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ABSTRACT

Strategies are investigated for large—scale surveys of populations
having known auxiliary variables related to the target variable through a
linear superpopulation model. Strategies which combine WLS estimators with
varying. probability sampling designs are evaluated using criteria that inte-
grate sampling and model-based considerations. The best robust strategy is
found to incorporate a new WLS estimator and a design which generalizes
Neyman allocation. This strategy is typically much'more efficient than
robust strategies using OLS or BLU estimators. The best robust strategy can

be approximated by strategies using strongly stratified sampling.

KEY WORDS: Balanced sampling; Multiple regression models; Robustness;
Stratification; Superpopulation models; Unequal probability

sampling.
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I. INTRODUCTION

Sampling strategies have conventionally combined sampling designs and
estimators which minimize bias and provide reasonable efficiency with minimal
assumptions about population distributions. In other fields, inference is
more dependent on models, especially linear regression models. This paper
identifies a class of strategies for using several auxiliary variables in
WLS estimators which are asymptotically unbiased in a traditional sampling
sense. By adopting a linear superpopulation model, a strategy can be con-
structed which is robust in the sense that it provides an asymptotically
unbiased estimator regardless of the validity of the model, and is efficient
in the sense that it minimizes the asymptotic variance if the model is ac-
curate. This strategy is often substantially more efficient than robust

strategies based on OLS or BLU estimators.

Following Royall (1976), consider a finite population comprised of N
units labeled I=1,...,N. Unit I has known attributes given by the (k x 1)
vector Xy in RK, as well as an attribute Yy which is the realization of a
superpopulation random variable. For the purpose of design, assume the
linear superpopulation model

Yr = X1'B + e1 (1.1)

E(ey) = 0, E(egey) = of2 > 0 if J = I,

[

0 otherwise,

with B unknown but oy known.



-5-

Two restrictions of (1.1) are of interest. Brewer (1979) has investi-

gated the ratio model in which k=1 and Xy > 0. Our general analysis will

prove to be most interesting in the case of the nonzero-intercept model in

which the initial element of Xj is unity.

For any sample s, as an estimator, or a predictor under (1.1), of the

total Y = )Ny_; Y1 we use

y* = Z Y1 + X XI'é (1.2)
I€s Its
with
f§= ( Z WIXIXI')—]' X WiX1Y1. (1.3)
I€s I¢s

Here it is assumed that the Wy and the sample s yield a nonsingular matrix
J1es WiX1X1's otherwise the Wy are to be chosen as part of the

strategy.

Conventionally the Wy are chosen following criteria based on (1.1).
The most widely recommended choice is Wy = 01“2, so that y* is the
best linear unbiased (BLU) predictor of Y conditional on (1.1) and s (Royall
1976). A second choice might be Wy = 1, giving the ordinary least squares
(OLS) predictor y*prg- A new choice of Wy will be proposed in Section 3.
This strategy is generally superior to BLU or OLS when certain sampling

considerations are included.

The precision of y* depends not only on the Wy but also on the sampling

design. If (l1.1) is known to be accurate, a sensible strategy is to choose
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the sample s to minimize the variance of y*pry. For example, with the
ratio model and 012 = ObZXI, this strategy dictates that s be com-
prised of the n largest units in the .population. In general, if the assumed

model is inaccurate, y*ppy can be badly biased under this strategy.

This has stimulated interest in robust strategies that provide some
degree of protection against model misspecification. Royall and Herson
(1973a) and Scott, Brewer and Ho (1978) work with y*pry for the ratio
model and impose balance conditions on s that guarantee unbiasedness under a
class of alternative models. Following their approach, y* is unbiased under

the alternative model

Y1 = Z1'§ + up with E(up) =0
if s satisfies the balance condition
Loxrt (] owpxpxp)Th ] wpxezp' = ) zp' (1.4)
Ie¢s Ies Ies Ies .
Thé balanced sampling approach raises two questions:
1. How to select s satisfying (1.4) for one or more Zj, and
2. How to offset the loss of effiéiency in y* when s is forced to

satisfy (1.4).

A partial answer is to use y*pyy with stratified sampling (Royall and

Herson 1973b) or varying probability sampling (Scott et al. 1978).

A more complete answer leading in a new direction is given by Brewer
(1979) for the ratio model. Instead of requiring model-unbiasedness under
a specific class of alternative models, Brewer obtains robustness by imposing

a condition which relates the Wy to the sampling design and which guarantees
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that y* is asymptotically design unbiased (ADU). Brewer then selects the
sampling design to minimize the asymptotic variance of y*, say v(y*). (The
asymptotic construction will be described in Section 2.) 1In particular,
Brewer shows for the ratio model that:
1. y* is ADU if and only if the Wy are proportional to
(nI"l - 1)/X where 7wy is the probability of selecting
unit I.
2. If y* is ADU, then v(y*) is minimized with the sampling
design 77 = n or/)Nj=1 o7
3. With this design,
N N

viy¥) =t (§ o2 - ] o2
1=1 I=1

In the next two sections, Brewer's results will be generalized to the
unrestricted multivariate model (1.1), and in particular, to the nonzero-

intercept model.
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2. ASYMPTOTICALLY DESIGN UNBIASED STRATEGIES

Following Brewer (1978), our asymptotic limits will be constructed as
follows. For any positive integer m, consider m exact copies of the
original finite population to form an aggregate population of mN units with
total Y, = wY. From each of these m populations, one sample is selected
using fixed my; these m samples are considered together as a single
aggregate sample. The estimator yp* is defined by applying (1.2) and (1.3)
to the aggregate sample. To guarantee the existence of various limits, we
assume that there exists a constant A > 0 such that all characteristic

roots of z WiX;Xy' are almost surely greater than A.
I€s

With this construction, lim Ep(ym*/m) exists and is equal to

m->co
N N
z m7¥p + C' Z TWXgYy. (2.1)
I=1 I=1
Here Ep is the expectation based on the sampling design, and
. N N
c''= § Q-mpXp' () wpWpxpXp')©l. (2.2)
I=1 I=1

y* is said to be asymptotically design unbiased (ADU) if and only if

lim Ep(ym*/m) is equal tq Y for any finite population. From (2.1), y* is

m+o
ADU if and only if

TTI + “IWIC'XI = 1, I=1,000,N- (2'3)

Although (2.2-3) seem to provide a rather complex characterization of

the Wy, suitable Wy can easily be constructed. Suppose D is any'vector

such that D'Xy > 0 for all I, and let

Wp = (n77l - 1)(0'xp)7 L. (2.4)
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These Wy = satisfy (2.3) since (2.4) implies

N N
T omWD'XeXp' (] wpWXpXp')~l
I=1 I=1

C‘

=D'.

This means that an ADU estimator y* can be constructed using (2.4) with any

D for which D'Xy > O for all I.

Various choices of D generate simple classes of estimators in particular
cases. While additional situations may arise and call for other choices of
D, two cases are of interest here. For the ratio model, D is necessarily’
scalor so (2.4) implies that y* is ADU if and only if the Wy are
proportional to (nI"l - 1)/Xg as in Brewer (1979). Choosing

D=[cadlo0...0]', «>0, shows that y* is ADU for any model with a

nonzero intercept if

Wp = a(rp7t - 1), a> 0. (2.5)
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3. BEST ADU STRATEGIES
Within the class of ADU strategies a useful performance measure is the

asymptotic variance of y*, denoted v(y*). Here v(y*) is the asymptotic

design-based expectation of the model-based mean squared error of y*. The
asymptotic construction is the same as in Section 2. Specifically, v(y%*)

equals lim EpE(yp* - Ym)z/m.
m>e

v(y*) can easily be evaluated for any y* that is ADU. Using (1.1-3),

N N
Vomp Wi2 op2(C'xp)2 + ] (1-mp)op? (3.1)
1=1 1=1

v(y*)

with C as in (2.2). If y* is ADU, then (2.3) can be used to simplify (3.1)

giving
N N
v(y*) = z ﬂI—l(l—ﬂI)z 012 + X (1—n1)012
I=1 I=1
N
= J (a7l - 1) of2. (3.2)
I=1

The best ADU strategy is to choose the wy to minimize (3.2). By

Schwartz's inequality,

N N N

(L op?< I m [ ourt,

I=1 I=1 I=1

N

and ) w =n, so
I=1
N N
viy¥) >0l (] o2 - § o (3.3)

I=1 I=1
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The lower bound (3.3) is achieved by ‘a generalization of Neyman allocation,
N
TTI = noI/ z OJ. ‘(3.4)
J=1

A best ADU strategy combines the sampling design (3.4) with any ADU

estimator, denoted y*ppy, giving

N N
viy*gpy) =01 ) op? - § o2, (3.5)
I=1 I=1
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"4, ADU STRATEGIES FOR MODELS WITH NONZERO INTERCEPT
Throughout this section, assume the model (1.1) with a nonzero inter-
cept, and consider the class of ADU strategies satisfying (2.5). Within
this context, the best ADU strategy can be compared to more conventional ADU
strategies employing OLS or BLU estimators. These comparisons show that the

best strategy can greatly outperform the conventional stFategies.

Consider first an OLS strategy with Wy = 1 and sample size n, giving
the estimator y*gjrg. If (2.5) is used to provide robustness, then g

is uniformly n,/N as in simple random sambling, and (3.2) implies that

N
v(y*org) = ) (N/ng - 1) o2
1I=1
N
= (N2/n)(1 - ng/N) ( ) or2/N). (4.1)
I=1

By comparing (4.1) with (3.5), we find that the OLS strategy using a simple
random sample of size n, provides the same asymptotic variance as the best
ADU strategy with sample size n = (eff)n,. Here the asymptotic efficiency
(eff) of y*qrg is

N

(]

I=1

]

N
eff op)2/ (N ¥ or?)
1=1

]

(ev2 + 1)71, (4.2)

where cv is the coefficient of variation of o throughout the population.

There is some evidence suggesting that cv is likely to be well in excess
of unity in populations of interest, implying that the asymptotic efficiency

of y*grg compared to y*ppy is likely to be substantially below 507%.
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Some empirical work with real populations is underway. In any case, y*grg

is efficient only if (1.1) is homoscedastic.

A robust BLU strategy has about the same (in)efficiency as the robust
OLS strategy. Consider the BLU strategy with Wy = 01'2 and sample size
Ny. Assume also that the my are uniformly small so that (2.5) gives
T approximately equallto n0012/ % oJZ. Then (3.2) shows that
v(y*pLy) is approximately equal i;1(4.1). This means that, given small
my, the asymptotic efficiency of y*p;y is about the same as the

asymptotic efficiency of y*grg, (4.2), and is less than 100% if (1.1) is

heteroscedastic.

The inefficiency of y*pry for a heteroscedastic model may be sur-
prising. It results from the poor sampling design that is used to provide
robustness, namely sampling with probability proportional to 012. The
model-inefficiency of y*ppy is more than compensated by the design-
efficiency of sampling with probability proportional to or. Simply
stated, the BLU strategy is likely to yield a sample containing too many
units with large op. It is interesting to note that the inefficient BLU
sampling design is a pps design if, as is often assumed, 012 is

proportional to size.



14—

5. STRONGLY STRATIFIED ROBUST DESIGNS
It is sometimes advantageous to approximate the best ADU strategy using
stratification. Suppose that
{Sy,: h=1,...,H}
is any stratification of the population. Let évh be the coefficient of
variation of oy within the M units of stratum h, so that

1+ cvh2 = N, Igs 012 (Izs oI)"z. (5.1)
< Oh <Sh

While Dalenius and Hodges (1959), Cochran (1961) and others have been
primarily interested in designs with small H, we will examine designs that

are strongly stratified in the sense that max {cvy: h=l,...,H} = ¢

is small.

Suppose thaf y* is ADU, with
m7 = n/Np, I€Sy. (5.2)
Using (3.2),
H
v(y*) = § (Np/np - 1) ) op2. (5.3)
h=1 1esy

As in Neyman allocation, (5.3) is minimized given n by choosing ny propor-

tional to (Ny z 012)1/2. With this, (5.3) becomes
ICS,

H N
viy*) =a i ] vy T oor2)l/212 - ) o2

h=l ISy 1=1

]

H N
n’l[ Z (1+<:vhz)1/2 E 01]2 - Z 012
h=1 IESh I=1

N N .
<A+l () op2- ] of?. (5.4)
1=1 1=1
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An almost equally efficient design is obtained with the substantially

more convenient allocation rule
|
ap =n( ) op)/ ) or- (5.5)
Iesy I=1

In this case,
N
v(y*) = a7t (]

H N
o) J (L +cevp2)( ) o) -] or?
1=l  h=l

€Sy I=1
which is also bounded above by the right hand side of (5.4).

The factor 1 + €2 in (5.4) limits the loss in efficiency in y* that
comes from using (5.5) rather than t3.4). Since (5.4) depends on the
stratified design only through e, all strongly stratified designs are
almost equally efficient given Neyman allocation or (5.5). So the choice of
stratification is largely inconsequentiai, but a convenient criterion is to
choose strata to equalize z or, so that (5.5) gives np = n/H. In the
large scale surveys of intiiigt, H can be chosen large enough so that € is

negligible.

While the best ADU strategy has been justified on asymptotic grounds,
it may be that convergence to these asymptotic limits is accelerated by
using strongly stratified designs. If this is true, then strongly stratified

designs may perform well with moderate sample sizes.
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