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ABSTRACT

This paper develops simple, easily implemented rules
for designing stratified sampling plans for combined ratio
estimation. The analysis is based on a superpopulation
model and on approximations that hold when strata are con-
structed to tightly control the variation of the auxiliary
variable. The proposed techniques are illustrated using a
utility load research example, and are related to the some-
what different designs obtained by the cum /f rule developed

by Dalenius and Hodges.
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1. Introduction

Ratio estimators are widely used in sampling studies
of finite populations. 1In many of these applications, a
stratified random sampling design can be developed using the
known population distribution of the positive auxiliary vari-
able x together with information (or assumptions) about the
relationship between x and the target variable y. Using a
superpopulation model of this relationship together with
suitable approximations, easily applied rules can be formu-
lated for planning all aspects of the sampling design: total
sample size, strata cutpoints, and strata allocation.

The emphasis in this paper is on conventional sample
designs utilizing simple random sampling within prescribed
strata. The sample design is chosen to optimize the expected
statistical precision of the conventional combined ratio
estimator. The principal innovation offered here is a
simple procedure for choosing the strata cutpoints, and for
planning the total sample size and the sample allocation
among the strata. The proposed method is analogous to the
Dalenius-Hodges procedure [5, pp. 127-135; 6; 7; 1l6] for
choosing strata cutpoints when the mean or finite population
total of x is to be estimated. However, the interest here is
in stratification of the distribution of x for ratio estima-
tion of the finite population total of y.

Any comparison of sampling designs for ratio estimation



éhould focus on the joint distribution of x and y. The praé-
tice of using the Dalenius-Hodges "cum vf" rule for stratifi-
cation relies solely on the marginal distribution of x and
yields designs that can be inefficient for ratio estimation.
When a suitable previous sample of x and y is available, the
conventional sample-based formula for the precision of the
combined ratio estimator [5, pp. 165-167] can be used to de-
velop a design. However, the problem of choosing the strata
cutpoints to minimize the sample-based expected mean square
error bears disquieting similarities to the computationally
vexing traveling-salesman and bin-packing problems. As
strata cutpoints are tentatively adjusted, the datapoints
in the available sample migrate among strata and often cause
abrupt changes to the within-strata sample variances and
estimated precision. The resulting designs often seem to
be overly tuned to the realized values of x and y in the
available sample and not sufficiently based on the under-
lying joint population distribution.

To avoid this problem, this paper uses a superpopula-
tion model to represent the relationship between x and y,
together with the known finite population distribution of x.
Section 2 develops this model. Section 3 considers the ad-
vantages of stratified random sampling for ratio estimation;
the discussion borrows heavily from Royall and Herson's
concepts of balanced sampling and robustness [12, 13, 14,

15]. The present paper suggests that stratified random



sampling with the combined ratio estimator gives much of the

robustness of a balanced unstratified sample but with often-
‘ [

substantial gains in efficiency. The concept of strong

stratification is defined in Subsection 3.1.

Section 4 uses the superpopulation model and certain
approximations derived from strong stratification to develop
a design rule for stratification, sample allocation, and
total sample size. Section 4.1 develops the model-based
expected mean square error of the ratio estimator of the-
finite population total of y. Section 4.2 examines the
question of efficient allocation. The results developed in
these two sections are used in Section 4.3 to formulate a
specific design rule. A very simple expression for the gain
in efficiency from stratification is developed in Section 4.4.
Finally, Section 4.5 completes the model-based analysis by
proposing simple estimators for the model parameters.

Section 5 presents an application and numerical ex-
ample that arises in electric utility management (L, 2, 91.
Section 6 completes the paper with a discussion of the rela-

tionship between the proposed d?sign rule and the cum /f rule

developed by Dalenius and Hodges [5, 6, 7, 1l6].

2. The Superpopulation Model

How should the joint distribution of x and y be
specified at the planning stage? 1In the applications of

interest, the finite population consists of N units labelled



1, 2, **°, N and xk is known for each unit k. Much less is
known about the conditional distribution of y given x so that

it is appropriate and convenient to utilize a superpopulation

heteroscedastic regression model. 1In this formulation Yi is

regarded as the realized value of a random variable denoted
Yk which is determined from X and a random disturbance €x

following the regression equation
Y, = h(x) + e [vix)]1Y2 k=1, 2, -+, N (2.1)
k k k k roes roee *

Here the expected value and variance of Yk depend on Xy and
are denoted as h(xk) and ozv(xk) respectively. The dis-
turbances €11 Eqr Ty, ey are independent random variables
with mean zero and variance 02. This model, notation, and
many of the analytical techniques follow Royall and Herson
[13]. A more comprehensive presentation of this approach is
given in [4].

At the design stage it is helpful to adopt a specific
form of (2.1) that combines reasonable accuracy, parsimony
and analytical convenience. In this paper we will consider
the superpopulation model § given by (2.1) with the very
simple specifications h(xk) = Bxk and v(xk) = xi. In many
of the applications of the combined ratio estimator, this
model provides a sufficiently realistic basis for sample de-
sign. The three parameters B, y and ¢ can be assessed fairly

easily even when relevant data is severely limited. Using

this model sample designs can be developed following simple



and sensible rules which extend %he conventional sample-
based formulas. However the robustness of these rules to
model misspécification remains tg be investigated.

The superpopulation model, § has been widely used to
explore the properties of ratio éstimation. If the hetero-
scedasticity parameter y is one,ithe Gause-Markov theorem
implies that the simple ratio es#imator is the best linear
unbiased estimator of the superpopulation parameter B.
Brewer [3] and Royall [11] have extended this result to pre-
diction of the finite population:ratio Z?Yk/Zﬁxk and the

population total Z?Y If vy is different from one, the

k* |

simple ratio estimator is still unbiased but not the most
. . .|

efficient estimator. However, 1P the absence of complete

confidence in the accuracy of the superpopulation model £ and

perfect knowledge of y, the ratio estimator is often chosen
|

in practice because of its robustness [13].

3. Stratified Sampling

Stratified sampling usually provides two major advan-
tages over simple random selection: control over the sample
distribution of x, and more efficient allocation of the sample
among the population units to reflect differences in the con-
ditional variance of Y. Royall and Herson [13] have clarified
the advantages of a sample with a balanced x-distribution.
They have shown that balanced samples provide protection

against bias arising from misspecification of h(x) in the



superpopulation model (2.1). Unfortunately, their unstrati-
fied balanced samples often suffer a substantial loss of
efficiency compared to samples that are optimal for a par-
ticular specification of h(x) and v(x) [13, p. 885].

Stratified sampling regains some of the lost effi-
ciency with little sacrifice of robustness. The balance is
achieved by using an estimator that weighs observétions
according to the known population distribution of x. -Sub-
stantial gains in efficiency can be achieved by allocéting
the sample observations appropriately. Although the strati-
fied sample estimator may still not be as efficient as the
optimal-sample ratio estimator for a particular superpopula-
tion, it generally seems to be much more robust.

Ratio estimators can be adopted to stratified sampling
either by using a separate ratio estimator within each stratum
or by using a single combined ratio determined from the
stratified-sample estimators of the means of y and x [5,
pp. 164-169]. Under the model { of Section 2 the combined
ratio eétimator would usually be recommended for small sam-
ples while for larger samples the choice between the com-
bined and separate ratio estimators would depend upon the
credibility of the specification of the regression function
h(x). If the model & is plausible at the planning stage, it
is convenient to consider the combined estimator for planning
even though the separate estimator might be used inythe

analysis for added robustness. In [14] Royall and Herson



have provided certain results useful for designing stratified
samples for the separate ratio estimator under a broad class
of superpopﬁlation models. The‘éresent paper will propose
simpler and more prescriptive sampling rules for the combined

estimator under the model £.

3.1 strong Stratification According to Size

The design rule developed‘in this paper is developed
from a concept called strong stratification. In order to de-
velop this idea in adequate detail, some notation is required.
Suppose that the population of N units is divided into H

strata with'Nh units in strata h. The population is strati-

fied according to x if stratum one contains the N, units that

1

are smallest as measured by x, anpd in general, if stratum h
contains the Nh smallest units excluded from strata 1, 2,
h-1. Each such stratification S is essentially determined by
ar Tt Ny

Each stratification § dﬁtermines within-strata popula-

the number of strata H and the strata sizes Nl' N

tion moments of x. The population mean of xC (c =1, 2, v/2,

Y, etc.) within stratum h will be denoted as ;ﬁc)’ i.e.
QQC) = in/Nh where the summation is over the Nh units in

stratum h.
The absence of the subscript h will denote the over-

all population mean, so that

_ - H. =(c)
X = lek/N = ZlNhXh /N.



The absence of the superscript (c) will indicate the first
moment (c = 1), either overall or within strata.

A very simple rule for design can be formulated by
concentrating on stratifications that tightly control the
variance of x within each stratum. A stratification S will
be called strong for a given number c if the variénce of x°
is small within each stratum, i.e. if ;(20) = (Eéc))Z for

h
1 <h < H.

3.2 Overall Balance of a Stratified Sample

Royall and Herson's concept of a balanced sample can
be adopted to combined ratio estimation. Consider a strati-
fication S and a particular sample s comprised of n units
from the population. Let n, be the number of sample units

from stratum h and let Eéi) denote the sample mean of x°

within stratum h so that xéﬁ) = in/nh. The overall strati-

fied sample mean of x° is Z?Nhié;)/N which will be denoted
xc),
s

The stratified sample s has overall balance of degree

J if the overall stratified sample moment xéc) is equal to‘
the population moment z(¢) for all c =1, 2, ***, J. For
overall balance it is sufficient but not necessary that the
sample is balanced within each stratum, i.e. that s is a
balanced stratified sample of degree J as defined in [14,

p. 890].

Royall and Herson [13, p. 8831 showed that for a



simple balanced sample of degree J the simple ratio estimator
is unbiased under any superpopulation model (2.1) for which
h(x) is a polynomial of degree Jl A similar approach shows
that the combined ratio estimator is unbiased under the same

family of superpopulation models if the stratified sample

has overall balance of degree J.

3.3 Random Sampling Within Strata

If a stratification S is strong for given c (Section
3.1), and if a sample is obtained by randomly selecting ny
units from each stratum then conventional sampling theory
shows that Eéc) has high probability of being close to xle),
This implies ‘that a random, strongly stratified sampling plan
is likely to lead to an approximately balanced sample. Under
these conditions, the combined ratio estimator is likely to
be quite robust. In particular if the stratification is
strong at least for c¢ = 1, then approximate first degree over-
all balance can be expected to provide protection against
bias from a nonzero intercept BO in h(x) = BO + le.

There are some strong arguments against random sampling
when a superpopulation model can be assumed. For example,
under £ with vy equal to one, the model-based mean square
error of the simple ratio estimator can be minimized by ob-
serving Yy for the n largest units in the population [13,

p. 883]. However, this design could give a badly biased es-

timator if ¢ is inaccurate. If complete confidence in £ is
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lacking, an approximately balanced sample may be preferred.
One convenient way of providing approximate balance is to use
a strongly stratified design.

With strong stratification, the arguments aéainst ran-
domization are almost mute. As long as v(x) is continuoué,
there will be little heteroscedasticity in the superpopula-
tion model within strata and little preference among units.
At a small cost, randomization will provi&e protection against
model misspecification. For example randomization réduces
the concern about systematic selection of outliers. It will
be seen that randomization also contributes to the simplicity
of the design rules.

- It is important to note that the overall balance of a
stratified sample does not require proportional sample allo-
cation among strata since the population sizes are used in
the overall sample moments. This means that robustness can
be retained even while the sample allocation is chosen to

maximize the expected precision of the combined ratio esti-

mator.
4. sample Design for Ratio Estimation
With Strong Stratification
A stratified random sampling design p has three com-
ponents: a stratification S determined by Nl’ N2' cee, NH’

the overall samplé size n, and the sample allocation

Ny, Ny Tty Dy The sampling plan p determines a sample
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| N1\ (N2 Ny
space of ( )( A equally likely stratified samples.

R H
For each such sample s, Xq4 x2, ce., Xh are fixed but
Yl' Y2, tey, Yh are regarded as random variables specified

by the model ¢£.

The criterion for selecting p is the model-based ex-
pected mean square error of the combined ratio estimator
T = (YS/ES)Zﬁxk. Here T is regarded as a predictor of the
finite population total T = Z?Yk which is also a random vari-
able under £. 1Initially the conditional mean square error
Es(a - T)2 is evaluated using & with a fixed sample s. Then
the unconditional mean square error E(% - T)2 is obtained by
averaging ES(% - T)2 over the sample space determined by the
design p.

Very simple rules for selecting a good design can be

followed if two approximations are reasonable: Condition A:

The desired design is strongly stratified for ¢ = y/2 so that
EéY) = (ng/Z))2 for all strata:h. Here y is the hetero-
scedasticity parameter of the s?perpopulation model §. Con-
dition B: The desired design is strongly enough stratified
for ¢ = 1 to be confident that a randomly selected sample s
will have approximate overall balance of degree one, i.e.

X_ = Xx. Condition B is used as in conventional analysis to

S

neglect the sampling variation of the denominator of T.
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4.1 The Expected Mean Square Error

Using the model &, the combined ratio estimation T

H
may be written as (B + Zl h h/Nx )lek where
: 2 .. .
U = k - Bxk = €)X l/ . Similarly, the finite population
. — N . . ~
total T is (B + ZlNhuh/Nx)lek. So if & is accurate, T is

an unbiased predictor of T for any sample s since

" N
ES(T) = ES(T) = Blek.

Moreover, the expected mean square error given s, ES(T—T)Z,
is
2

Z?N E_(@_ /% - ﬁh/i)2

which is equal to

02§222Nﬁ[§ég)/nh§§ + §ﬁY)/Nh§2 - 2X(Y)/N X x] (4.1)

Condition B implies that Es = x so that ES(T - T)2

!

approximately

2 2

N [x(Y)/n + 7

n /Ny T 2§éﬁ)/Nh]

When this expression is averaged over the sample space of a
specific design p, the unconditional expected mean square

error can be approximated as

E(T - T)2 = ozzf i ﬁY)(n - Nil). (4.2)
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4.2 Approximately Optimal Allocation

For a given stratification S and a given total sample
size n, the expression (4.2) for the approximate expected
mean square error of T can be minimized by choosing the

sample allocation

()12,

n/n = v &2 (4.3)

This follows from the argument commonly used to demonstrate
the optimality of Nehman allocation [5, pp. 96-98].
With the allocation (4.3), the approximate mean square

error (4.2) becomes

Z

o2 oy, (x(1))1/2;2 /n - 525 ? hxé

19h %p

The preceding expression can be considerably simplified

under Condition A. Note that the term I N x(Y) is equal to

1"h™h
nx (V) x) is the overall population mean of x'.

(Y) l/

where x

can be

z(v/2)

Moreover, Condition A implies that Z

(vy/2)
lthh

So under the model ¢ and under the Conditions A and B

Ny, (xy

approximated as I which is equal to Nx

of strong stratification,* then the expected mean square error

of the combined ratio estimator T is approximately

(T - 2 2 826A&2 2 m - x0) sy @

Condition A also yields two very helpful approximate

reformulations of the allocation rule (4.3), namely

*and under the approximately optimal allocation (4.3),
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nh/n = h éY/z)/Nx(Y/z) (4.5a)
_ Mh Y72 5N Y/2
= l k /Z (4.5b)

The first of these relationships implies that the within-
strata sampling fraction nh/Nh is proportional to the within-

=(y/2 )

stratum mean Xy In the case that the superpopulation
model £ is homoscedastic, y is zero and our allocation gives
a constant sampling fraction. If y > 0, then the sampling
fraction increases from stratum to stratum in proportion to
the mean x(Y/ ). The larger the heteroscedasticity parameter
Y, the more heavily oversampled are the units with large x.
The case that Yy = 2 is closely related to sampling with
probability proportional to size.

The second férmulation given above, (4.5b), implies
that the sample allocation nh/n is proportional to the within

Y/z. In the next section, this

strata population totals of x
approximate characterization of the allocation (4.3) will be

used for a convenient stratification rule.

4.3 Design Rules

In the expressions to be developed in this section,
the ratio (E(Y/z))z/i(Y) occurs repeatedly and will be re-

ferred to as the design effect and denoted de(y). The term

design effect will be justified in the next section.’
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The design effect de(y) can be conveniently character-

ized in terms of the coefficient of variation of xY/z, de-

fined as

/2y o g _ g0/2),201/2 2 (00/2)

cv (x

In fact

1

de(y) = [ev2(x"/?) + 1771, (4.6)

Using the design effecté, (4.4) may easily be restated.

Under the superpopulation model £, and using a sample design

satisfying the Conditions A and B of strong stratification

together with the approximately optimal allocation (4.3),

the expected mean square error of T is approximately

E(T - 12 = 2625 [dge(y)/n - 1/N1. (4.7)

This result gives the following rule for choosing the
sample size n with a strongly stratified design and approxi-

mately optimal allocation. For expected mean square error

E(T - T)2 approximately equal to stz, choose the sample size

n equal to n,, where l

r (4.8a)

H

with .

n,. = de(Y)nO/[l + nO/N]

n, = o2z (1) /g2, (4.8b)

Here 02 and y are the parameters of the superpopulation
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model £ defined in Section 2. Estimation of these parameters
is considered in Section 4.5.

‘One surprising implication of the proceeding result is
that the expected mean square érror is insensitive to the
choice of stratification as long as approximately optimal
allocation, (4.3) or (4.5), is used. However, in most appli-
cations it is desirable to choose a design giving equal sub-
samples from each stratum. If (4.5b) is used for allocation,
the strata sample sizes will be equal if the population totals
of xY/2 are equal'within all strata. This suggests the fol-
lowing design rule for combined ratio estimation, subsequently

called the cr-rule. Choose the number of strata H large

enough to provide Conditions A and B of strong stratification,

and choose the strata sizes Nl' Nz, teey, NH to equalizg the

population totals of xY/2 within all strata. Determine the

required sample size from (4.8) and allocate the sample

equally among strata.

In some applications the cr-rule may prescribe a
sample size n, exceeding the population size Nh for some
stratum h. If y > 0, it is sufficient to consider stratum
H. In this case, the cr-rule can be modified to provide a
100 percent sample of stratum H while maintaining the effi-
ciency of the allocation and the validity of our approxima-
tion (4.7) for the mean square error. Simply decrease the
lower boundary of stratum H until Eﬁy/Z) = nx"/2) /n.  Then

use the cr-rule to stratify the rest of the population and
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to allocate the remainder of the sample. If y < 0, a similar

adjustment might be required in stratum 1.

'
i

4.4 Gain from Stratification

This section examines the gain in efficiency of
stratification and allocation following the cr-rule. Our
comparisons will be with a design using a simple random
sample of size n and the ordinary ratio estimator
(Z?Yk/z?xk)zﬁxk. Conditional on any sample s the expected
mean square error of the ordinary ratio estimator can be

found from (4.1) with H = 1 to be
o) 2 1% /o2 + ¥ a2 - 2wV w7

Here Es and §é¥) are the unstratified sample moments,

X, = Z?x/n and §éY) = Z?xY/n. Assume that s is a large
simple random sample so that Es = X. Then the unconditional
expected mean square error of the ordinary ratio estimator

is approximately
82o?x ) (1/m - ).

This will be equal to st2 if the size of the simple random

sample n is equal to n. where

n, = no/(l + nO/N). ‘ (4.9)

Here n, is 02§(Y)/52 as in (4.8b), and n; is the simple ran-

dom sample size required if the population size N is large.



- 18 -

A comparison of (4.9) with (4.8a) gives the following result.

Given the superpopulation model £, approximately the same ex-

pected mean square error can be achieved by either the ordi-

nary ratio estimator with a simple random sample of size n_

or by the combined ratio estimator with an appropriately allo-

cated, strongly stratified sample of size n,. = de(y)nr. So

de(y), (4.6), gives the reduction in the sample size achieved
by strong stratification with allocation following the‘cr—
rule.

It is interesting to note that if the superpopulation
relationship is homoscedastic, then y is equal to zero and
the design effect is one so that there is no gain from strati-
fying. For a fixed population distribution of x, the greater

y is, the greater is the gain from stratification.

4.5 Estimation of Model Parameters

In order to implement the cr-rule for a strongly stra-

tified sample, the parameters y and ¢ of the superpopulation

model £ must be estimated at the design stage. A full

analysis of the estimation problem might address many rather
complex issues perhaps including a Bayesian analysis of in-
ference featuring the value of sample information, methods
of pooling information drawn from various more or less rele-
vant populations, and a comparison of model-efficient esti-
mators with robust estimators. In this paper, estimation is

not the main focus and it may suffice to suggest simple es-
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timators that minimize reliance on superpopulation assump-
tions and that maximize consistancy with common sampling-
based theory and practice.

Consider first the estimation of the heteroscedasticity
parameter y from m observations of Yk generated according to
£ for given Xy . A simple procedure for estimating the
heteroscedasticity parameter of a regression model has been

proposed by Park [10] and developed further by Harvey [8].

L _ L Y/2
Let Uy be the deviation Yk Bxk which is equal to o€, Xs
under £, and assume that the first two moments of Rn(ei)
exist. Then
pn(u?) = o + yon(x,) + (4.10)
k/ T eTy kT Yk y

where o = E[zn(SEi) and vy = Qn(égi) - 0. Under . g, the dis-
turbances v, are independent and identically distributed so
that the coefficient y could be estimated using ordinary least
squares if the u, were observable. An asymptotically unbiased
. LA _ 5 5 _ oM m .
predictor of U, is uy = Yk Bxk where B Zlyk/lek. This

leads us to the least squares regression estimator

Y = (7w - ESWS)/[WQZ) CARE (4.11)

~2 — .
Here 2y = ln(uk), Wy = zn(xk) and zw, is the sample moment
m —(2) . m 2
lekwk/m, W is lek

If the available sample was randomly selected, the

/m and so on.

sample deviations u, can also be used to estimate the quantity
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2% Y) Ghich arises in (4.7)-(4.9). Define

s? = ZTai/(m—l). | (4.12)

Conditional on the Yk of the finite population, conventional

sampling theory shows that 82 is an asymptotically unbiased

estimator of 5(2) = Z?ui/N. But under &, the model-based

(2) is 6?2, his implies that s? is a

model-based asymptotically unbiased estimation of 02§(Y).

expectation of u

This estimator is closely related to robust estimators con-

sidered in [12].

(v) and if de(?)‘is used

If 5% is used to estimate 0%
to estimate de(y), then equations (4.8) and (4.9) give the

following estimates of Nor Ny and n__:
r cr

n, = 52 /g2 (4.13a)
n, = no/(l + nO/N) | (4.13Db)
n,, = de(?)nr. (4.13c)

Here N252 is the expected mean square error required for the
estimator of the population total}T, n, is the sample size
required using the ordinary ratio estimator with a large
population, n. is the sample size required using the ordi-
nary ratio estimator with the finite population correction,
and N, is the sample size required using the combined ratio
estimator with allocation following the cr-rule. One note-

worthy implication of this use of S2 is that (4.13a) and
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(4.13b) are completely consistent with conventional sampling-
based analysis.

Suppose now that instead of a simple random sample,
we have a stratified random sample with my observations in
each stratum h = 1, 2, *°°, H. Then equation (4.12) defining

82 must be modified to use the population-weighted average of

2
h

sample variance of Gk within stratum h. In place of (4.12),

within-strata sample variances. Let S = Zui/(mh—l), the

define

2 H 2 _ ‘
5% = 5y (N, /N)Sp. (4.14)

With this redefinition of Sz, equations (4.13a=c) remain
appropriate.
These procedures will be illustrated in the following

section.

5. Sampling in Electric Utility Load Research

The sampling rules discussed in this paper have been
developed for a specific application in electric utility load
research. Interruptions of electric power service endanger
the health of many people, disrupt business, and inconvenience
everyone. Utility planners, regulators and managers must
provide enough generating and transmitting capacity to in-
stantaneously meet their customers' greatest demands for
electricity. To minimize the cost of service, managers try

to maintain an efficient balance of base generating units
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which have high capital costs but low operating costs, and
peak generating units which have low capital costs but high
operating costs. Regulators try to establish rates that
fairly allocate both capital and operating costs among
users.

These various concerns -- capacity planning, power
production, and rate setting - all require accurate assess-
ment of the timing of the customers' demand for electricity.
Most utilities measure their power production almost contin-
uously and these data can be adjusted for transmission losses
to estimate past demand on an almost instantaneous system-~
wide basis. In addition, customer billing procedures gen-
erally measure each customer's use of electricity monthly or
bi-monthly.

Despite this abundance of accurate data describing the
entire generating system and popﬁlation of customers, utility
managers and regulators need additional data describing thel
timing of demand for electricity within certain customer
subpopulations, especially present or proposed rate—groupé.
These data are usually obtained by utilizing special time-of-
day meters for a sample of customers. These meters generally
measure an individual customer's usage of electricity during
each consecutive fifteen minute period. The data are con-
tinuously recorded on magnetic tapes which are periodically
returned to the utility or to a service bureau for editing

and transcription. The expenses of equipment acquisition and
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maintenance, meter installatioA, data collection, and data
processing usually add up to several hundred dollars per
sample customer, so sample plaﬂning is important. A discus-
sion of this application is especially timely because the
Public Utility Regulatory Policy Act of 1978 will greatly ex-
pand this activity. In fact tpis act requires most utilities
to develop sampling plans to eétimate demand characteristics
of specified customer subpopulations with 90 percent proba-
bility of less than 10 percent error.

Current practices and iSsues in electric utility load
research are described in detail in various publications and
presentations of the Load Research Committee of the Associ-
ation of Edison Illuminating Companies, especially [2, 9].
Aigner's work [1] is also relevant.

While the details vary, the methods of sample design
discussed in the present paper are generally applicable to
load reéearch. Consider a specific population of customers,
let X be the use of electricity of customer k during a
specific month as recorded by the customer billing procedure,
and let Yo be his use of electricity during a specific inter-
val of time within the month, perhaps the hour of peak sys-
tem usage. For convenience, the variable X will be called
"use" and Yk will be called "demand." We regard use X, as

nonstochastic, but demand Yk as a random variable. The

utility wants to predict the total demand T = Z?Yk of all N
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N
1 k

or, as is more common in the industry, to predict the recipro-

customers. It is equivalent to predict the ratio B = I Yk/Zﬁx

cal B_l which is called the load factor. In the latter case
X is usually redefined as the average hourly use during the
month.

The utility needs to plan a procedure for selecting n
customers for whom demand Yy will be measured using time-of-
day meters. Since these data will be used to determine
electricity rates for the population of customers, any design
involving non-random sample selection is politically unattrac-
tive and random sampling is almost always used. Royall and
Herson's concept of balanced sampling also helps to justify
the preference of utility managers and regulators for random
sampling. |

Many load research designs stratify the population
according to use, x. Stratified random sampling lets the
researcher oversample the large customers while.preserving
the impartiality of random selection. This practice is sup-
ported by the results of this paper which show that an allo-
cation following the cr-rule usually provides greater effi-
ciency than a simple random sample and also much of the
robustness of a balanced sample.

A stratified sampling design must specify strata
boundaries, the total sample size, and the sample allocation
among strata. If the superpopulation model & (Section 2) is

believed to be reasonably accurate, and if the parameters y
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and 02 can be assessed, then an efficient sampling design can
be developed following the rules given in Section 4.3. 1If a
relevant sample is available, %he estimation techniques of
Section 4.5 are applicable.

A npmerical example may be helpful. 1In [9], Higgins
provides data describing use Xy (mwh) and demand Vi (kw) for
each of 210 customers. Figure 1 shows a scatterplot of the

data, and Table 1 provides sample statistics.

Table 1

Sample Statistics for Example

n = 210

x = 1589 mwh
s |

Yg T 3757 kw

Y = 1.704

S = 1920 kw

While population statistics were not published, the
population size N and the population distribution of use
would ordinarily be readily available. For the sake of
illustration we assume N = 740, x = 1400 mwh, and cv(xY/z) =
1.238 so that de(?) = ,3948. These figures are consistent
with the available sample.

Suppose that the design criterion is 10 percent rela-
tive error with 90 percent probability as required for the

Public Utility Regulatory Policy Act. Then the expected
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Scatterplot of Demand and Usage for Example
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mean square error N252 should satisfy

1.645s = (.10)§§ = (.10) (3757/1589) (1400) kw

so that s = 201.2 kw. Then (4.13a-c) imply
n, = (1920/201.2)° = 91 units,
n. = 91/(1 + 91/740) = 81 units, and
n = (.3948) (81) = 32 units.
cr

A practical design might use H = 8 strata with four
units per strata. Following the cr-rule, the eight strata
are chosen to equalize the population totals of xY/2 within
all strata. Using the available sample data, the resulting

stratification is shown in Table 2.

Table 2

Choice of Stratification for Example

Sampling
Upper Fraction
Strita Séze Bou;dary n(?& §(§/2) f§(§))l/2
h h h' "h h h

1 268 575 1.5 170.0 173.0
2 173 840 2.3 261.3 262.3
3 113 1483 3.5 403.0 407.2
4 74 2522 5.4 603.0 608.3
5 49 3814 8.2 931.4 934.6
6 28 7955 14.3 1398.0 1432.0
7 21 11600 16.7 2347.0 2360.0
8 14 16000 28.6 3457.0 3473.0
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Despite the comparatively small number of strata, Con-
ditions A and B of strong stratification seem well satisfied;
The consistency between the last two columns of Table 2 con-
firms Condition A. Condition B can be verified by showing
that the coefficient of variation of X is small. In fact, it
turhs out to be 2.8 percent.

An interesting alternative design would be to use 32

strata with one unit selected at random from each stratum.

6. Comparison with Dalenius-Hodges Stratification

Rules for constructing strata boundaries have been
considered by Dalenius and others [5, pp. 129-131; 6; 7; 16].
Cochran summarizes this work by saying that "the cum vE rule
applied to x should give an efficient stratification for
another variable y that has a linear regression on X with
high correlation," [5, p. 131]. However, the cr-rule for
stratification proposed in this paper is quite different than
Dalenius and Hodges' cum /I rule.

To simplify the discussion suppose that the population
distribution of x is continuous with the probability density
function f(x). The cum /£ rule is to choose strata boundaries,
say Xp_ and x,, to equalize the integrals fzh—l JE(x) dx
petween all strata, and then to allocate the sample equally
among strata. Under the cr-rule, on the other hand, the
integrals fzh xY/Zf(x)dx are equalized. Both rules balance

h-1 Xh

integrals of the form fx w(x) f (x)dx where the weight func-
h-1
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-1/2

— 2
tion w(x) is f(x) for the cum /f rule and xY/ for the

cr-rule.

This comparison can be reformulated in terms of the
sampling fractions nh/Nh' If we ignore 100 percent sampling
constraints, both rules divide the total sample n equally

among the strata. This implies that the within-strata sample
X
size nh is proportional to the integral th w(x)f(x)dx so
h-1
that the sampling fraction nh/Nh is proportional to the
X X
within-strata population mean of w(x), /[ h w(x)f(x)dx//S h f(x)dx.
*h-1 *n-1
In the case of the cr-rule, the sampling fractions are pro-

portional to the within strata means of xY/2

as was pointed
out in Section 4.2, so that the sampling fractions increase
with size as long as Yy > 0. However, in the case of the

cum Vf rule, the sampling fractions are proportional to the

means of f(x)_l/2

within each stratum, so that the sampling
fractions decrease as the density of x increases.

The difference between the two rules is most dramatic
for strata below the mode of a unimodel distribution. The
cr-rule will give sampling fractions which increase with x
if vy > 0, while the cum /f rule:will give sampling fractions
which decrease with increasing Xx.

The two rules will be equivalent only if their weight

1/2 Y/2

functions f(x) and x are proportional, i.e. if f(x) is

proportional to x !

wherever f(x) is nonzero.
The results given in this paper appear to contradict

Cochran's evaluation of the cum v/f rule, quoted above. The
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difference in designs derives from different choices of esti-
mator. Dalenius' work dealt with the stratified sampling
estimator of the mean or total of y while the cr-rule relates
to the combined ratio estimator. The cum vf rule is appro-
priate if x is to be used for stratification but not for
estimation. The cr-rule seems to be appropriate in those
cases in which x is to be used both for stratification and

in ratio estimation.
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