Division of Research January 1989
School of Business Administration

ASSESSING MAIN EFFECTS IN INTERACTIVE
REGRESSION MODELS

Working Paper #595

Youjae Yi
The University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research

Copyright 1989
University of Michigan
School of Business Administration
Ann Arbor, Michigan 48109



Author’s Note

Youjae Yi is Assistant Professor of Marketing, School of Business Administration, The
University of Michigan, Ann Arbor, MI 48109-1234. The author wishes to thank Richard

P. Bagozzi and Claes Fornell for their helpful comments for an earlier version of this

paper.



ASSESSING MAIN EFFECTS IN INTERACTIVE REGRESSION MODELS

Abstract
This paper investigates the problems in assessing main effects of interval scaled variables in
interactive regression models. Inclusion of an interaction term induces the following
problems in assessing main effects; 1) conclusions can change dramatically from ”strong”
to “no” main effects with allowable scale transformations, 2) severe multicollinearity is
introduced, and 3) the interpretation of main effects is ambiguous. It is shown how a
mean-centering procedure reduces these problems, and these issues are illustrated with an

empirical example.



INTRODUCTION

Marketing theories often imply that independent variables have interactive as well as
main effects on a certain dependent variable (e.g., Laroche and Howard 1980; Punj and
Stewart 1983). If the independent variables (say, X; and Xj) and the dependent variable
(Y) are measured on numeric scales, it is common to investigate such effects by including
the product term (X1X2) in a multiple regression (Lilien and Kotler 1983; Hornik 1984;
Louviere and Woodworth 1983). That is, the following equation, which will be called
a”raw-score” model, is used:!

Y =Bo+ B1X; + B2Xp + 83X X +e (1)
where B, is an intercept, the B;’s are regression coefficients, and e is the residual.

The use of the product term represents a generalization of the concept of interaction in
analysis of variance. Since the effect of a marginal change in X depends on the level of
X3 (0Y/0X; = B1+B3X7), X» can be seen as a moderator variable (c.f., Sharma, Durand,
and Gur-Arie 1981). The regression coefficients (B;s) are tested for significance to
examine the effects of independent variables. If B; (B7) differs significantly from zero, it is
concluded that X (X) has main effects on Y. If B3 is significant, the interaction effect is
said to exist.

This seemingly straightforward practice, however, has certain problems when the
independent variables are measured on interval scales rather than ratio scales. Researchers
can draw different conclusions about the effects of X; from the same data with changes in

the origins of the scale, which are allowable for the interval scales; for example,

1 The product term XX is only one of many possible interaction effects; for example,
Y=BoX 181X 282 is another form of interaction (c.f., Southwood 1978). The concern of this
paper is, however, the regression model with a product term such as equation (1). See
Cooper and Nakanishi (1983) for discussion of the issues in another popular interactive
model, an attraction model.



conclusions can differ widely from "no main effects” to ”strong main effects” depending on
what origins are used for the scales. The variance of the regression coefficient estimates
becomes large, and one may fail to find significant effects of important predictors. Further,
the main effects are difficult to interpret. These problems are highly relevant to marketing
research, where the levels of many measurement possess, at best, interval properties.

The purpose of this paper is to highlight the issues in assessing main effects of interval
scaled variables in multiplicative regression models, which are often ignored in practice.
Several marketing researchers have investigated the problems in using the multiplicative
regression model for evaluating the interaction effects (Bagozzi 1984; Holbrook 1977;
Schmidt and Wilson 1975). However, little research has been done in marketing on the
issues in assessing the main effects. The present paper integrates and puts into perspective
such issues that have appeared in disparate literatures (e.g., Althauser 1971; Lane 1981;
Finney et al. 1984; Overall et al. 1981). After the problems in testing main effects are
discussed, it is demonstrated how one of the well-known procedures, mean-centering,
solves these problems. These issues are then illustrated with an empirical example with

actual data.

PROBELMS IN ASSESSING MAIN AND INTERACTION EFFECTS
This section examines the issues in assessing the effects of interval-scale variables in a
multiple regression analysis with a product term. Problems are discussed with respect to:
(1) scale dependence, (2) multicollinearity, and (3) substantive interpretations.
Scale Dependence
The origin of an interval scale is arbitrary; that is, linear transformation through addition
or subtraction of constants is an operation that preserves the properties of interval level

measurements. For example, in marketing studies of expectancy-value models using



seven-point interval scales, the items have been scored either from 1 to 7 (unipolar scales)
or from -3 to +3 (bipolar scales) (Bagozzi 1984; Holbrook 1977; Ryan and Bonfield

1975). Since such transformation is theoretically possible, it should not affect conclusions
as to the effects of variables. Conclusions about the interaction effect are indeed invariant
under such transformation. However, conclusions about the main effect can differ widely
from “no main effects” to ”strong main effects,” depending on what origins are used for the
scales.

These properties can be demonstrated as follows. Let us define new variables X*| and
X*, by changing the origins of X1 and X»; that is, X*1=Xj-c, X*2=X»-d, where ¢ and d
are arbitrary constants. Solving for X1 and X3 and substituting the results into equation
(1), we get

Y=(Bo+cB+dBy+cdBs) + (B1+dB3)X*1 + (Bo+cB3)X ™2 + B3X*1X* +e. (2)

What are the effects of changing origins of X1 and X5? We can note that the coefficient
for the rescaled X;’s (X*}’s) are affected by the changes in origins (c or d). First, the
regression coefficient for X*{ varies with changes in the origin of X5 (d). An implication
is that it should be possible, by the appropriate changes in the origin of X», to force the
coefficient for X*1 to zero. If we let d=-B;/B3, the main effect of X*; becomes zero. That
is, when the origin of Xj is changed by B1/B3 [X*=X7+B;/83], the main effect of X
disappears. A symmetrical relationship holds for X*»; the regression coefficient for X*»
(Bo+cB3) is influenced by the change in the origin of X (c). Conclusions as to the main
effect of X*) can therefore vary with the coding scheme for Xj. The standardized
coefficient and the ratios of the coefficients to their standard errors also change (Southwood
1978). In sum, changes in origins of one variable affect the regression coefficients of the

other variable and thereby conclusions about its main effect.



The sensitivity of the main effect with regard to the scale change, which is frequently
overlooked in practice (e.g., Laroche and Howard 1980; Homik 1984), provides serious
threats to a regression analysis of additive and multiplicative effects. When an independent
variable (say X) is measured on an interval rather than a ratio scale, no theoretical meaning
can be attached to the (partial) regression coefficient for the other variable (X;). By adding
or subtracting a constant from the X scale, as can be done without loss of generality when
the scale is measured at the interval level, it is possible to make the main effect of X either
significantly positive, significantly negative, or insignificant. An analytic tool is needed
that can provide conclusions invariant under such transformation.

Note that the coefficient for the product term (X;X>) is invariant under such
transformation (see equations (1) and (2)). Although zero-order correlations involving the
product variables are scale dependent (Schmidt and Wilson 1975), the partial regression
coefficients for them and corresponding standard errors are scale invariant; therefore,
conclusions as to the interaction do not vary with changes in origins of the scales (Allison
1977). Also, since equations (1) and (2) are mathematically equivalent, the predictive
accuracy of the two equations is the same (Cohen 1978). Since the conclusions as to the
interaction effects and predictive accuracy are invariant with changes in origins, nothing
more will be said about them herein. This paper will focus on the estimation and
interpretation of the main effects, which are affected by scale transformation.
Multicollinearity (MC)

The X1Xj term is usually highly correlated with its constituents, X7 and X5 (see
Althouser 1971, for exact forms of the correlations between X;’s and X;X» terms). The
size of these correlations depends on the means, standard deviations, and correlations of

X1 and X, but very large correlations are often found in practice (Althauser 1971; Tate

1984).



The correlation among the independent variables, known as multicollinearity, poses
well-known problems for the estimation and interpretation of regression coefficients (e.g.,
Belsley et al. 1980; Johnston 1984). Specifically, standard errors of regression coefficient
estimates become very large, and the t-statistic for the coefficients can be quite low . Asa
result, the individual regression coefficients may not be statistically significant, even
though a definite statistical relationship exists between the dependent variable and the set of
independent variables. Another consequence is that estimates and their standard errors
become quite unstable. In sum, conclusions from the interactive regression analysis can be
quite imprecise and unstable .

Interpretations of Main Effects

In an analysis of equation (1), to assess the main effect of a variable (say, X1) the
corresponding coefficient (B1) is examined. How can we interpret the coefficient? The
answer can be found by looking at the marginal effect of the variable. For a marginal effect
of X1, we can take the partial derivative of the function with respect to X1; 0 Y/0X; =
B1+B83X5. Note that By is the effect of Xj on Y when other variables (here X3) are zero.

A conceptual assumption underlying this approach is that a main effect refers to the
effect of a variable in the absence of all other variables. This situation is, however,
practically quite unlikely; it is difficult to imagine situations where people are completely
free from influences of other variables. To the extent that such a questionable assumption
underlies this approach, the method is of limited applicability. Ideally, the effect of a
variable should be understood in relations with other variables in an interactive model, but

an analysis of equation (1) lacks such properties.



ALTERNATIVE METHODS FOR ASSESSSING INTERACTION EFFECTS

Some alternative procedures are available for assessing whether the relationship
between the two variables (e.g., X1 and Y) varies over levels of a third variable (e.g., X»7).
Two methods reviewed here are: (1) subgroup analysis and (2) orthogonal centering.?
Subgroup Analysis

One may examine interaction effects by probing directly for differential relationships
between Y and X among individuals grouped on the basis of a moderator variable (X>).
In this approach, the sample is split into subgroups, and each subgroup is analyzed
separately. The subgroup analysis, however, has several drawbacks. First, there is a loss
of statistical power and measurement information when scores on a continuous variable
(e.g., Xp) are artificially collapsed into two or three categories (Cohen and Cohen 1983).
Second, grouping can often produce “mystyfying descriptive results” in that different
cutting scores used to form subgroups can sometime radically alter observed relationships
(Cronbach and Snow 1977).
Orthogonal Centering

Smith and Sasaki (1979) have proposed that one should center the variables around the
values (f and g) that make the product term orthogonal (uncorrelated) to its constituents.
The orthogonal centering uses the following equation, which will be called an
“orthogonally centered” model.

Y=bo+ b1X1 + baX2+ b3(X;-f)(X2-g8) + € (3)

2 Several estimation procedures have been suggested to reduce multicollinearity; e.g.,
Ridge, Principal Components, Latent Root, Stein, Equity estimators. But they are biased,
and the usual t-test are not applicable to these estimates. Further, the main effects are
difficult to interpret. Thus, they are not examined in this paper (c.f., Krishnamurthi and
Rangaswamy 1987).



where the centering constants (f and g) that make the predictors orthogonal are calculated
by
f=(S11823-S12513/(S11522-512%), and
g8=(513822-512523)/(S11522-8122).
S;; refers to the sample covariance between X and Xj, Sj; is the sample variance of Xj, and
X3 indicates X1 X>2.

This approach reduces multicollinearity by eliminating the correlations between the
interaction term and the Xj and X, terms. However, estimates of the by’s are still scale
dependent in that they vary with changes in origins of X1 and Xp. The main effects are
difficult to interpret as well; they are the effects of one variable when the other variable
takes on the value that eliminates the correlation between the variable and the product term.
This approach is also cumbersome by requiring somewhat lengthy calculation on the part of

the users.

A SUGGESTED METHOD: MEAN CENTERING
It is proposed in this section that deviation scores from the means be used when a

multiple regression model includes product terms. This approach, often called "mean-
centering,” consists of transforming the X and X» scores to deviations from their means
and then forming the product term from these deviations. This mean-centering approach
implies the following equation, which will be called a ”mean-centered” model:

Y=ap+aixy +axxp+azxjxp+e (4)
where x1=X- _)E, and x2=X2-_X_2_. Next, let us examine how this approach resolves the
three issues in using the multiplicative model: (1) scale dependence, (2) multicollinearity,

and (3) substantive interpretation.



Scale Dependence. The mean-centered model (4) overcomes the scale-dependence
problem encountered in an analysis of equation (1), the raw-score model. That is, the
regression coefficients of equation (4) do not vary with changes in the origins of X; and
X2. Suppose origins of the X and X scales are changed by subtracting constants from
them: Z1=X1-c, Zp=X>-d. In such cases, resulting deviation scores for equation 3 are as
follows: z1=Z1- Z1 =(X1-¢)-( X1 -¢)=X1- X7 =x1, and similarly zp=x. That is, x1 and
x of equation (3) remain unchanged after transformations of X1 and X5. As a result, the
coefficients for the two independent variables are invariant with respect to changes in
origins.

Multicollinearity. Centering around the means has often been proposed as a way to
reduce the correlations between individual Xj’s and the cross-product term (X1X») in
interactive models or those between individual X’s and the higher-order term (X2) in
polynomial models (for example, Y=Bo+81X1+B2Xj2+e) (Cohen and Cohen 1983). It has
been shown that expressing the independent variables as deviations from their means
reduces the multicollinearity substantially and avoids the associated problems (Tate 1984).

Interpretation of Main Effects. This approach also helps researchers in interpreting the
effects of X1 and X5. The main effect of a variable (say, X1) can be interpreted as the
average effect of a variable across levels of the other variables (X7). If we take the partial
derivative of equation (4) with respect to X1, we get 8Y/0X1= bj+b3x;=b1+b3(X2- X3 ).
It can be seen that by is the effect of X1 when other variables (here, X7) are equal to their
own means ( X3 ).

This interpretation of main effects is consistent with that suggested by some
researchers. Several researchers have argued that it is valid to estimate main effects in the
presence of interaction effect, but that the interpretation of main effects is different from that

when no interaction is present (Overall et al. 1981). In an additive model without
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interaction effects (Y= B +B1X+B2X>), the main effect is a constant effect that is
generalizable across all scores on other variables. In an interactive model, however, the
main effect varies with the level of other variables. In such a case, the main effect should
be interpreted as the average effect of a variable across all observed scores of other
variables, or equivalently the effect of the variable at the average score on the other
variables (Cohen and Cohen 1983; Lane 1981). The proposed model yields estimates of
such main effects, and the main effects are now interpretable in relations to other variables.

Additional Comments. The mean-centering approach has several additional
advantages. First, since the estimates of the B;’s in equation (1) can be expressed as linear
functions of the a;’s in equation (4), one can easily calculate the 8;’s indirectly through
computations of the ai’s. Second, since equations (1) and (4) are mathematically
equivalent, they provide an identical fit to the data. The mean-centering yields the same R2
as the current practice, while producing such desirable properties as scale independence,
low multicollinearity, and a clear interpretation of main effects . Third, the proposed model
is not confined to the two-variable case, but it is easily generalizable to the models with
more than two variables.

There are, however, some situations where applications of equation (1) to uncentered
data may provide better insights. First, when moderator variables (X3) are dummy
variables that define subgroups, then B3 in the raw-score model represents the difference in
the within-group slopes, compared with a baseline group. Second, when X1 and X3 are
indicator variables for experimental studies, it is easy to interpret the coefficient for the

product term in raw scores; B3 is the same as the interaction effect in analysis of variance

(Smith and Sasaki 1979).



11

AN EMPIRICAL EXAMPLE

In order to demonstrate the problems in analyzing interactive models, the effects of
attitude toward an act (Aact) and subjective norm (SN) on behavioral intentions (BI) are
examined with actual data. Ryan and Bonfield (1975) have questioned the additivity of
Aact and SN assumption underlying the Fishbein model, and have suggested that Aact and
SN might have interaction effects on BI. This claim is tested here with a regression model
with a product term to illustrate the issues.

Measures of these variables were collected from 118 respondents in a study about
automobile purchases. The dependent variable is subjects’ intention (BI) to purchase the
Hyundai Excel, an imported car. BI is measured by asking subjects to give the likelihood
of purchasing the Hyundai Excel the next time they buy a car on a 11-point scale (1 to 11).
The first independent variable is attitude (Aact) toward purchasing the car, measured on the
good-bad 7-point scale (numbered from 1 to 7). The second independent variable is
subjective norm (SN), measured on the 11-point scale (numbered from 1 to 11) using
standard “"Most people important to me think I should/should not buy” item.3

A product of Aact and SN (Aact x SN) is included in the regression equation to assess
the main (additive) and interactive effects. The regression coefficients and their standard
errors are reported in the first column of Table 1. Note that none of the coefficients is
significant, suggesting a conclusion that Aact and SN have neither main nor interactive
effects on BI, which is quite contradictory with the predictions of the Fishbein model or
Ryan and Bonfield (1975). Yet, the regression as a whole is quite significant at the .001
level (R2=.44, F=29.6). This suggests that there might be multicollinearity problems in the
analysis, a consequence that individual estimates are insignificant due to inflated standard

errors while the overall equation is quite significant.

3 Details on data collection procedures are available from the author upon request.
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Table 1 here

The degree of multicollinearity is determined by examining the following measures
which are suggested for detecting multicollinearity: (1) extreme pairwise correlation
between predictors, (2) small determinant of the correlation matrix, det (R), (3) large
variance inflation factors, VIF (j), which are the diagonal elements of the inverse of the
correlation matrix, and (4) the condition number, k (X), which indicates the sensitivity of
estimates to the change in the input data (Belsley et al. 1980; Johnston 1984; Mansfield and
Helms 1982). In the first three columns and rows of Table 2 are the correlations among
Aact, SN, and their product (Aact x SN). Note that one of the correlations is.92,
suggesting high degree of multicollinearity. Other measures also show similar results: det

(R)=.038, the largest VIF(j)=20, and k(X)=111.4.

The issue of scale dependence is explored by changing the coding schemes for the
independent variables. Three types of transformation are adopted in the analysis: (1) a
change in the Aact scale, (2) a change in the SN scale, and (3) changes in both Aact and SN
scales. Columns 2-4 of Table 1 show the results from these transformations. First, the
Aact scale is renumbered as a bipolar scale (-5 to +5). The regression coefficient for SN
changes as a result of this transformation; it has changed from 1.30 to 1.73. Furthermore,
the coefficient has become significant after the transformation of the Aact scale (p<.01). A
symmetric result is observed for the change in the SN scale (i.e., -3 to +3); the coefficient
for Aact changed from .74 to 1.38. The coefficient, which was insignificant in the

baseline model, has become significant in the transformed model (p<.05). When both Aact
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and SN scales are changed, coefficients for both variables change. The main effects of
both Aact and SN, which were not significant in the baseline model, are now significant at
the .05 level. In sum, conclusions as to main effects are drastically affected by changes in
scales.

These results imply that researchers can draw different conclusions about the main
(additive) effects of attitude and subjective norm from the same data, depending on what
coding schemes are used in the analysis. This fact is disturbing because there is no agreed-
upon coding scheme for many interval scale measures among marketing researchers. For
example, in marketing studies using seven-point interval scales, the items have been scored
either from 1 to 7 (unipolar scales) or from -3 to +3 (bipolar scales) (Bagozzi 1984;
Holbrook 1977; Ryan and Bonfield 1975).

A proposed mean-centering is applied in order to demonstrate its effects on the
problems; that is, the deviation scores from their means are used in assessing the effects of
Aact and SN. The input correlation matrix, given in Table 2, suggests that mean centering
has greatly reduced the pairwise correlations among the predictors; the correlations of the
new product term with the Aact and SN are much lower (.06 and .21) than those (.61 and
.92) in the original model. Other indices also indicate low degree of multicollinearity;
det(R)=.858, the largest VIF(j)=1.2, and k(X)=9.9. The standard errors for the
coefficients of Aact and SN have decreased drastically by using the mean centering (from
.92 t0 .51, and from .79 to .23, respectively), which is expected with the reduction of
multicollinearity (see Table 3). Overall, the multicollinearity is substantially reduced by

mean centering.

4We can note that the coefficient for the interaction effect is invariant under these
transformations; it is .11 with the standard error of .17 under any transformation. We can
also note that the R2 of the model is identical for all models.
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Tablé-3 here

Next, the scale independence of conclusions in the mean-centered model is examined.
Since the mean-deviation scores are invariant as to changes in the origins of scales, the
regression coefficients and the related standard errors remain the same under the three
transformations. As a result, conclusions as to main effects as well as interaction effects
are not affected by changes in origins of the scales.

The orthogonal centering is also applied for comparison purposes. As we can see in
the final row of Table 2, the correlations between the product term and its constituents are
eliminated by this orthogonal centering. Measures of multicollinearity, however, are quite
similar to those from mean centering; det(R)=.898, the largest VIF(j)=1.1, k(X)=9.7. The
regression results from orthogonal centering are summarized in the second column of Table
3. The coefficients and their standard errors are quite similar to those obtained under the
mean-centered model. For example, the coefficient for Aact is 1.21 in the orthogonal
model, while it is 1.20 in the mean-centered model.

In sum, mean-centering has provided satisfactory results in reducing multicollinearity.
The additional reduction in multicollinearity by using orthogonal centering is minimal for
this example. It can be noted that orthogonal constants fand g were quite close to the
means of X and X for this example (f=4.38, g=4.39, X =4.12, and Xj =4.40),
which is consistent with the prediction by Smith and Sasaki (1979). However, mean-
centering would still be preferred because it provides the additional advantages of scale

independence and ease of interpreting the main effects.
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CONCLUSION

We have examined the issues in assessing the effects in a regression analysis with a
product term. Much interest has been in the appropriateness of this analysis regarding the
interaction effect (Bagozzi 1984; Holbrook 1977; Schmidt and Wilson 1975), but the
issues in assessing main effects have not received much attention in marketing research.
This study is an attempt to highlight such neglected issues regarding the main effects. The
traditional analysis has problems in (1) scale dependency, (2) multicollinearity, and (3)
substantive interpretations. It has been demonstrated that mean-centering, which has been
proposed usually as a way to reduce multicollinearity, can reduce other problems as well.
In this approach, conclusions are invariant to changes in origin, they do not suffer from

multicollinearity, and the estimates are clearly interpretable.
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TABLE 1
THE EFFECTS OF SCALE CHANGES ON REGRESSION COEFFICIENTS

Baseline Aact SN Both
Model2 Changeb Change¢ Changesd

Attitude .74 (L92) .74 (.92) 1.38*(.59)  1.38*(.59)
Subjective Norm 1.30 (.79) 1.73**(.23)  1.30 (.79) 1.73**(.23)
Interaction A1(.17) A1(.17) A1(.17) A1(.17)
(Intercept) 2.5 5.5 10.4 15.9

R2 44 44 44 44

a Aact (1,7) and SN (1,11)

b Aact (-3,+3) and SN (1,11)

¢ Aact (1,7) and SN (-5,+5)

d Aact (-3, +3) and SN (-5,+5)

e Standard errors in parentheses.

* Statistically significant at the .05 level.

** Statistically significant at the .01 level.



TABLE 2
CORRELATIONS AMONG INDEPENDENT AND DEPENDENT VARIABLES

Y2 X1b X
Y 1.00
X1 .36 1.00
X2 .64 32 1.00
X1X, 65 61 92
X1- X1)Xo-Xp) .17 .06 21
(X1-H(X2-g) .04 .00 .00

a Behavioral intention (BI)
b Attitude toward an act (Aact)

¢ Subjective Norm (SN)



TABLE 3
COMPARISION OF MEAN CENTERING AND ORTHOGONAL CENTERING

21

Mean-Centered Model Orthogonal Modelb
Coef. S.E. Coef. S.E.
Attitude 1.20* S1 1.21* S
Subjective Norm 1.74** 23 1.77** 22
Interaction A1 17 A1 17
(Intercept) 13.2 13.5
R2 44 44

a Centered to the means of Aact and SN (4.12, and 4.40).

b Centered to the values that make the interaction term orthogonal to Aact and SN (4.38,
4.39).

* Statistically significant at the .05 level.

**Statistically significant the .01 level.




