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Model-Based Statistical Sampling for Cost Allocation

Roger L. Wright*

1. Introduction

Statistical sampling and multiple regression analysis can be identified
with the.two stages of many managerial accounting and auditing projects,
namely data collection and data analysis. These two stages can be integrated
through a new methodology called model-based statistical sampling. This paper
outlines the methodology and illustrafes its use in allocating the cost of
services. A specific class of applications in public utility load research

is discussed.

COST EFFECTIVE MANAGEMENT INFORMATION SYSTEMS

Modern managerial accounting emphasizes the relationship between the cost |
of informatign and its contribution to better management decisions. Horngren
[1977, p. 7] says, "the optimal accounting measure or system is the one that
produces the greatest benefit net of the costs of obtaining the information."
Demski and Feltham [1976] have provided a rigorous formulation of this approach
to managerial accounting along the lines of Bayesian decision theory.

Bayesian decision theory originated in the efforts of mathematical

statisticians to strengthen the foundations of statistical inference. Much of
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the pioneering work was done by L. J. Savage [1954]. Arnold Zellner [1971] is
leading a group of current workers who are applying the Bayesian approach to
regression analysis and econometrics. Other statisticians, not;bly Carl
Sarndal, [e.g., Cassel, et al., 1977] are examining the foundations of statis-
tical inference in survey sampling.

Statistical sampling and regression analysis are at the heart of cost-
effective procedures for collecting and analyzing managerial information.
Statistical sampling is effectively employed in the valuation of inventories
and receivables. Regression analysis is widely used in cost estimation and
demand analysis. But until recently, there has been only a loose and often
contradictory theoretical connection between these two methodologies—--statis-—
tical sampling for data collection, and regression for data analysis.

Now however, the work of Sarndal and others is conceptually unifying the
foundations of statistical sampling and regression analysis, and is providing
the basis for an integrated methodology called model-based statistical sam-
pling. The model-based statistical sampling methodology described in this
paper relies on certain simplifying approximations and is not intended for
audit populations with low error rates or for applications involving very
small sample sizes. But in typical managerial applications, this methodology
can produce more objective and reliable management information in a more sys-
tematic fashion and at a lower cost than conventional statistical and account-

ing methods. The approach generalizes Newman [1976].

MANAGEMENT INFORMATION FOR ALLOCATING THE COST OF SERVICES
Model-based statistical sampling can be described in the context of the
cost-of-service allocation problem. Statistical projects are often undertaken

to produce managerial ‘information for allocating the cost of a central service
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department to a number of consuming departments, to be called cost centers in
this paper. The cost-of-service allocation problem is discussed in many mana-
gerial accounting texts [e.g., Dopuch, et al., 1974, pp. 579-590; Horngren,
1977, pp. 524-529]. Thomas [1974] gives a comprehensive analysis of alloca-
tion from a financial accounting viewpoint.

The goal of effective cbst-of—service allocation is to distribute the
relgvant costs that are incurred by the service center (the cost pool) to the
individual cost centers in proportion to the actual benefit received by each
cost center. In the situations of interest, the major difficulty is that
there are a large number of cost centers receiving benefits from the service
center and, moreover, the actual benefit received by each cost center can be
accurately assessed only at a considerable expense.

In these circumstances, the cost—benefit principle of managerial account-
ing is often invoked to justify an allocation procedure that uses a readily
available base as a proxy for the accurate assessment of benefit. This is
justified if the base is highly correlated with the benefit. But the validity
of this assumption typically involves a highly subjective judgment concerning
the homogeneity of cost centers, or more accurately, the homogeneity of the
relationship between base and benefit throughout the set of cost centers.

The preceding discussion suggests two approaches to cost allocation.
Apbroach A follows the course of directly assessing the benefit received by
each cost center. This approach produces allocations that are highly equi-

‘table and informative, but the expense of assessing benefits is likely to be
prohibitive. Approach B eliminates the assessment expense by substituting a
readily available base, but yields allocations that may be regarded as subjec-

tive, biased, and uninformative. Model-based statistical sampling provides a
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third approach that combines the objectivity of Approach A with the low cost

of Approach B.

WHAT IS MODEL-BASED STATISTICAL SAMPLING?

The model-based statistical sampling approach builds on statistical sam—
pling for data collection and multiple regression for data analysis. In the
data collection stage, benefits are directly and accurately assessed for a
relatively small number of cost centers that are selected following a care-
fully designed sampling plan. In. the data analysis stage, the directly
assessed benefits are related through regression analysis to auxiliary infor-
mation describing the cost centers. Then the estimated regression relation-—
ship is used to objectively estimate the benefits received by the cost centers
remaining outside of the sample. These estimated benefits are regarded as
being attached to each cost center, and they can be accumulated by any func-
tion, costing objective, or classification of interest. A statistical error
limit can be provided fqr any of these estimates of aggregate benefit. The
sampling plan can be tailored to yield an acceptably small expected error
limit for any specific set of functionms.

A common impression is that statistical sampling is not appropriate
unless the cost centers are homogeneous in some sense. While this may be true
for ordinary statistical sampling, model-based statistical sampling turns lack
of homogeneity to an advantage. By formulating a sampling plan that is based
on the heterogeneity that is believed to exist among cost centers, the benefit
assessments are directed toward the cost centers that are most relevant to the
purpose of the study. This can yield a substantial savings in assessment

expenditure, often exceeding 507%.



Even greater savings can usually be realized by taking advantage of
auxilia%y information in the analysis stage. In most applications it is not
difficult to identify readily available auxiliary information describing each
cost center that would be useful in predicting the benefit received by the
cost center. This auxiliary information can be brought into the analysis
through multiple regression. The relevance of this auxiliary information is
measured by the coefficient of determinationm, R?, between the benefit received
by the function of interest at each cost center and the auxiliary information.
The savings due to using the auxiliary information are directly related to Rz.
For example, if the auxiliary information explains 807 of the variation in the
benefit, then the required sample size will be reduced by 80%.

To summarize, model-based statistical sampling offers an objective and
practical way of estimating benefits for cost-of-service allocation studies.
Project costs are minimized by effectively combining auxiliary information
with the direct assessment of benefit for a few suitably selected cost centers.
Objectivity is guaranteed by selecting these cost centers on a statistical
sampling basis, and by using estimation procedures based on multiple regres-
sion analysis.

The next two sections of this paper outline the model-based sampling
methodology, first for data collection and then for data analysis. The follow-'
ing section discusses a class of cost-of-service applications underway in

public utility load research. This section also provides a numerical example.



-6-

2. Planning the Data Collection Stage

The success of the data collection stage of a cost-of-service study
depends on three factors:
*%% Appropriate selection of cost centers to be included in the sample,

*%% A suitable technique for measuring the benefit received by
individual cost centers, and

*%% Effective control of quality throughout the data collection activity.
Each of these three 1s crucial to the success of the project and must be given
close attention by the project's management. However, this paper will focus on
the selection of the sample. In a very literal sense, the bottom line of our
discussion will be the number of cost centers to be included in the sample.

To make progress, the cost-of-service allocation problems of interest
must be described rather precisely. Service is provided by a central service
départment or organization to each of a large number N of cost centers. Any
particular‘cost center i receivgs a benefit that is quantified as Yy which is
not routinely recorded but can be accurately méasured on a sampling basis.
Interest is in the estimation of the aggregate benefit received by a function
or cost objective; this aggregate benefit is assumed to be additive across

i

by the function of interest, and is assumed to be known for all cost centers.

N
cost centers so that it can be written as ) ay;e Here a, is determined
i=1

If the function is composed of a subset of the cost centers, then a; is the

indicator variable of the subset, i.e., a, = 1 if i is included in the func-

i

tion, and a, = 0 otherwise. More generally, a

i may represent the fraction of

i
the benefit of cost center i that is received by the function of interest.
A project is to be undertaken in which the service benefit will be

directly measured for each of n cost centers included in a statistical sample,

denoted by s. The data collection part of the project involves selecting the
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sample s, and assessing the benefit g for each cost center i included in the
sample, i.e., for each ies.

The output of the data collection stage is the sample database. Each of
the n records of the sample database describes a particular cost center in the
sample. Each record stores a number of variables or pieces of information
describing the cost center, namely:

a) Information identifying the cost center, denoted by i,

b) The assessed benefit received by the cost center, denoted by the
variable Yis and

c) Any additional éuxiliary information about the cost center that
is readily available and believed to be relevant to the benefit

received. This auxiliary information is represented by the k
variables x, ., x

11 %21 0 %kt

THE MODEL

The basis for planning the data collection stage 1s past experience con-
cerning the nature of the relationship between the benefit and the auxiliary
information. This relationship can be conveniently and effectively formulated
using a regression model which is denoted by the symbol M and is comprised of
the following assumptions:

A) The expected benefit received by each cost center i, denoted by
EM(yi), is a linear function of the auxiliary information:

Ey(yy) = Byxgy + ByXos + eee Bz 4o 1)

B) The actual benefit received is equal to the expected benefit
plus a randomly distributed residual component u,

vy = By(yy) + vy | (2)

C) The standard deviation of the residual component of the benefit
of each cost center i is known from past experience and is

denoted oi.

D) The residual components of the N cost centers are mutually
independent.
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A few observations about each assumption are noteworthy:

a) The model assumes a sort of homogeneity of expected benefit among
all cost centers. Equation (1) implies that a unit increase in the quantity
X4 will increase the expected benefit by Bl for any cost center. In other
words, the expected benefit is directly proportional to X if Xoio *0vs Xy
are held fixed. The accuracy of this assumption can often be increased by
suitably transforming the original auxiliary information. For example, sup-
pose that the original auxiliary information is éomprised of a conventional
allocation base X, and a classification of cost centers into two groups,
Group 1 and Group 2. Suppose also that the expected benefit received by each

cost center is thought to be proportional to the base X but with different

constants of proportionality Bl and BZ within the two groups:

EM(yi) = lei if i is in Group 1, and

EM(yi)

In this example, it may not seem possible to combine the two groups of cost

BZXi if i is in Group 2.

centers without violating Assumption A. However, define the two variables

xli and XZi as follows:

X x, if i is Group 1, x

11 i =0 if 1 is Group 2, and

1i
(3)

X 0 if i is Group 1, k

94 x, if i is Group 2.

21~ N4
Then EM(yi) = leli + BZXZi as required by (1). This device can be used
very generally to combine alternative bases and classifications. Other trans-—
formations can be introduced to adapt to other features that arise in particu-
lar applications. 1In particular, a constant or intercept can be included in
(1) simply by defining Xy = 1. |

b) The residual component uy represents .the composite effect of the

variety of additional factors influencing the benefit received by a particular
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cost center. The residual component is sometimes called an error component but
this terminology is somewhat misleading in these applications. The expected
value of each residual component is necessarily zero as a result of (B).

c¢) The standard deviation of the residual component, o,, is allowed to ‘

i’
vary between cost centers. This flexibility is necessary to deal with any
residual heterogeneity between cost centers. In practice, past experience is
used to estimate a fairly simple model relating 9 to a suitable base or
classification. This aspect of the planning can become rather technical
[e.g., Chattergee and Price, 1977, pp. 101-114; Harvey, 1976]; it will not
be emphasized in this paper. To the extent that the oy do vary between cost
centers, the model M violates the homoscedasticity assumption of ordinary re-
gression, i.e., M is heteroscedastic. Model-based statistical sampling turns .
this heteroscedasticity into an advantage both in data collection and in the
data analysis. |

d) If common factors significantly influence the residual components of
the benefits received by several cost centers, assumption D will be violated.
While assumption D can be relaxed, the price is a'substantial increase in the
complexity of the methodology. If reasonable efforts are made to include

common factors in the auxiliary information factored into EM(yi)’ then assump-

tion D may be sufficiently accurate for our purpose.

THE SAMPLING PLAN

The sampling plan specifies how the cost centers are to be ;elected for
direct assessment of benefit. The sampling plan specifies both the number n
of cost centers to be included in the sample, and also the procedure for
selecting them. Conventional statistical methodology emphasizés simple randon

sampling procedures that give each of the N cost centers the same probability
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of being included in the sample. Simple random sampling is the best plan
only if units are homogeneous; otherwise model-based statistical sampling
provides a better sampling plan.

Two sources of heterogeneity affect the efficiency of a sampling plan.
One factor is the heteroscedasticity of thé model M, that is, the variation
of the residual standard deviations. The second factor is variation in the
fraction a, of the benefit of each cost center received by the function of
interest. We define the relevance of cost ceater i to be the quantity a0,
Simple random sampling is best only if all N cost centers are homogeneous in
the sense of being equally relevant.

In this context, a sampling plan is said to be best for a particular
function if the sampling plan yields the most accurate estimate of the aggre-
gaté benefit of the function with the minimal number of direct assessments.
This definitioﬁ implicitly assumes that the expense of assessing benefit is
equal for all cost centers. This assumption will be maintained throughout
the paper.

'When cost centers are heterogeneous in terms of their relevance, a vary-
ing probability sampling plan will be better than simple random sampling.
Audit sampling often employs a particular varying probability sampling plan
called dollar unit sampling. Under dollar unit sampling, accounts are selected
for auditing with probability proportional to their dollar balance. We con-
sider a generalization of dollar unit sampling in which cost centers are
selected for benefit-assessment with probability proportional to a prechosen
quantity Pi. For our purpose, the choice of the sampling plaﬁ can be identi-
fied with the choice of Pi for all N cost centers.

The principal basis for choosing Pi is the statistical reliability of the

resulting estimates. Assume that the model M holds, and that the sample data
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will be used to estimate the aggregate benefit received by a function charac-
terized by a, following the generalized regression procedure described in

the next section. Then the expected standard error of this estimate is

se =L [nean(a®o?/w) - (a/N)mean(a’c®). (4)
Vo

Some new notation has been introduced in (4). We use "mean" to denote

an average calculated over all N cost centers. For example,

mean(azoz) = N_1

Il 2
N
N

Moreover, the sampling plan is described in terms of W, where

W, = Pi/mean(P).

The quantity + 2 se can be used in planning as an expected error limit
for the estimate of the aggregate benefit. This assumes a 95% level of con-
fidence. The derivation of (4) involves simplifying asymptotic approxima-
tions, so that (4) should not be used in applications with very small sample
sizes or audit populations with low error rates [e.g., Beck, 1980; Garstka and
Ohlson, 1979]. In specific applications, the accuracy of (4) can be checked
through computer simulation. Work in this direction is underway. The mathe-
matical details of (4) and related results are available in Sarndal [1980] and
Wright [1981].

Equation (4) provides qualitative insights that are useful for planning.
As is usual in sampling, (4) shows that the standard error increases in pro-
portion to the total number N of cost centers, and decreases in proportion to
the square root of the sample size. The term (n/N)mean(azoz) generalizes the

conventional finite population correction factor and is often negligible.
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The remaining term in (4), mean(azozlw), is often the key factor in the
sténdard error. This term reflects the interaction of the function of inter-
est, the residual standard deviations assumed in the model M, and the inclusion
probabilities of the sampling plan.

Equation (4) shows that the standard error can be decreased in three
ways:

1) Increasing the sample size,

2) Bringing in additional auxiliary information to reduce the
residual standard deviations, and

3) Making a more suitable choice of the Pi (or Wi) used in the
sampling plan.

The first option, increasing the sample size, directly increases the ex-
pense of data collection. For example, to reduce the standard error by 50%,
the number of cost centers to be assessed must be increased by 300%. So
relying on an increased sample size for reliable estimation can have a disas-
terous impact on the budget of the project.

Fortunately, the remaining two options offer improved statistical relia-
bility at virtually no added expense. Alternatively, these options can be
used to reduce the sample size that is required for any given error limit.

Consider the second option——-bringing in auxiliary information. The
analysis 1s easiest if simple random samﬁling is assumed and the finite popu-
lation correction factor is neglected. Define the coefficient of determina-

tion of the auxiliary information for the function of interest to be:
R2 =1 - mean(azoz)/var(ay), with

var(ay) = mean(azyz) - mean(ay)z.
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Under the simplifying assumptions, R2 is equal to the reduction in tﬁe required
sample size due to the use of the auxiliary information. For example, 1f the
auxiliary information explains 807% of the variation in the benefit received
by the function of interest, then the use of the auxiliary information reduces
the required sample size by 80%.

Like all good things, the use of auxiliary information can be overdone.
Equation (4) assumes that the sample size is substantially larger than the
number (k) of auxiliary variables in the model M. The approximations behind
(4) will break down if the model is too complex for the sample, or more gen-
erally, if there is strong multicollinearity in the sample database. These
problems can be avoided if.care is taken in specifying the auxiliary informa-
tion included in the model.

Now consider the third option for decreasing the standard error or the
required sample size--choosing the Pi of the sampling plan. An important
principal of model-based sampling is that the best sampling plan fof a par-
ticular function is to select cost centers with probability proportional to
their relevance for the function. So the best sampling plan uses

Pi =a0,. ‘ (5)

There are often advantages to choosing P, that are not best in that they

i
violate (5). The efficiency of any such suboptimal sampling plan is defined
to be the ratio n2/n1, where ny is the sample size required to achieve a cer-
tain standard error using the suboptimal sampling plan, and n, is the sample

size required to achieve the same standard error with the best sampling plan.

The efficiency of any plan using Pi or w, can be calculated as

eff = mean(ac)zlmean(azcz/w). : (6)
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Stratification can be regarded as a technique for obtaining reasonably
efficient approximations to the best sampling plan. Suppose relevance is
constant within all strata. In this case, (5) gives the optimal stratified
sampling plan following Neyman allocation. More commonly, relevance will
vary almost continuously. Then the model-based approach can be used to design
stratified sampling plans that are highly efficient and may be easier to
implement than a sampling plan following (5).

These methods make sampling straightforward as long as there is a single
principal function of interest. If several functions are important, then addi-
tional analysis may be required to identify a sampling plan that efficientiy

achieves the multiple objectives of the study.

CHOOSING THE SAMPLE SIZE

For any given function a, and model M, equations (4)-(6) can be adapted

i
to calculate the sample size that is required to achieve a prescribed expected
error limit, say c. The most convenient approach is to follow three steps:

1) Determine the sample size n, required if simple random sampling

0

is followed and the finite population correction factor is
neglected:

n, = (2N/c)2mean(a202). (7

2) Determine the sample size 0 required if simple random sampling

is followed and the finite population correction factor is
included:

n, = no/(l + nO/N). (8)

3) Determine the sample size n, required if the best sampling plan

is followed and the finite population correction factor is
included:

n, =n mean(ao)zlmean(azcz). 9)
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These equations have been formulated for an expected error limit c equal
to + 2 se, i.e., an error limit at the 957 level of confidence. If another
confidence level is desired, equation (7) should be modified by replacing 2N
by zN where z is determined from a table of the standard normal distribution,
e.ge, z = 1,645 for 907 confidence or z = 2.576 for 99% confidence.

The role of heterogeneity in model-based sampling can be easily seen by

rewriting (9) as n, = nl(l + cvz)—l. Here cv is the coefficient of variation

2 .
of the relevance of the cost centers. This means that the best model-based
sampling plan will be advantageous to the extent that the cost centers are
heterogeneous in terms of their relevance for the function of interest. If,
as is often the case, the coefficient of variation of relevance exceeds one,

then the best model-based sampling plan will reduce the sample size by more

than 507 compared to simple random sampling.

3. Generalized Regression Procedures For Data Analysis

When the sample database is completely assembled as described in the
previous section, then the cost-of-service project enters the data analysis
stage. Under model-based statistical sampling, the data analysis procedures
are organized around a generalization of multiple linear regression intro-
duced by Cassel, et al., [1977].

Multiple linear regression analysis is commonly used in managerial
accounting to estimate cost behavior patterns from past experience. Good in-
troductions are provided by Dopuch, et al., [1974, pp. 62-88], Horngren [1977,
pp. 777-799], Johnston [1960], and Neter and Waéserman [1574]. The use of
regression analysis in cost allocation applications is closely related to its

use in cost estimation, but certain generalizations are needed to take account

of the following features of our setup:
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*%% The heteroscedasticity of the model M,

*%%* The varying probability sampling plan used to collect the data,
and

*%*% The interest in estimating the aggregate benefit received by
one or more functions throughout the N cost centers.

The approach followed in the analysis will be natural to anyone familiar
with multiple regression:
Step 1: Use the sample data to estimate the regression coeffi-
' cients of the model M, i.e., to estimate the parameters

Bl’ 82, ceey Bk in (1).

Step 2: Use the estimated regression coefficients to estimate the
benefit received by each of the N cost centers.

Step 3: Calculate the aggregate estimated benefit for any func-

tion or classification of interest.
ESTIMATING THE REGRESSION COEFFICIENTS

Since the model M has heterogeneous residual standard deviatioms, i.e.,
M is heteroscedastic, the sample data should be analyzed following an adapta-
tion of ordinary regression analysis called model-based weighted-least-squares
(WLS), [Neter and Wasserman, 1974, pp. 131-136; Maddala, 1977, pp. 259-268].
The model-based WLS procedure can be implemented by transforming the sample
database and then using ordinary regression analysis to estimate the regres-—
sion coefficients in the usual fashion.

To describe the procedure, it is convenient to rewrite the residual
standard deviation 0y as 04z where z; is a known variable describing each
cost center. Assumption C of the model M can be modified slightly at this
étage by assuming that the parameter ¢, is unknown and is to be estimated

0

from the sample data. The variable z, can be regarded as a base representing

the collective magnitude of the various factors affecting the residual compo-

nent of benefit; often z; is taken to be a measure of the size of the cost
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center. As previously suggested, specification analysis proceduresiare avail-
able to evaluate alternative choices of I but these will be discussed
elsewhere.

The model-based WLS procedure is implemented by applying a simple divi-

sion transformation to each variable in the analysis database:

* 4
Yi yi/Zi
* =
Xli xli/zi
* =
Xy XZi/zi (10)

xki/zi.

Mt
Then an ordinary regression-procedure is followed to calculate the estimated
multiple regression coefficients relating yi* to xli*, XZi*, cery in* using a
zero—intefcept option. These estimated regression coefficients can be denoted
by bl’ b2’ ooy bk.

Assuming that the model M is realistic, the ordinary regression output
from the model-based WLS procedure can be used in the usual fashion to calcu-
late confidence intervals and to test hypotheses for the regression coeffi-
cients of the regression equation (1). These and other specification analysis
techniques can be used to refine the model M based on the sample data. More-

over, the standard error of the regression can be used to estimate o How—

O‘

ever, the multiple correlation coefficient and sample coefficient of determin-

ation are generally misleading under WLS procedures and should not be reported.
While model-based WLS is generally accepted by statisticians as the most

appropriate data analysis procedure as long as the model M is accurate, survey

sampling statisticians have tended to prefer alternative procedures that might
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be called design-based WLS. A design-based WLS- procedure is obtained by

substituting a different weight, say 9y for z, in (10). The weight 4>

i
which must be nonnegative, is determined from the sampling plan; often
q = /?I or q, = fq [ Sarndal, 1980]. |

Design-based WLS has both disadvantages and advantages. The principal
disadvantage is that the usual confidence intervals and measures of signifi-
cance obtained from the regression output aré usually biased and should not
be used for inference. The principal advantage is that with a suitable
choice of 4> design-based WLS will often yield comparatively simple and intu-
itively reasonable data analysis procedures in line with conventional sampling
~ practice [e.g., Cochran, 1977].

The principles of data colection of Section 2 are valid for both model-
based and design-based WLS data analysis procedures. In some circumstance, it

may be advantageous to follow a hybrid strategy that combines model-based data

collection with design-based WLS data analysis.

ESTIMATING BENEFITS
Once the estimated regression coefficients have been calculated through
a suitable WLS procedure, the benefit received by each cost center and by any
function of interest can be estimated from the auxiliary information describ-
ing each cost center. This step depends on the availability of this informa-
tion for all cost centers, especially those not included in the sample.
Recall that ¥y genotes the actual benefit (known or unknown) received by
cost center i, and X a

i
i=1
function of interest. An estimate of the benefit of cost center i will be

vy denotes the aggregate benefit received by the

denoted by 91; the corresponding estimate of the aggregate benefit can be

N
calculated as ) a;yy since the a; are assumed to be known.
i=1
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Three different procedures for estimating the benefit received by each
cost center must be distinguished; the resulting estimates will be denoted by
Y140 Vg0 and Yyy-

1) The conventional procedure uses the estimated regression equation
to calculate estimates for all cost centers:

Y13 © blxli + bZXZi E R bkxki' (11)

2) The second procedure adjusts the conventional estimates for the
actual benefit directly assessed for the cost centers included
in the sample s:

Yo =Yy if ies, and

(12)

Vo1 = Y14 if ifs.

3) The generalized regression procedure adjusts the conventional
estimates for the estimated residual components observed in the
sample:
§3i = §1i + (Nﬁi)/(nwi) if ies, and

A A (13)

Ygy = ¥py if its.

Here the estimated residual component is

L A O for ies.

Which of these alternative procedures should be chosen? The answer de-
pends upon a rather subtle interplay between the purpose at hand and the
credibility of the model M. If the principal purpose is to estimate the
benefit received by the individual cost centers, then either the first or
second procedure should be followed.

The issue is more complicated if the principal concern is with the aggre-
gate benefit received by a function involving a number of cost centers. In

this case, the choice depends on the credibility of the model M. If M is

accurate, - then the second procedure generally provides the most reliable

1
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estimate of aggregate benefit. However, the estimates provided by either
procedure one or two‘may be seriously biased if M is even slightly wrong. At
the cost of somewhat poorer reliability if M is accurate, the generalized
regression procedure gives protection against this bias. Aé long as the sample-
size is reasonably large, the generalized regression estimate is approximately
unbiased from a survey sampling viewpoint regardless of the validity of the
model M. So (13) will usually provide a conservative choice, and one that is
in line with more conventional.survey sampling practice.

The accuracy of the model M is important in another way. The sampling
procedures discussed in the previous section assume that M is reasonably
accurate. If M is erroneous, the expected error limits may be biased b;t the
extent of this bias is not well understood at this time. These and related
issues need further investigation.

Despite these limitations, model-based statistical sampling seems to
provide the best approach to cost-of-service studies. The methodology is
organized around a central model M. This model may be rather simple if little
past experience is available. M may be systematically refined as experience
is accumulated. The model M determines data collection and estimation proce-
dures that are highly efficient if M is accurate, but remain free of sigﬁifi—

cant bias even if M is somewhat wrong.

4. Public Utility Load Research

Many electric utility companies engage in load research studies which
investigate the coasumption of electricity by time of day within various
classes of their customers. Load research serves a variety of purposes involv-
ing rate design, system operation, and planning. Under the Public Utility

Regulatory Policies Act of 1978 (PURPA), all large public utilities are
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required to begin collecting load research data on a statistical sampling
basis. Some references are Aigner [1978], Brandenburg and Higgins [1974],
and Taylor [1977].

Model-based statistical sampling is an ideal methodology for load re-
search. In fact, vital support for the development of the methodology has
come from the Rate Research Department of Consumers Power Company. This group
routinely uses model-based sampling procedures to plan its load research
studies [e.g., Load Research Committee Report, 1980, pp. 66-97].

One important purpose of load research is to provide data for cost-of-
service allocations. In the load research application, the service department
is taken to be-the entire utility company, and the cost centers are its
customers.

Most utility cost accounting systems are organized around three primary
cost pools: (1) fixed costs, (2) costs that are thought to vary by the total
amount of energy produced and distributed throughout the year (called energy
costs), and (3) costs that vary by the amount of system capacity that 1is main-
tained to meet peak usage during the year (demand costs). Costs are also
classified as generation, transmission and distribution, and the distribution
costs are subclassified according to the voltage level.

The two variable cost pools are allocated among customers in proportion
to the estimated energy-related or demand-related benefit recei&ed b§ each
customer during the year. The energy benefit received by each customer i is
considered to be proportional to the customer's total consumption of
electricity during the year, say x; (called usage). Since usage is usually
directly metered, no significant estimation problem is involved in allocating
energy costs, although the voltage level provided to the customer may

introduce some rate differentials.
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The allocation of demand costs is another matter. For an individual
customer, the demand-related benefit can be directly assessed through the use
of a time—bf—day meter which records the customer's consumption of electricity
almost continuously--often for each fifteen minute interval throughout the
year. The customer's demand-related benefit, or simply demand, Yy is usually
taken to be his consumption of electricity during one or more hours of peak
system-wide consumption. This peak period itself is usually regarded as fixed.
The goal is to allocate the demand-related cost pool in proportion to the
demand ' of each customer.

The problem is that time-of-day metering is far too expensive to be used
for all customers—-averaging $400-$500 per customer per year. So load research
projects are undertaken to estimate demand on a sampling basis.

The effectiveness of the model-based sampling approach depends on the
availability of auxiliary information that is highly correlated with demand
vy In load research cost allocation projects, two sorts of auxiliary infor-
mation are usually used: (1) usage, Xy and k2) a classification of customers
into k rate groups. A model M can be formed that combines these two sources
of information by extending (3) to k groups. With this model, the regression
coefficients Bl’ 82, oy Bk represent demand/usage ratios within each of
the k rate groups. These ratios are closely related to the parameters that
utility engineers call load factors.

A central feature of the model M is its residual standard deviations. In
our load research work we have estimated the residual standard deviations from

past load research data using the assumed relationship g, = The

Y
OOXi .
parameters % and Y are allowed to vary between different rate groups but

are assumed to be constant for all customers within each rate group. The

parameter Y is introduced to integrate sampling thedry, in which y is often
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assumed to equal .5, and empirical experience which suggests y closer to one.
Both parameters can be estimated for each rate group from available data using
an adaptation of Harvey [1976].

In load research, we are interested in k different functions, one func-
tion identifying the customers included in each rate group of the study. Let
G denote a particular rate group. For the corresponding function, a, = 1 if
ieq and a, = 0 otherwise. The aggregate demand-related benefit of this
fuﬁction is the total demand within rate group G.

“ The sampling plan of a load research project is usually designed to yield
reliable estimates of the total demand within each of the k rate groups, or
equivalently, of the aggregate benefit of each of the k functions of interest.
Although this sounds like a multiple-objective planning problem, the theory of
model-based sampling leads to a natural separation of the project by rate
group. The only customers relevant to the function associated with rate group
G are -the customers in G itself, so the best sampling plan for this function
would select a subsample exclusively from G. Because of the construction of
the model M, thé WLS estimation procedure also separates into independent sub-
procedures for each rate group. This has many practical advantages for plan-
ning and implementation.

In particular, the relevant model for rate group G is simply

EM(yi) = Bxi, and
(14)
o, = o.x, ) for ieG.
i 0”1
This model, denoted by MG, is the ratio model that arises in many other appli-

cations as well. Here B, %> and y are parameters identified with G, and

a; = 1 throughout G.
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Before the composite model M is completely forgotten, we should note its
relevance to questions regarding the definition of rate groups. If the re-
gression coefficients of two existing groups are not materially different, it
may be desirable to simplify the rate structure by merging the two groups.
Conversely, if two subclasses have substantially different coefficients, they
may be recégnized as groups for the sake of equity. Statistical significance
tests, developed within the context of M, can help to evaluate differences
between coefficients. More generally, the definition of rate groups can be
usefully regarded as a special case of the variable selection problem in
regression analysis. This approach extends a suggestion of Demski and Feltham

[1976, p. 131] for dealing with aggregation in cost determination.

THE BRADENBURG-HIGGINS EXAMPLE

A numerical illustration of the model-based approach can be developed
from a dataset that Brandenburg and Higgins [1974] havg used to demonstrate
conventional sample design in load research. The dataset provides demand '
(in kw) and monthly usage (in mwh) for each of n = 210 commercial or industrial
customers. We assume that this is a sample database collected under a simple
random sampling plan from a single rate group G of N = 840 customers. The
model MC is assumed to be given by (14).

The illustration will be pfesented in two parts:

1) Data analysis of this sample using WLS to estimate the parameters

of MG’ and using generalized regression to estimate total demand

within the rate group, and

2) Developing a sampling plan for a future load research study of
this rate group, using the model MG estimated in part one.
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DATA ANALYSIS
The first step in model-based data analysis is to use the sample database

to estimate the parameters o, and y of (14). The estimated relationship is

0
found to be
.9832
o, = .9223 X, . (15)
.9832 : .

Then, using 2, = Xy in (10), the model-based WLS procedure gives the esti-
mated regression equation

V14 = 2.737 X, . (16)

This result can be used to calculate the estimated residual component ﬁi for
each sample customer i, and also the sample mean of the estimated residual
components:

-1

no Y ou
ies i

means(G)

—59206 k.W.

The next step is to utilize the distribution of X, throughout the ‘entire
rate group of N customers.‘ This distribution would ordinarily be readily
available, but unfortunately it was not published for this example. So reason-
able assumptions will be made for required summary statistics based on the

sample database. In particular it will be assumed that

...1 N
mean(x) = N ) Xy
i=1
= 1690 mwh.

The total demand within G might be estimated following any one of the

three procedures discussed in Section 3:
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N N
= 2.737 ) X,
i=1 i=1

p—
N’
o~
«
p—
e
|

=-2.737 N mean(x)
= (2.737)(840)(1690)

= 3,885,445 ku.

N N
K 1zi 721" 121 t 153 U1y
N ~ P
= 121 Y1 + n means(u)
= 3,885,445 - (210)(592.6)
= 3,760,999 kv.
N N )
» 121 7317 121 PR igs i

N
= Z ¥,., + N mean (u)
1=1 1i S

= 3,885,445 - (840)(592.6)
= 3,387,661 kw. (17)

Which of these three estimates is to be preferred? If the model MG’
(14), is exact, the second estimate is probably mﬁst accurate. Experience
suggests that (14) is a good approximation for many purposes, but it may be
slightly erroneous. For example, demand may be related to usage in a slightly
curvilinear fashion. Even small errors in MG may lead to substantial bias in
the first two estimates so they are risky.

The third, generalized regression estimate (17) includes a residual cor-
rection for this potential bias so that it is likely to be preferred over the

first and second estimates.
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An alternative approach is to follow a design-based WLS procedure. For

1/2
the ratio model, the usual choice of 4 is q; = (Xiwi) / , giving

b= ) w -1 v, / ) w 1,
i i i i
ies ies

With simple random sampling as in this case, w, = 1 and b becomes the simple

i

ratio estimator:

b

means(y)/means(x)

3757/1589

2.364 kw/mwh.

With this value of b, means(ﬁ) = 0 so that all three procedures give the same

estimate of the total demand within G:

AR
y, =b X
TP D =

1]

(2.364)(840)(1690)

3,355,934 kw.

This estimate may be favored because of its simplicity.

DEVELOPING A SAMPLING PLAN

In planning a new study, it is often worthwhile to pool data from several
past gtudies to determine long run averages and perhaps trends or other changes
in model parameters. However, to simplify the discussion, the one sample data-
base will be used as the sole basis for planning. The key inputs to the plan-
ning process are the residual standard deviations determined by (15) together
with the distribution of Xy throughout the rate group. These are used to cal-

culate the statistics:
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N

mean( g) = Nﬁl 2 o
i=1
= 1362 kw,
212 -1 N aap
mean( ¢ ) = (N 2 g )
i=1
= 2475 kw.

These statistics can be used with the desired error limit to determine
the sample sizes required under alternative sampling procedures. Following
PURPA, the error limit c is taken to be ten percent of the estimated total
demand, or c¢ = 338,766 kw using (17). PURPA also specifies 90% level of

confidence. Then, following (7)-(9):

[ (1.645)(840)(2475)/338766] >

=]
]

0
= 102 customers,
n, = 102/(1 + 102/840)
= 91 customers,
2
n, = 91(1362/2475)

28 customers.

So if a simple random sampling plan is followea, about 91 customers will
be required in the new load study, but if the best model-based sampling plan
is féllowed, this is reduced to about 28 customers.

Under the best sampling plan, customers are selected with probability
proportional to ¢,, given by (15). Since y is so close to one, a reason-
able simplification is a sampling plan which select customers with probability
proportional to their size (PPS) as measured by X, . The.efficiency of the PPS

sampling plan can be calculated using (6) together with the statistic:
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mearl(c:'zlw)l/2 = 1363 kw.
In fact,
eff = mean(c)z/mean(o?/w)
= (1362/1363)2
= 99.9%.

So the PPS design is virtually equivalent to the best plan in this case.
Another convenient approach is to use a stratified sampling plan to

approximate the best sampling plan. In this example, a stratified sampling

plan can be developed which achieves 957 efficiency with only six strata com-

prised of customers having approximately equal relevance.

CONCLUSION

Model-based statistical sampling has proven to be highly effective in .
rate research. Specific practical sampling plans can be easily developed
based on the circumstances of each project. In the simplest applications,
these sampling plans are closely related to conventional stratified regression
and ratio procedures. Even in these circumstances, model-based sampling offers
important advantages over present methods, especially in handling various forms
of heteroscedasticity. 1In other applications, multivariate auxiliary informa-
tion is available, including multiple bases for allocation and multiple classi-
fications. Model-based statistical sampling can take advantage of this multi-
variate auxiliary information much more effectively than conventional methods.
Moreover, the model-based approach provides a useful link between survey
sampling and conventional regression analysis.

Although this paper has emphasized allocation applications, model-based
statistical sampling is equally effective in most management information pro-

jects in which data can be efficiently collected on a sampling basis. Some
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other important areas of application are in determining physical inventory, in
. estimating the replacement cost of property and equipment, and in valuing

loans and receivables.
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