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Abstract

Exhaustible resource models that do not consider exploration investment
typically have low values of perfect information and sometimes even optimal myopic
policies. 1In this paper, we add exploration and capacity investment and allow the
returns from exploration to be stochastic. We show that, in this model, the
stochastic program solution may be quite valuable and that myopic policies are far

from optimal.



1. Introduction

Exhaustible resource models have been studied by a number of authors.
Hotelling [3] initially formulated a model that demonstrated that the market price
of an exhaustible resource grows exponentially as it is depleted. Nordhaus [7]
introduced the idea of a "backstop'" technology to this model. The result is the
Hotelling-Nordhaus model in which a finite resource is used until its production
cost exceeds that of the inexhaustible backstopktechnology. The backstop
technology is then introduced and the two technologies are never used
simultaneously.

Manne [5] and Manne and Richels [6] use the Hotelling-Nordhaus model in their
analysis of the effect of the uncertainty of the introduction date of the fast
breeder reactor. They formulate a stochastic linear program and solve it to find
the expected value of perfect information (EVPI). Their results indicate that the
expected value of perfect information in this model is low and that, therefore,
deterministic problem solutions provide close approximations to the solution of the
stochastic problem.

Chao [2] presents an analytical justification for the observations of Manne
and Richels. He formulates a mathematical program for the Hotelling-Nordhaus
model. Under certain assumptions that include a demand that is independent of
price, Chao shows that a myopic policy of using the most inexpensive available
technology first is optimal. He also introduces a price responsive demand function
to his model and again shows that the EVPI is low.

In this paper, we expand upon Chao's model by allowing exploration investment
that could yield additional resource supplies. The amount of increase in the
supply per unit of investment is however uncertain. We show that the EVPI and the
value of the stochastic solution (VSS) (Birge [1]) can be large when this type of

uncertainty is included. We give examples illustrating these observations.



2. The Basic Model
Our results concern two measures of the effect of uncertainty in stochastic
programs, the expected value of perfect information and the value of the stochastic
solution. We present these measures in the context of two-stage stochastic
programs with recourse. We first formulate the deterministic program
Minimize  ¢(x,&) = cx + Min[qylWy =&+ Tx, y > 0] (1)
subject to Ax =b, x> 0
where the vectors ¢ ¢ R% q € R% , and b ¢ R are known, the my-vector & is a
random vector defined on the probability space (£ ,F, F), and A, W, and T are
correspondingly dimensioned known real-valued matrices. A decision vector i(%)
obtained in Program 1 represents an optimal first period decision given a
realization E of the random vector.
If an optimal first period decision is taken for all possible realizations of
the random vector, then we obtain in expected value the '"wait-and-see" (WS)
solution value (Madansky [4]), where

WS = [Min ¢ (x,8)].

E
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The stochastic program with recourse (Wets [8]) involves optimizing after taking

the expected value. We write the value of this program as

RP = Min E, [¢(x,8)].
x g

For E(§) = £, we obtain a third value that is the expectation of the expected value
(EEV) solution i(é) that is optimal in (1) for & = £ . This quantity is
EEV = Eg [§(%(),B)].
The effects of uncertainty are measured by differences among WS, RP, and EEV.
The expected value of perfect information represents the amount one is willing to

spend in gaining information about the stochastic variables. It is calculated as

EVPI = WS - RP.



The value of the stochastic solution, on the other hand, measures the
additional value of solving the stochastic program over solving the deterministic
expected value problem. We define

VSS = EEV - RP.
In the discussion below, we describe VSS and EVPI in the context of an exhaustible
resource model originally due to Chao.

Chao's basic model is a linear program to determine an optimal dynamic production
schedule to minimize the present value of the cost of satisfying an increasing
sequence of demand requirements over time. The demand may be satisfied by any of
m-1 substitutable technologies, each using one distinct finite resource, and by one

backstop technology with no resource limit. The resulting linear program is

m * m T
min I X BFoeiy+ IT BTk xyy (2)
i=1 t=1 1=1 t=0
[eo]
S.t. z Vit <Ry, 151, ooy mj
t=0
m
) Yit = Dt’ t=1, ..., T;
t=1
o)
Yi,e#l = Yie * S_EO (8 - 85-1) i togr t=0,1,.0n,

Yit 2 0y %3¢ 2 05 £=0,1,...5 i=l,...,m;
where y;. is the amount of period t demand, D, satisfied by resource i at time t,
X;p is the amount of resource i committed at t to be extracted later, c; is the

current cost of technology i, k; is the capital cost of i, B is the discount factor,

1

dt is the extraction rate, and R; is the initial availability of the resource

used by technology i. It is assumed that Yio, and x;, are known for i=1, ..., n and
oo}

for t=0, -1,..., and that Yio = X G-t Xjpe It is also assumed that Dy <Dy < ...
t=0

_<. DT_l i DT-

Chao defines Y as the capital recovery factor for the standard time profile



where Y = 1/( L BS 58) and lets dt be the demand for new resource commitments
o  g=(
where D, = z Gs di_g- The result is that (1) can be rewritten as
s=0
m T
min .Z‘ Lz (ki + Ci/ Y) Bt Xt (3)
1=1 t=0
T -® -
S.t. Xt < R]'_ - 1z (z SS)X]'_t’ i=l,...,m;
t—O t:—l §==
m
L X = dt’ t=0,...,T;
i=1

X:. > 0, 1=1,...,m; and all t.

Chao uses Program 3 to derive his results on myopic solutions. He shows that
the corresponding transportation problem can be solved optimally by the Northwest
Corner Rule if the resource costs k; + ci/Y are arranged in increasing cost order
within each period.

The result leads to an expected value of perfect information of 0 because the
WS solution is the same as the RP solution. It also yields a VSS of 0 because the
EEV value is the same as RP when myopic solutions are optimal.

Chao introduces price-responsive demands to the basic model in (3) and obtains
a nonlinear programming model that does not have myopic optimal decisions. He
computes an upper bound on the EVPI and shows that distant future uncertainties and
low price elasticities lead to a small EVPI. In the next section, we introduce
investment uncertainty into the basic model and show that this may lead to a

significant EVPI and VSS.

3. A Model with Uncertain Exploration Returns
We assume that R; in Program 3 represents the amount of resource i that is
known to be available at time 0. This amount can be increased by exploration

investment, but the amount of the increase is uncertain. We also assume that there



is a capacity limit L; on the the amount of a resource which may be committed at
time 0. This amount may also be increased by investment in new capacity and that

return is assumed known with certainty. The stochastic linear program derived from

(3) is then
m m m T m Kt . , . .
min ¢ (ky+e;/Y)x;, + T djujo+ Igivig*t I I I P%St{(ki+ci/Y)xit+diu{t+giv{t} (4.0)
i=1 i= i= £=1 i=1 j=1
subject to . t-1 () () t- ()
a a . .a
e <Ry + Dogg e gl - pooxggH (4.1)
S=0 S—O
i=l,...,m; t=0y...,T; j=1,...,Kt;
. t-1 ()
a
ot <L+ Iviglh (4.2)
s=0
i=l,...,m; t=0,...,T; j=1,...,Kt;
m .
X x{t = de; t70,.00,T; 71,00 0,Ke5 (4.3)
i=1
xqp > 0, i=l,..0,m5 20,000, 5 351,000 Ky (4.4)

where d; is the cost of one unit of exploration for resource i, uit is the amount of

.

exploration, g; is the cost of capital investment in resource i, vy, is the amount of

that investment, p% is the probability of scenario j at time t, K, is the number of
scenarios at time t, and ait is the return per unit of exploration for resource i
under scenario j. Each scenario j is preceeded by ancestor scenarios in previous
periods which are designated by a(j).

The stochastic nature of Program 4 is contained only in the return on
exploration investment, ﬂit. In general, these values may vary continuously, but
the discrete formulation in (4) is used for simplicity. This program involves a
stochastic technology matrix, but it may be formulated with stochastic right-hand

2

sides by defining new variables w;., £5>0, such that



Lt
uttd) = I v (5)
=1
and
. . L .
x{e < R?Etj:zl * lea%t W%t - X?Egzl’

where R?h)l is the availability of resource i in period t-1, there are LE different
b

t_
= ~a(j)
O‘i,gﬂ'

%

[} .
values of ai,t—l’ and w;, < 0 for all % except for 2=¢J such that 0%

The upper bound on w%é is sufficiently large to allow any investment level. The
stochastic right-hand side problem is then formed by substituting (5), (6), and a
constraint where R{t is set equal to the right-hand side of (6), for Constraint 4.1
in Program 4.

In the deterministic version of (4), the investment decisions may skip from
investment in one resource to another according to the values of a{t. This is due
to the basic property of the linear program in which extreme point values correspond
to investments in single resources. The solution of (4) allows for many more
combinations of alternatives investment decisions and, hence, provides for hedging
against other possibilities. This hedging characteristic yields a positive VSS for

many cases and the value of knowing the investment return yields a positive EVPI.

An example of these occurrences appear in the next section.

4. Example

We consider a two period problem to demonstrate the potential effect of
investment uncertainty. In this example, we consider three technologies. The first
technology uses a resource in which investment return is highly variable. The
second technology corresponds to a resource in which investment in additional
capacity results in certain returns. The third technology is an infinitely

available backstop. The data for the model is contained in Table 1.



Resources Current Cost Initial

Availability
Res 1 5.0 25.0
Res 2 10.0 10.0
Backstop 16.7 +®
Investment Cost Return
Res 1 - Good Luck 1.0 1.0
Bad Luck 1.0 0.1
Res 2 1.0 1.0
Periods Demand
First 15.0
Second 25.0
Scenarios Probability
Good Luck 0.5
Bad Luck 0.5
Discount Factor B =0.6

Table 1. Model Input Data

The only uncertainty in this model is in the return for Resource 1 exploration
investment. Resource 2 investment can be interpreted as building additional
capacity. This model can be formulated as a stochastic linear program with recourse
and with uncertainty in the right-hand side by using constraints as in (5) and (6).
In this case, we obtain the following two-stage stochastic linear program in which x

represents first period decisions and y represents second period decisions.



min z = 5x; + 10x, + 16.7x3 + x, + xg + EE[ 3yg + 6yg + 10y;]  (7)
s.t. x| <25
X < 10
X] + X + X3 > 15
! * Y velyy tyy =0
X4 T Y3, =0
Xy Xg + ¥y =0
A <&
1 + ¥ <25
Y9 + Vg < 10
Y5 + yg +  y7 2 25,

XlgeeesXg 2 0y yyyeeeyy7 2 0,

where P{g = 0} = 0.5 and P{£ = 10} = 0.5. In this program, x;, X,, and xj represent
commitments of the resources, x, and x5 are investment variables, y; and y, represent
the net changes in resource availabilities, y3 and y, represent the amount of new
Resource 1 availability obtained through investment, and ys, yg, and y; represent
commitments in the seéond period.

The alternatives to Program 7 are to solve deterministic models that assume good
luck, bad luck, a mean value with & = § = 5, or a single myopic solution. For each
of these solutions, we obtain the expectation of the two period costs after using the
first period solution obtained by these deterministic problems (as in finding the

EEV). These values are

Scenario Deterministic Value Expectation Value
Good Luck 175.0 196.5

Bad Luck 200.0 200.0

Mean 185.0 200.75
Myopic 215.0 215.0



These values can be compared to the value of the stochastic program (7), which is 192.5.

We can then obtain the information values, EVPI and VSS. The expected value of
perfect information is

EVPI = RP - WS = 192.5 - 187.5 = 5.0.
The value of the stochastic solution is

VSS = EEV - RP = 200.75 - 192.5 = 8.5.
The value of the stochastic solution relative to the myopic, or no investment,
solution is also of interest. It is 215.0 - 192.5 = 22.5.

The difference between the EVPI and VSS values demonstrates how these quantities
reflect different values of uncertainty. The EVPI is lower than the VSS because the
RP solution can fairly adequately hedge against either of the future outcomes. In
the RP solution, there is investment in both Resource 1 and Resource 2 capacity
(x4 = 10 and xq = 4) so that no backstop usage is necessary in either scenario. The
mean value solution, however, only involves investment in Resource 1 so that the
backstop must be used in the bad luck scenario. This leads to a higher VSS than EVPI
and shows the merit of using the stochastic program solution.

Investment in two resource is unique to the stochastic program solution. Any
deterministic scenario only involves investment in one resource. This again shows
the utility of the stochastic program. It is able to blend the deterministic
solutions so that the decision maker does not have to decide among two completely
different solutionms.

We also note that the addition of investment has a significant effect on the
value relative to the myopic solution. If no investment is allowed then the myopic
solution would be optimal, and the backstop would necessarily be used to satisfy five
units of demand in the second period. An exhaustive resource model with investment
therefore clearly must consider future scenarios, and the solution of an equivalent
stochastic program can have significant advantages over the solution of a

deterministic expected value problem.
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