiwT

As an example of the different fill-in characteristics of the primal and dual problems, pictures
of the AD?AT and BD?BT matrices are shown in Figure 1 for a test problem.

Since the density of the Cholesky factorization of a matrix depends on the symmetry of that
matrix, the factorization of the matrix ( 6) should be sparse. Solution times reported by Arantes
and Birge for a common test set (Ho and Loute, [24], Birge, [9]) were much faster using the BD? BT
form over the AD?AT form. The largest problem they tried (32 scenarios, 7023 nonzeroes in M)
was a full order of magnitude faster with BD?BT. However, the off-diagonal blocks of the matrix
BD?BT contain matrix products with the recourse matrix W, whereas the matrix AD?A7T does
not. Hence, if W is unusually large or dense, solving with BD?BT may not be as efficient. More
extensive comparisons may be found in Section 4. In general, solving stochastic linear programs
with the form based on the AT D?4 structure (as in BD?*BT) appears preferable to solving using
the AD?AT structure.

3.3 Schur Complement

Many implementations of interior point algorithms avoid dense columns in coefficient matrices
by explicitly removing them and accounting for them separately. The mechanism for solving the
system (ADzAT)dy = b is the Schur complement, which involves solving a small, dense matrix
derived from a larger sparse matrix.

Consider a coefficient matrix A which can be partitioned into [A4:4,], where A, € R™*™ is a
submatrix containing only sparse columns, and Ay € R™*™¢ contains only dense columns. In the
case of the two-stage dual block angular program, A; contains the columns corresponding to the
first stage decisions and A, contans the columns corresponding to the second stage decisions.

Let Dy and Dy be diagonal matrices corresponding to A; and A4. Then AD?AT = A,D2AT 4
AgD2AT. Let the Cholesky factorization of A,D?AT be LLT,V = AyDy, and 6§ = =V Tdy. Then

1SC205 with 16 scenarios. For problem characteristics, please refer to Section 6.
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VVT = A;D3AT and solving the system

KiHEN &

is equivalent to solving (AD?AT)dy = b. From the first set of equations in ( 7), we get

LLTdy=b+4+V6 or
dy = (LLT)"Y(b+ Vé). (8)

From the second set of equations in ( 7), we find that
VIdy+16=0 (9)
Substituting ( 8) into ( 9),
T+ VELLTY'WV)s = -vT(LLT) " (10)

The matrix I + VT(LLT)‘lV is a Schur complement and a dense matrix of order ng x ny. Methods
specific to the solution of dense matrices (e.g., a dense Cholesky factorization) can be used to solve
(10) while sparse solution methods can be used to calculate (8) and the right hand side of (10).
Once 6 has been calculated, then the search direction is the solution to

LLTdy=b+ V.

The entire method requires n4 + 1 sparse Cholesky backsolves (ng solutions to (LLT)z = (V),; and
one solution to (LLT)z = b) as well as a dense backsolve for 6.

As shown in Lustig et. al. ([29]), use of the Schur complement can significantly reduce the
overall effort needed to solve the search direction system, since removal of dense columns results
in quite sparse Cholesky factorizations. However, as reported in Choli, et. al. ([12]), there are two
disadvantages to using the Schur complement. As the number of dense columns grows large, the
effort needed to solve the dense matrix I + VT(LLT)~1V grows markedly. As an example, Choi,
et. al [12] solved the ISRAEL problem in the NETLIB test set (Gay, [20]) with different sizes of
the dense submatrix. With the number of dense columns set at 40, the time required to solve the
problem was over twice that when 6 columns were included in the dense partition.

The second disadvantage is possible numerical instability. For dual block angular programs,
moving a first stage column into Ay leaves a column with no nonzeroes in A;,D?AT. For example,

consider a one scenario problem, with coefficient matrix, A = { i}o ‘2/ . In this case, 45 =
T
[AOET] and AD?AT = A4D?AT + A, D?AT =
Ag 0
HIGIEEaBrEES ay

_ | AgD}AY  AGDPTT 4|0 0
~ | TD?}AY  TDITT 0 WDiwT |-
8
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Since A,DZA;P is singular, the above procedure fails. Even if A, is forced to have full rank, the
procedure is likely to suffer from numerical instability. To address this problem, various methods
have been proposed to improve the accuracy of the algorithm. For example, Lustig, et. al. [29] uses
iterative refinement to improve the accuracy of solutions to equations involving LLT. For some
problems in the NETLIB test set [20], however, they are only able to guarantee the solution to one
decimal place. This reflects the inherent difficulty with problems with many dense columns.

While loss of numerical accuracy may be a problem for dual block angular programs with many
dense columns, the use of the Schur complement may improve solution times substantially for
problems with a few dense columns. For a class of stochastic network models, Carpenter et. al.
[11] halved solution times using the Schur complement over a splitting reformulation (Section 3.1).
However, the inherent loss of accuracy associated with the Schur complement suggests that it may
not be desirable for solving dual block angular programs.

In many general linear programs, an identity (or a substantial part of an identity) matrix exists
in the original constraint matrix, A, due to slack or surplus variables. In this case, AAT may be
written as AdAf + I,. Now, the Schur complement approach can be used to write (AAT)! =
(I + A4AD)1 =1, - Ag(I3+ AT Ay)"1 AT where we use I, to denote an identity of rank n. Other
diagonal coefficients corresponding to slack variable values can be used in place of I, and Iy with
the same basic result. In this way, solution using the AAT structure is replaced by solution with the
AT A structure, which may be sparser. This is the approach in [8] that allows the dual factorization
form to be used in solving the primal problem.

Even when an identity does not exist, one can be added to the AstAsT part of AD?AT and
subtracted from AdDﬁAdT. This allows I, + A; DfAf to remain well conditioned. The next section
describes this method to maintain accuracy in a form similar to the Schur complement.

3.4 Explicit Factorization of Dual Block Angular Programs

The solution to the set of equations that determine search directions in affine scaling algorithms
may also be accomplished by decompositions specific to the dual block angular structure. Birge and
Qi [6] proposed the better conditioned form of the Schur complement using a generalized version
of the Sherman-Morrison-Woodbury formula (see, e.g. Golub and Van Loan [23]). While the full
calculation of the step size in affine scaling may be performed generally in O(m?n) operations, the
decomposition they propose reduces the computational complexity to O(n?) operations (assuming
nm~nforalll =0,...,N). In this subsection, we review the theoretical result obtained and discuss
the procedure for its implementation. Serial and parallel computational results for this particular
method are reported in Section 4.

The main result obtained by Birge and Qi notes that the matrix AD?AT may be written as
the sum of a block diagonal matrix D (the I, + A,D2AT segment) and the product of two similar
matrices U and V (defined below). Given this representation, the Sherman-Morrison-Woodbury
formula, which is reproduced here for convenience, may be used to find the inverse of the matrix.
The notation used in the following follows that of Section 2.2.

Lemma 1 : For any matrices A, U,V such that A and (I + VTA‘IU) are invertible,
(A+UVD) ' = A - AW+ VT A~y T4, (13)
Proof:

(A+ UV A+ 0vT) = T4+ A7 0VT - AT+ vT A~y vT -
9



ATWU(I+vTA o) vTA YT
T+ A7UVT - AW+ vVTAT D) YT+ VT AT U)VT
= I+A7WovT A tovT = 1.

The lemma is the main tool in deriving the BQ factorization. We slightly change the form of
the M matrix in [6] to obtain the following result. The proof follows the same development as [6].

Theorem 1 : Consider the feasible region of the dual block angular program given in (3), and some
dual solution (3°,...,y"). Let M = AD*AT S = diag {So,5),...,5n}, where S = W1D12W,T,l =
1,...,N, Sg=I, € Rmoxm™ and D? = diag {(u{)‘z,...,(y,’nl)‘Q}. Furthermore, let I and I be
identity matrices of dimension ng and mg, respectively. Also, let

N
G, = (D0)2 + ZTITSI—ITI, Gy = —-AoG;lA(])‘

=0
Ao 12 AO —12
T, 0 . 0
U= A I V= . .
Tn 0 Tn O
If Ag and W, has full row rank, for 1 =1,...,N, Gy and M are invertible and
M-log1_gp| D GUAG || L 0 L 0 ||Gih 0 (14)
0 -0 0 G;' || 4 L 0 I|

Proof: In the affine scaling algorithm, vy is positive, so D is invertible._ By assumption, W, has
full row rank, so S; is invertible for { = 1,..., N and S is invertible. Let D = diag { Do, I} and

A()Do 12 AODO —12
- TiDy 0 . Ti\Dy 0
U= : . V= : :

TnDy 0 TwDg 0

Note that U = UD and V = VD. By construction, M = § + UVT. Applying Lemma 1 (the
Sherman-Morrison-Woodbury formula), M is invertible and

M7 = (S4+0VH!
= S-S+ VIS0 WIS (iff S and I+ VT S™IT are invertible )
= §7' - STWDXI1+ DTVISTuD) v Ts!
= ST -SWwDD YD+ vIsy)tvTs!
= §-S5TU(DP+ VISV TS

Let

G, AT al
G= [ _(;0 00 ] where Gy = (Do)* + Y _ T S;'T.
=0

Gy = —AoGT'AL.
10



Then
vTsg-1y = AoAg + Z{Y—.l ESFITI Ag
-Ap -1

and D2+ VT§-1/ = G. So,
M1=§1_glyg-lyTs-! (15)

if and only if (I + VTS~10), or G, is invertible.
G can be expanded as

N
Gy = (Do)? + AoAT + Y_TiS7'TT.
=1

By construction, (Dg)? and AgAY are positive definite and symmetric. Since S is positive definite
for all | = 1,...,N, T,SFTT is positive definite and symmetric. The sum of positive definite
matrices is again positive definite, so Gy is positive definite and symmetric. So, GJ! exists, is

symmetric, and can be written as G; = G:/QGi/Q, where Gi/z is also symmetric. By assumption,

Ap has full row rank, so AOG}/2 has full row rank. Consequently, G, = —AOGflAg is invertible,

and
ol h Gi'AY | (L o L 0 |[GTh 0
0 -1 0 G7' |4 L|| 0 &
| G AT || GT'+ GT'ATG AoGT! GTMATG | _ | L 0
Tl -4 0 ~G7'4GT! -G |70 L |’
Since G is invertible, (15) holds. Consequently, M is invertible and (14) holds.

Using Theorem 1 to explicitly compute the inverse of the matrix M is not the most efficient way
to determine the search direction dy. However, the system of equations Mdy = b may be efficiently
solved using Theorem 1 by solving (in order)

Sp="b Gg=VTp Sr=Uq (16)
and setting dy = p — r. To verify that dy = M ~'b, note that
dy = p-r=8"1-5"gq
= [§71-§TU(GTIVTS T
= M1

Further simplification of the second equation of (16) may be made by symbolically expanding G
into its components Gy and Ag. Let g7 = (¢f, ¢F ), where ¢; € R™ and g, € ™. Then solving

G Alllal| || _| A TF - TF
-Ao 0 @| || |- 0 - 0

Do
: (17)

PN
implies that

(AoGTYAD) M (P2 — AoGT h1)

= —G7'(P2 - AoG1 ')

(Go“(zsll— Alqy).
1

42

I
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Solving (16) requires Cholesky factorizations of Sj, Gy, and G,. At each iteration of the affine
scaling algorithm, an update of S; to reflect the current dual solution must precede the solution of
Mdy = b. Given the updated matrices (D;)? and subsequent updates of the Cholesky factorizations
of S1, dy may be found using the algorithm described below.

Procedure finddy ( S, Ao...An, b, dy)
begin

1. (Solve Sp = b). Solve Sip; = b; for p;,1 =0,...,N.
2. (Solve Gg = VTp).

(a) Form G; by solving Si(w); = (A;). for (w);,{ = 0,...,N,2 = 1,...,n;) and setting
(G1) = (Do)ii + T (w);i.
b) Form p; and p; using (17).

(b)

(c) Solve Gyju = p; for u and set v = py — Agu.

(d) Form G, by solving (Gq)w; = (A]).; for w; and setting Gy = — Ag[w; * - - Wy ).
(e) Solve Gago = v for g9, and solve G1qy = p; — Aqug for ¢;.

3. (Solve St = Uq). Set ro = Aoq1 + ¢2 and solve Syry = Ajq; forrp e R™,1=1,...,N.
4. (Form dy). Set (dy); =pi—r for I =0,...,N. Return dy.

end.

Forming dy using Birge and Qi’s Decomposition

There are several advantages to using this approach to find the search direction dy. Unlike the
Schur complement, the method does not suffer from ill-conditioned working matrices and requires
no iterative improvement to maintain solution accuracy. To illustrate this point, a one scenario
Ao 0 : 24T _ vl —
T W}.Inthlscase,ADA =54UV*' =
I 0 i AoDEAT — T AGDETT

0 wWD*wT TDAT  TDATT

problem with constraint matrix, A = [

(18)

Comparing (18) to (12) shows the effect of adding the identity matrix to eliminate the singularity
in the sparse system. We note also that this approach can in general be used to obtain better
conditioned factorizations for problems with dense columns. Although we have only considered

Ao Q

dual block angular problems so far, this is not necessary. In the case of A = { T w

}, we can

write ADZ2AT = S+ VT =

I1+QDQT 0 } . [ AoD2AT -1 ADITT + QD*WT } (19)

0 wDIWT TDIAT + wDQT TDTT
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1+QDIQT 0
0 wDIwT
1, where Q = 0. In this way, instability in Q D?QT can be countered.

Note that this approach does not increase problem size as in splitting or dual factorizations.
Birge and Qi [6] also show that the decomposition given in Theorem 1, when applied to the dual
problem (6), allows efficient updating from a smaller stochastic linear program with few scenarios
to a larger problem with more scenarios.

A substantial portion of the computational effort required for the procedure lies in the fac-
torization of S; and the solution of systems of equations involving S;. Since these calculations
may be performed independently, coarse-grained parallelization or distributed processing may be
used to provide a substantial gain in computational efficiency. With one processor for each sce-
nario, the simulataneous running time to solve for the search direction may be reduced from
O(N(n} + n3ng + non? + ndn;)) as given by Birge and Qi to O(n} + ning + noni + Nnf), a
reduction of roughly min{N,n;}. Finer grain systems with many processors could achieve further
reductions by peforming matrix additions and multiplications in parallel, but we concentrate on
distributed systems due to their wide availability. In the next section, we provide computational
experience on both serial and distributed implementations.

An implementation based on (19) can use § = just as in Theorem

4 Computational Experience

In [6], only the theoretical efficiency of the BQ decomposition was demonstrated. We wish to
demonstrate that practical computational advantages also exist by comparing this factorization
with the other methods mentioned for stochastic linear programs. We chose to compare the method
against the interior point solver in IBM’s Optimization Subroutine Library (OSL) [25] since that
package is widely available and, as such, represents a benchmark for general purpose interior point
implementations. Our goal was to determine whether the specialized BQ factorization improves
upon general purpose performance mainly in terms of the effort required in each iteration of the
respective methods. We also wished to see whether a distributed computing implementation of the
BQ decomposition could provide further efficiencies.

The OSL interior point approach is a primal barrier method described in Gill, et. al. ([21]).
In the current study, we compare the BQ factorization to the OSL implementation for three for-
mulations: (1) the primal problem (3), (2) the dual of (3) (so that the transpose factorization was
used), and (3) the split variable formulation (4) of the primal problem.

4.1 Problem Characteristics

The test problems used in the current study are stochastic versions of a set of staircase test problems
(Ho and Loute, [24]) as in Birge ([9]). The problems in the test include:

SC205 A dynamic multisector development planning model.

SCRS8 A technological assessment model for the study of the transition from
fossil fuel use to renewable energy sources.

SCAGR7 A multiperiod dairy farm expansion model.

SCSD8 A model to find the minimal design of a multistage truss.

SCFXM1 A production scheduling problem.

Deterministic equivalent problems (3) and split variable formulations (4) were created using a

test problem generator developed by Birge, et. al. [7]. Dual problems were generated from the
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original deterministic formulations prior to any input into an LP solver. Linear programs were
converted by all LP solution implementations into the standard equality form given in Section 2.2
prior to solution.

For each problem in the test set, deterministic equivalents with 4, 8, 16, 32, and 64 scenarios
(distinct realizations of £) were created. The exceptions are scfxml and scsd8, which were only
solved to 32 scenarios. The characteristics of each problem are given in Table 1. The number of
nonzeros in the AD?AT matrices for the various formulations is also given in Table 1. Figure 2
graphically shows the number of Cholesky nonzeroes for the sc205 and scsd8 problems.

Scen- Columns | A Matrix Density AD? AT Nonzeros
Problem | arios | Rows (1) Nonzeros (Percent) | Dual | Primal | Split
sc205.1 4 101 102 270 2.62% 367 478 623
$c205.2 8 189 190 510 1.42% 695 1200 1441
sc205.3 16 365 366 990 0.74% 1343 3454 3323
sc205.4 32 717 718 1950 0.38% 2639 11236 | 8316
sc205.5 64 1421 1422 3870 0.19% 5231 39882 | 18928
scagr7.1 4 167 180 946 1.82% 1164 1191 1129
scagr7.2 8 319 340 1050 0.97% 2248 3443 2546
scagr7.3 16 623 660 2058 0.50% 4416 11123 | 5417
scagr7.4 32 1231 1300 4074 0.25% 8752 39155 | 11593
scagr7.5 64 2447 2580 8106 0.13% 17424 | 145907 | 25743
scfxml.1 4 684 1014 3999 0.58% 28564 7669 9585
scfxm1.2 8 1276 1914 7319 0.30% 56111 | 14997 | 18449

scfxml.3 | 16 | 2460 3714 13959  0.15% 125689 | 31819 | 38952
scfxml.4 | 32 | 4828 7314 27239  0.08% 249402 | 75641 | 90220

scrs8.1 4 140 189 457 1.73% 1877 1235 | 1367
scrs8.2 8 252 341 849 0.99% 5195 4771 | 3550
scrs8.3 16 476 645 1633 0.53% 4955 | 23137 | 10251
scrs8.4 32 924 1253 3201 0.28% 9563 | 88732 | 29337
scrs8.5 64 1820 2469 6337 0.14% 18779 | 347247 | 89687
scsd8.1 4 90 630 1890 3.33% 31677 | 1433 | 2673
scsd8.2 8 170 1190 3650 1.80% 59595 | 3916 | 7066
scsd8.3 16 330 2310 7170 0.94% 117113 | 12112 | 19892

scsd8.4 32 650 4550 14210  0.48% 232287 | 41588 | 65143
(1) Slack Columns not included

Table 1. Problem Characteristics

As can be seen from Table 1, the scfxm1 and scsd8 problems contained many more nonzeroes
in the dual Cholesky factorization than in the primal Cholesky factorization. This behavior runs
counter to the supposition given in Section 3.2 that solving the dual problem reduces the fill-in in
the projection matrix factorization.

Resolving this discrepancy requires the consideration of the sizes of the submatrices Ao, T,
and W of the deterministic equivalent problem. The major block components off the diagonal of
the matrix AD?AT are TAY and TTT. In contrast, the block components of the system ATD?A
(shown in 6) off the diagonal are matrices with the same nonzero structure as WTT. If this
matrix is comparatively large or dense, then the dual projection matrix may be more dense than
the primal projection matrix. Table 2 shows the block component densities and sizes for each of
the test problems considered. The two exceptional problems, SCFXM1 and SCSD8, have many

columns and have relatively dense TWT blocks. These results imply that consideration of the block
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characteristics of the deterministic equivalent problem is important before deciding which form of
the problem to solve. (We should note that Carpenter and Vanderbei ([41]) recently proposed
another alternative for use in a primal-dual algorithm which allows some compromise between the
AD?AT or AT D?A factorization forms.)

T Matrix W matrix Primal Dual | Primal and Dual
Problem | Rows Columns | Rows Columns | TA] TTT | TWT | WWT 4 AT
sc205 13 14 22 22 26 22 25 102 54
scfxml 92 114 149 225 2729 12996 | 168 5937 3450
scagr? 19 20 39 40 73 80 67 370 124
scrs8 28 37 28 38 98 185 100 248 221
scsd8 10 70 21 140 1732 9900 | 1732 | 4880 1420

Table 2. Block Characteristics

Another statistic which may help distinguish which form of the problem to solve is the relative
row and column densities of the deterministic equivalent linear program. Table 3 shows these
densities for the two largest instances of each problem. The row (column) density is defined as
the number of nonzeroes in a row (column) divided by the number of rows (columns) in the entire
constraint matrix. Since the problem scfxml has an unusually low maximum column density,
solving the dual problem may not necessarily remove many nonzeros from its Cholesky factorization.
Likewise, the problem scsd8 has an unusually high maximum row density, which is consistent with
the small number of rows in its primal problem.

Row Densities (1) Column Densities (2)
Problem | Minimum Maximum | Minimum  Maximum
s¢205.4 0.000 0.696 0.279 4.881
5¢205.5 0.000 0.352 0.141 4.715
scagr7.4 0.077 0.769 0.081 18.278
scagr7.h 0.039 0.388 0.041 18.349
scfxm1.3 0.027 3.096 0.041 2.114
scfxm1.4 0.014 1.572 0.021 2.071
scrs8.4 0.080 1.117 0.108 14.286
scrs8.5 0.041 0.567 0.055 14.286
scsd8.3 0.433 3.723 0.303 15.152
scsd8.4 0.220 1.890 0.154 15.077
Notes: (1) Defined as the number of nonzeroes
in a row divided by the number of rows
(2) Defined as the number of nonzeroes
in a column divided by the number of columns

Table 3. Row and Column Densities

4.2 Computational test parameters and algorithms

The deterministic equivalent test problems, as described in the previous section , were solved using
OSL ? and an implementation of the BQ decomposition on an IBM RS/6000 320H workstation 3 for

Subsequent improvements to OSL show lower solution times than those quoted here.
3System performance measures are given as: 41.2 SPECs, 37 IMIPs, and 11.7 MFLOPs
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the serial comparisons and a network of six DEC 5000/320 workstations for the distributed imple-
mentation of BQ. Data structures and recommended parameter values used for the BQ implemen-
tation followed those in ([1]). The implementations were written in the FORTRAN programming
language, and complied using the XLF RS/6000 compiler with all applicable optimizations.

The solution of the sparse systems of equations required to find the search direction dy in the
standard dual affine method were obtained using Cholesky factorizations of each §; in the BQ
decomposition. These factorizations were computed using SPARSPAK, developed by Chu, et. al.
[13]. The SPARSPAK routines use a minimum degree ordering heuristic to permute the columns
and rows to obtain relatively sparse factorizations. Since the nonzero structure of the AD?AT
matrix remains the same on each iteration, only the entries of the matrix are updated at each
iteration. As suggested in Karmarkar [26] and Adler, et. al. [1], an approximate scaling matrix D
is used to determine a search direction at each iteration. Instead of using Dy = diag{1/v¥,...,1/vF}
in AD?*AT | each implementation uses Dy, where (Dk),-,- is (Dk_l),-i except in those elements that
differ (relatively) by at least a fixed amount ¢, from the corresponding element in the exact scaling
matrix. So,fort=1,...,nand ¢, = 0.1 > 0,

(Dk Vi if |(Dy)ii =(Dx=1)sil <
(Di)ii = o I(D)( k(zl))" ol “
(Dk)u if Brt)n > €y

Feasibility in the BQ implementation was obtained using a Big M scheme (proposed by Adler
et. al. [1]) and a Phase I/Phase II stopping criterion. Specifically, a feasible solution may be
obtained by solving

max T — My,
subject to ATy —eTy, <ec.

If the algorithm stops and y¥ < 0, then the algorithm proceeds without the artificial variable and
y* as an interior point to the original problem. If y¥ < ¢; * then the problem is unbounded or an
optimal solution was found. Otherwise, the problem is infeasible. The initial interior point used
for each phase one procedure was y° = (||c||/||ATb]))b

Obtaining the search direction dy using the BQ decomposition requires many solutions to linear
systems of the form Siz = WszW,T:I: =yforall/=0,...,N. Since these systems are independent
of each other, and their symbolic Cholesky factorizations need to be performed only once, they
are ideal “processes” to compute in a distributed computing environment. As part of this study,
a parallel implementation of the BQ decomposition which assigns groups of scenario blocks $; to
different processors was developed. The implementation consists of several node programs and a
host program. Each node program uses SPARSPAK to compute and solve Cholesky factorizations
for each block in a set of blocks for which it is responsible. ® At each iteration, the host program
sends a set of right hand side vectors ¥;,, ..., y:, to each node program and collects the solutions
Stl Yigy- - S o Yin The host program also performs all other tasks, such as setting up the problem,
finding the search direction dy from the solutions given by the node programs, and printing the
final results.

Communications between the host program and each node program were managed by the Par-
allel Virtual Machine (PVM) package, developed by Beguelin, et. al. ([5]). PVM allows rapid

*¢; = 107°, in the implementations used here.
®Blocks were spread as evenly as possible across processors.
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prototyping of distributed applications across a number of UNIX based environments. Testing was
performed on a network of six DEC 5000/320 workstations connected by a shared ethernet.

The primal barrier point method implemented in the OSL package is described in Gill, et. al.
([21]). Given a feasible interior point, the algorithm projects the steepest descent direction of a
barrier problem onto the nullspace of a set of equality constraints. This algorithm is fundamentally
different from the dual affine scaling method used in the BQ implementation, since primal feasibility
is maintained at all times. Like the dual affine scaling algorithm, however, the majority of the
computational effort is spent solving linear systems of the form AD?ATdy = b. OSL also uses a
minimum degree row-ordering heuristic to find an efficient Cholesky factorization of the projection
matrix. The OSL implementation used for this study was programmed to consider all columns as
sparse columns in a full-sized Cholesky factorization. All default parameters were used to solve
the problems, except that the stopping criterion was designed to solve problems to six significant
digits. No preprocessing was performed on the problems prior to solution, and the method to find
a feasible interior point used was the same as that employed in the BQ decomposition.

4.3 Computational Results

All problems were solved using only interior point iterations. As mentioned above, no preprocessing
was used and all system parameters were set to their system defaults. Solutions were obtained to
within six significant digits of (known) optimality except for the 32 scenario instances of the scfxm1
and scsd8 problems. These problems were not solved to optimality due to computational difficulties
with the BQ implementation. The difficulty in these cases was most likely in round-off accumulation
in the construction of the G; matrix. Although we believe that more precise solutions with each
Sp = b system might have eliminated this problem, it does suggest that some numerical difficulties
may still exist in the BQ factorization. The tradeoff is, however, for increased speed and distributed
capabilities as shown below.

Table 4 shows the interior point solution times (see Figures 3 and 4) and the total solution times
for the dual, primal and split formulations, as well as the BQ decomposition. As might be expected,
the dual requires less time to solve than the primal problem, except when the number of columns
in the primal problem is unusually large or the product TT7T is unusually dense. Considering the
split formulation may considerably reduce computational requirements, but is not as advantageous
as the dual problem when the number of scenarios grows large. Finally, finding the solution using
the BQ decomposition embedded in the dual affine algorithm is the fastest option.
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Solution Time (seconds) (1) Total Time (seconds) (2)
Problem | Dual Primal  Split BQ Dual Primal Split BQ
sc205.1 0.59 0.70 0.76 | 0.243 | 0.87 1.00 1.05 | 0.264
5c205.2 1.07 1.32 1.46 | 0.481 | 1.56 1.78 1.98 0.52
5c205.3 2.03 3.07 282 | 1.014 | 287 3.94 3.75 | 1.102
sc205.4 4.08 9.33 6.64 | 1.987 | 555 10.86 8.45 | 2.206
5¢205.5 942 4474 1544 | 4219 | 12.56 47.87 18.97 | 4.828
scagr7.l | 2.66 1.31 1.32 | 0391 | 4.22 1.95 1.90 | 0.444
scagr7.2 | 4.80 2.92 266 | 0.861 | 5.79 3.96 3.72 | 0971
scagr7.3 | 9.56 8.03 533 | 1.831 | 1145  9.89 7.33 | 2.089
scagr7.4 | 1455 4184 1148 | 4.011 | 18.02 4557 1534 | 4.673
scagr7.5 | 27.29 263.17 33.23 | 9.124 | 34.19 270.27 40.82 | 11.064
scfxml.l | 20.67 10.03 10.29 | 476 | 23.30 12.89 13.27 | 5.239
scfxml.2 | 43.57 21.30 19.37 | 691 | 48.14 2682 24.86 | 8.701
scfxml1.3 | 104.00 50.78 46.73 | 10.46 | 112.74 60.99  57.07 | 12.56
scfxml.4 | NA  135.02 144.03| NA NA  154.72 16427 | NA
scrs8.1 1.92 1.07 1.23 | 0.651 | 2.40 1.53 1.80 | 0.693
scrs8.2 4.57 2.53 2.55 1.46 5.44 3.37 3.58 1.544
scrs8.3 555 1239  6.18 | 1.836 | 6.99 1388  8.14 | 2.022
scrs8.4 1152  63.10 34.08 | 4.691 | 1438 66.03 37.91 | 5.155
scrs8.5 25.30 459.20 60.06 | 11.997 | 30.86 464.90 67.55 | 13.292
scsd8.1 11.25  2.66 275 | 0909 | 1275  4.28 4.42 | 1.065
scsd8.2 2140  5.44 576 | 1.693 | 24.29  8.61 8.85 2.01
scsd8.3 4493 1332 1347 | 3.139 | 50.24 19.24  19.60 | 3.832
scsd8.4 93.82 4225 3958 | NA | 10450 5430 51.58 | NA
Notes: (1) Includes factorization time and interior point solution time
(2) Includes solution time, reading and printing time

Since two different methods and implementations were used in this study, direct solution time
comparisons between problems solved with the BQ decomposition and the primal, dual and split
variable formulation do not accurately represent the relative merits of each solution method.
Since this study is ultimately concerned with the efficiency of solving linear systems of the form
AD?*ATdy = b, more meaningful comparisons may be made by comparing the CPU time required

per interior point iteration.

Table 6 (and Figures 5 and 6) shows the (average) CPU time in seconds required per interior
point iteration performed on each problem. With the exception of some smaller problems (e.g.
$¢205.1, scfxm1.1, and scfxm1.2), using the BQ decomposition is considerably faster than any non-
decomposition based solution technique. As the number of scenarios in the deterministic equivalent

Table 5. Solution Times

increases, the BQ decomposition becomes particularly attractive.
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Iterations Time per Iteration (secs)
Problem | Primal Dual Split | BQ | Primal Dual Split | BQ
8¢205.1 26 52 33 | 19 | 0.027 0.011 0.032 | 0.014
$¢205.2 25 20 34 | 22 | 0.053 0.054 0.058 | 0.024
sc205.3 30 21 34 | 23 | 0.102 0.097 0.110 | 0.048
5c205.4 32 22 36 | 23 | 0.292 0.185 0.235 | 0.096
sc205.5 21 24 38 | 24 | 2.130 0.393 0.499 | 0.201
scagr7.1 23 121 33 | 24 | 0.057 0.022 0.058 | 0.019
scagr7.2 24 74 35 | 27 | 0.122 0.065 0.106 | 0.036
scagr7.3 31 73 34 | 28 | 0259 0.131 0.216 | 0.075
scagri.4 33 51 34 | 32 | 1.268 0.285 0.451 | 0.146
scagr?.b 37 39 53 | 34 | 7.113 0.700 0.770 | 0.325
scfxml.l | 42 35 46 | 15 | 0.239 0.591 0.288 | 0.349
scfxml.2 | 48 37 42 | 15 | 0444 1.178 0.592 | 0.460
scfxml.3 | 49 38 50 | 14 | 1.036 2.737 1.141 | 0.747
scfxm1.4 18 NA 61 | 14| 7501 NA 2.693 | 0.933

scrs8.1 20 39 24 | 24 | 0.054 0.049 0.075 | 0.029
scrs8.2 26 38 24 17 | 0.097 0.120 0.149 | 0.091
scrs8.3 22 33 28 | 25 | 0.563 0.168 0.291 | 0.081
scrs8.4 28 32 82 | 33 | 2254 0.360 0.462 | 0.156
scrs8.9 28 30 27 | 32 | 16.400 0.843 2.502 | 0.415

scsd8.1 18 17 20 18 | 0.148 0.662 0.221 | 0.059
scsd8.2 20 17 20 18 | 0.272 1.259 0.443 | 0.112
scsd8.3 20 17 20 | 24 | 0.666 2.643 0.980 | 0.160
scsd8.4 20 17 20 | 22 | 2113 5519 2579 0.271

Table 6. Solution Time per Iteration

The merits of each solution method are highlighted by their relative speedup factors. Table 7
and Figures 7 and 8 give these statistics for the stochastic test set. The absolute speedup factors
shown in Table 6 are the ratios between the solution times for each of the solution methods being
compared. Likewise, the speedup factors based on time per iteration are the the ratios between the
the average CPU time per iteration for each solution method.

In terms of absolute solution time, Table 7 shows that solving the dual is not necessarily faster
than solving the primal for small problems. However, as the number of scenarios increases, solving
a problem that does not have an exceptionally dense or large projection matrix is much easier when
the dual formulation is used. In the extreme, solving the dual to problem scrs8.5 (64 scenarios) was
over 18 times faster than solving the primal. As the scfxml and scsd8 problems show, the ratios
of solution times for solving the dual compared to the primal are limited to at most approximately
2.5. Solving the split variable formulation offers smaller performance gains (over solving the primal)
than solving the dual problem, but works for all problems. The problem scfxm1.4 suggests that
these performance gains may be limited for exceptionally large problems and that there may be a
breakeven point for each problem where the performance loss resulting from matrix size increase
associated with solving the split formulation offsets the gain obtained through reduced cholesky
fill-in.

Comparisons of speedup factors based on solution time per iteration show similar results. With
the exception of the scsd8 problem, the BQ decomposition is on average 1.95 (std. dev 0.59) times
faster than solving with the dual factorization. These results confirm the claims made in [6]. The
problems scsd8 and scfxm1 offer higher speedups, and show trends toward increasing speedup with
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problem size. The same conclusions appear to hold, though with less certain speedup factors, when
the BQ decomposition is compared with the split variable formulation.

Absolute Speedups (1) Speedups based on time per iteration
Primal Primal Dual Split | Primal Primal Dual Split
Problem | Dual Split BQ BQ | Dual Split BQ BQ
s¢205.1 1.19 0.92 243  3.13 2.37 0.85 0.82 2.29
5¢205.2 1.23 090 222 3.04 | 0.99 0.91 2.26 2.46
8¢205.3 1.51 1.09 2,00 278 | 1.06 093  2.02 2.30
s¢205.4 2.29 1.41 205 3.34 | 157 1.24 1.93 2.45
5¢205.5 4.75 290 223 366 | 543 4.27 1.95 2.48
scagr7.1 0.49 0.99 6.80 3.38 2.59 0.99 1.19 3.11
scagr7.2 | 0.61 1.10 557 3.09 | 1.88 1.14 1.80 2.96
scagr7.3 0.84 1.51 9.22 291 1.98 1.20 1.76 2.89
scagr7.4 | 2.88 3.64 363 286 | 4.44 2.81 1.95 3.09
scagr7.b 9.64 7.92 299 364 | 10.16 9.24 2.15 2.37
scfxml.1 | 0.49 097 434 216 | 0.40 0.83 1.69 0.83
scfxml1.2 | 0.49 1.10 6.31 2.80 0.38 0.75 2.56 1.29
scfxm1.3 | 0.49 1.09 994 447 | 0.38 091  3.66 1.53
scfxml.4| NA 0.94 NA NA NA 2.79 NA 2.89
scrs8.1 0.56 087 295 1.89 | 1.09 0.71 1.70 2.60
scrs8.2 0.55 099 313 175 | 0.81 0.65 1.32 1.64
scrs8.3 2.23 200 3.02 337| 3.35 1.94  2.08 3.59
scrs8.4 5.48 1.85 246 7.26 6.26 4.87 2.30 2.96
scrs8.5 18.15 7.65 2.11 5.01 | 19.45 6.56 2.03 6.02
scsd8.1 0.24 097 1238 3.03 | 0.22 0.67 11.18 3.714
scsd8.2 0.25 0.94 12.64 3.40 0.22 0.61 11.27 3.96
scsd8.3 0.30 0.99 14.31 4.29 0.25 0.68 16.55 6.14
scsd8.4 0.45 1.07 NA NA 0.38 0.82  20.38 9.52
Notes: (1) Ratio of Solution Times

Table 7. Speedup Comparisons

As mentioned previously, the structure of the BQ decomposition lends itself to distributed pro-
cessing. Table 8 (and Figure 9 in the appendix) give the best run times for the sc205 problem ©
obtained using a parallel version of the BQ implementation with those obtained using the serial
version of the decomposition. The solution times given in Table 7 are “wall clock” times necessary
to calculate the iterations required by the dual affine scaling algorithm 7. The parallel implemen-
tation clearly gives a substantial performance improvement over a serial implementation of the BQ
decomposition for large problems. For example, solving the 64 scenario sc205 problem is almost
three times faster using four processors than the serial version. Speedups are not linear with the
number of processors since the communication requirements quickly overtake the benefits provided
by the distribution of computational work. The 8 and 16 scenario problems suggest that three or
four scenarios per processor offer the best performance.

®*Run times were obtained using a network of six DEC 5000/320 workstations.

"Unfortunately, since the network connecting the processors was a shared resource, obtaining accurate solution
times for larger number of processors was quite difficult. Fully utilizing the parallel implementation requires commu-
nications bandwidths unobtainable over a shared ethernet.
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Solution Time (seconds) (1)
Serial Number of Processors

Problem | Scenarios | Algorithm { 1 2 3 4 5 6
5¢205.1 4 3 5 5 5 56 - -
5c205.2 8 6.7 9 7 8 T 9 11
5¢205.3 16 13.2 17 13 12 12 14 15
$c205.4 32 28 38 22 22 19 23 23
5¢205.5 64 55.5 34 31 20 93

Notes: (1) Solution times are best encountered in at least 10 runs

(2) Blank times unavailable due to system limitations

Table 7. Parallel Solution Times

5 Conclusions

This paper reviewed the need for and characteristics of solving (discrete) stochastic linear pro-
grams with fixed recourse (or more generally, dual block angular linear programs) using interior
point methods. Direct application of interior point methods to larger problems of this nature is
computationally difficult if not infeasible. The reason for this lies in the many dense columns which
are characteristic of these problems. To resolve this problem, four methods that directly address the
problem of dense columns were reviewed. Reformulation of the program to break up these dense
columns can improve the performance of interior point methods, but may require a substantial
increase in problem size. Solving the problem’s dual (or using the transpose factorization) is also
possible and generally works well in practice. However, solving the dual for problems with dense
or large recourse matrices does not work well. Partitioning the constraint matrix into two matri-
ces with dense and non-dense columns is another alternative but suffers from inherent numerical
instability.

Decomposing the constraint matrix into the sum of two matrices and applying the Sherman-
Morrison-Woodbury formula is the BQ decomposition alternative studied here in detail. Compu-
tational experience with this method suggests that it substantially reduces the effort needed to
solve for the search direction at each iteration. Solving the dual or primal requires a Cholesky
factorization of a sparse, but still large matrix. By contrast, the BQ decomposition technique re-
quires several smaller, but independent, factorizations. In practice, this effort is small compared
to that required by non-decomposition based techniques. Computational experience indicates that
speedups may increase with the number of scenarios. Taking advantage of the ease with which the
decomposition may be parallelized further reduces the computational requirements necessary to
solve dual block angular programs, and in practice offers substantial performance improvements.
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Appendix



Figure 1a: SC205, 16 scenarios, Dual
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Figure 1b: SC205, 16 scenarios, Primal
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