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Abstract

In this paper we extend directly L-shaped method of Van Slyke and Wets to solving two
stage problems of stochastic convex programming. The implement of the algorithm is simple,
so less computation work is needed. The algorithm has certain convergence. The result of com-
putation shows that the algorithm is effective.
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1 Introduction

Van Slyke and Wets [1] have proposed an algorithm for solving L-shaped linear programs which
is applicable to linear optimal control problems and two stage problems of stochastic linear pro-
gramming. J. Birge has extended the two stage L-shaped method of Van Slyke and Wets to solving
multistage problems of stochastic linear programming [2]. F. V. Louveaux has proposed an algo-
rithm for solving piecewise convex programs which is used to solve two stagé stochastic programs
(3] [4]. The method of F. V. Louveaux is not direct extension of the method of Van Slyke and
Wets, and is not applicable to linear stochastic programming, but has quadratic finite convergence.
The algorithm of F. V. Louveaux is complex and has difficulty for solving general convex stochastic
programming.



Two stage problems of stochastic convex programming are difficult for solving. For solving they
are transformed into problems of linear programming by linearization. So the size of the problems
is greatly increased. It is not feasible for the problems of large size.

We have directly extended L-shaped method of Van Slyke and Wets to solving two stage prob-
lems of stochastic convex programs. The method is simple and has certain convergence.

In section 2, we formulate mathematical model to be discussed. In section 3 and 4, we discuss
the basis of the algorithm. The algorithm is given in section 5. The convergence of the algorithm
is discussed in section 6. In section 7, the result of computation is given. In section 8, we do brief
summary.

2 Problem formulation

We consider following stochastic convex programming

min fi(z)

s.t Aiz = b ()
Bz = §)
z 2 0

where z is n—dimensional decision vector, £(w) is m;—dimensional random vector defined on the
discrete probability space (2, F, P), A1, b, B are matrices of size m x n,m x 1,m; x n respectively.
f1(z) is convex function.

Two stage problem with recourse of problem (1) is

min fi(z) + Q(z)
s.t Az b (2)
T 0

v

where Q(z) = EQ(z,w),
Q(wr UJ) = min f2(y’ w)
st Ay = §(w)-Bz (3)
y 2 0

where ¥, is n; —dimensional variable vector, As is m; x n; matrix, f2(y,w) is convex function on y
for each w € (2.
" To be convénient we vt f

K, ={z| Aiz=b,z >0},

Ky = {z| for all w €, there exists y,

such that Aoy = £(w) — Bz,y > 0}.

Then feasible set of problem (2) is X = K; [ Ka.
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3 Feasibility cuts

The method of getting feasibility cuts is the same as one for stochastic linear programming [1].
Solve linear progtamming
z = min efyt+ely
st Awy+Iyt-1Iy

= §{(w) - BT (4)
y20,yt >0,y > 0

where e = (1,...,1)T, I is an unit matrix.
Let o be optimal multiplier vector. If z = 0, Z is a feasible point of problem (2), otherwise we
get feasibility cut
o Bz > oT¢(w) (5)

4 Optimality cuts
For given w; € Q, we

K., = {z| there exists y, such that
Azy = §(ws) — Bz,y > 0}.

Proposition 1 For any w; € Q and on all z € K, Q(z,w;) is either a finite convez function in
z or Q(z,w;) is identically —oo.

proof. For all z € K,,, the following convex program is feasible

Q("”’wi) = min f2(y) wi)

st Ay = §(w)-Bz (6)
y 2 0
Its dual problem is
max 0(u,v,z,w;) )
st u=>0
where

0(u, v, 2, w;) = inf{fo(y, ws) — uTe +vT (Agy — é(wi) + Bz)ly € R™}

If Q(Z,w;) = —o0, for some F € K., then 6(u,v,Z,w;) = —oo for each u > 0 [5]. Thus for all
z € K., we have 0(u,v,z,w;) = —oo for each u > 0, and

Q(za wi) = max{ﬂ(u, vz, w,;)'u > 0} = —00.
It remains to show that if Q(z,w;) is finite on the convex set K., then it is convex.
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V 21,22 € K, Zx = Az1 + (1 — N)z2, A € [0,1], let 3,52 and y, be optimal solution to (6)
when z equals 21,22 and z) respectively. Since \y; + (1 — A)y2 is a feasible solution to (6) when
z = Az1 + (1 — A)z2 (but not necessarily optimal, e.g in general yx # Ay1 + (1 —A)y2 ) and fo(y, ws)

is a convex function for fixed w;, we have

Qza,wi) = fa(yr,wi)
< flyn+ Q= Ny, wi)
< My, wi) + (1 = A) fa(ye, wi)

AQ(z1,wi) + (1 — N)Q(z2, wi)-
This completes the proof of the proposition.

Proposition 2 Let 7, be an optimal solution of following problem

Q(E)wi) = min f2(y1 wi)
st Ay = &(w) - BT
y 2 0

(Tw;, Uw;) 18 corresponding optimal Lagrangian multipliers, then the linear function
F2(Ty i) — Hz;.e + WﬂAz’ﬁw,- - WS.-E(M) + WZ..B-’”

is a support of Q(z, £(w;)).

proof. The dual problem of the problem (8) is

max 0(u,v,E,w;)
st u>0

where

0(u, v, T, w) = inf{fa(y,ws) — uTe + v (Ay — £(wi) + BE)ly € ™).

Since (%, T.y;) is optimal solution of (8), by the duality theory we have that

f2(7w.'a (l)i) - ‘Uz;.e + vZ;Aﬁu; - ﬁz,;f(wi) + EZ;.BE = Q(E’ w‘i)‘

(8)

(9)

(10)

For all z € K, (%.,,T.;) is a feasible solution of all problem (7), but is not necessarily an

optimal solution. Thus again by duality theory we have

Q(z,w;) = max{f(u,v,z,w;)|u >0}
> a(uw.-vanwawi)

fo(T,) — UE e + U7, Aog,, — To.&(wi) + UL, Bz,
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last equality is according to

arg miny fo(y,wi) — ﬁg‘e + EZ‘.Agy - Ffif(wi) + '175‘. Bz
= &rg miny fo(y,ws) — TL.e + UL, Agy — UL, £(wi) + UL, BE.

This completes the proof of the proposition.
Proposition 1 and proposition 2 are the basis of getting optimality cuts (see following algorithm).

5 Algorithm

Algorithm 1 Step 1. Solve the problem

min fi(z) +0
st Ax = b (12.1)
o¥ Bz > ofé k=1,...,s (12.2) (12)
—vfBz+ 0 > pp k=1,...,t (12.3)
z > 0

Initially s and t are zero. If no constraints of the form (12.3) are present, 0 is set equal to
—00, 18 ignored in the computation. Let x;, 6; be an optimal solution of (12).

Step 2. Solve the problems

z = min eyt +ely
st Aw+Iyt—-Iy = €wi)-Bxz i=1,...,N; (13)
y20,yt>0,5=> 0

If for some z, > 0, & = £(w,) and optimal multiplier o, are used to generate a feasibility cut
of the form (12.2) go to step 1, otherwise go to step 3.

Step 3. Solve the jJroblems

min fQ(yv wt')
st Ay = €&w)-Bz i=1,...,N; (14)
y 2 0

Let y.; be optimal solution, (u.,,v.,) be corresponding optimal Lagrangian multipliers. com-

pute

p(wi) = fo(ys, wi) — ub;e + v, Aoy — vZ,E(wi),

N3 N2
o= pip(ws), U= Pitlse
k=1 k=1

where p; is probability of w;.



If p + v} Bz; < 6;, terminate.

Otherwise use py,v; to generate a new optimality cut of the form (12.3) and odd it to problem

(12), go to step 1.

6 Convergence of the algorithm

Theorem 1 If for some (2,,6;), such that

p+ v Bz, =6,

then x; is an optimal solution to problem (2).

proof. Problem (2) is equivalent to

min fi(z) +6
st Q(z)<4d
zeK

Let

(z,0) Q(z) <8,z€K},
(z,0)] Aiz=0b,z>0

ol Bz > oTkbr, k= 1,...,
~vf Bz 40> pr,k=1,.

then X C K.
According to proposition 2 we have

01 = p1 + v Bz = Q(z1),

thus (z;,6,) € K.

(15)

S

cath

Since (zi,06;) is an optimal solution to problem (12) and K C ?, then (z;,6;) is an optimal
solution to problem (15) and z; is an optimal solution to problem (2). This completes the proof of

tl_le theorem.

Theorem 2 ﬁupmse thealgonthmgenémtes an infinite sequenceof (z1,8), (®,8) is the limit

point of an arbitrary subsequence (zy,, 0y;),and
lim py, + 'UZB:Z:& -60,=0
1—00

then T is an optimal solution to problem (2).



Proof. Since K is closed convex set [6] and Q(z) is a convex function, then K is a closed convex
set too. thus Z € K.
According to alggrithm and proposition 2 we have

0, < Qlzy) = L Bry,

Since

hm Pi; + 'UZ?BE[‘. - 01’ = O’

i—00 _
we have

9 =Q().

Thus (Z, 8) is a feasible point to problem (15). Let (z*,6*) be an optimal solution to problem (15),
then

fi(zy) + 0, < fi(z*) +6°.

By convexity of fi(z), fi(z) is a continuous function [7], thus
f@) +8< fi(z") + 0"

Hence (%, 0) is an optimal solution to problem (15), and Z is an optimal solution to problem (2).
This completes the proof of theorem.

7 Computational experience

To see the feasibility and effect of the algorithm we have computed some sample problems of
stochastic convex programming.
We consider two stage problem with recourse of stochastic convex quadratic programming

min 12THiz + df +Q(z)
8.t Az b (16)
T 0

AVAR |

where Q(z) = EQ(z,w),

Qz,w) = min 3y Hy + d&
s.t Ay = €£(w)-Bzr (17
y 20

where. 4}, Aa, B, b, d, da are matrices of size m xn, m; xn;,m; Xn,mx1,nx 1,n; x 1 respectively.
Hj is n x n positive semidefinite matrix, Hp is positive definite matrix. §(w) is m;—dimensional
random vector defined on the discrete probability space (2, F, P), and has N scenarios.

We have computed 3 sample problems which have different size using IBM RS/6000 workstation.
We use OSL (Optimization Subroutine Library) to compute the subproblems of linear programming
and convex quadratic programming. The code is implemented in Fortran 77 language.
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mlin|m | N
examplel | 8| 5| 6| 4|16
. example2 | 36 | 35| 28 | 23 | 32
exampled | 60 | 53 | 70 | 40 | 64

In all examples, problem (15) has equality constraints and inequality constraints. When p; +
v} By — 6; < 0.001, we terminate computing. Theoretically, p; + vf Bz —6; > 0, but sometimes it
probably is a negative number which absolute value is very small due to computation error. The
result of the computation is following:

example | NFE | NOP | NIE | CPU | ITI | HST | LST RVT
1 3 3 6| 470| 783 | 935| 847 | —0.609280 x 10~°
2 2 3 5| 918 | 183.6 | 2582 | 1221 | 0.412843 x 106
3 0 10| 10| 6049 | 604.9 | 4737 | 1723 | 0.634673 x 103
Where

NFE: Number of feasibility cuts.

NOP: Number of optimality cuts.

NIE: Number of iterations.

CPU: Average CPU time (microseconds).

ITI: Average time of each iteration (microseconds).

HST: High storage.

LST: Low storage.

RVT: p + v] Bz - ;.

We have together computed N problems (13) (linear programming) and N problems (14) (con-
vex quadratic programming). So the work of the computation is decreased and the units of storage
are saved.

If A,ds, Hy are random, computation can also implemented. The result of computation shows
that the algorithm is effective for stochastic convex quadratic programming.

8 Summary

This paper extends L-shaped method of Van Slyke and Wets to solving stochastic convex program-
ming with recourse. Algorithm is a kind of decomposition method, so it possesses good character of
decomposition method. The implement of the algorithm is simple and it has certain convergence.
The result of the computing convex quadratic programming shows that algorithm is effective. A
number of sample problems of general stochastic convex programming have to be computed to see
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practical efficiency of the algorithm for general stochastic convex programming.
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