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Abstract

A new principle for choosing portfolios based on historical returns data is introduced; the
optimal portfolio based on this principle is the solution to a simple linear programming
problem. This principle uses minimum return rather than variance as a measure of
risk. In particular, the portfolio is chosen which minimizes the maximum loss over all
past observation periods, for a given level of return. This objective function avoids the
légical problems of a quadratic (non-monotone) utility function implied by mean-variance
portfolio selection rules. The resulting minimax portfolios are diversified; for normal
returns data, the portfolios are nearly equivalent to those chosen by a mean-variance rule.
Framing the portfolio selection process as a linear optimization problem also makes it
feasible to constrain certain decision variables to be integer, or 0-1, valued; this feature
facilitates the use of more complex decision making models, including models with fixed

transaction charges, and models with Boolean-type constraints on allocations.



1 Introduction

Sharpe (1971) has remarked that “if the essence of the portfolio analysis problem could
be adequately captured in a form suitable for linear programming methods, the prospect
for practical application would be greatly enhanced”. In this paper a portfolio selection
principle is introduced which is such that the optimal portfolio is a solution to a simple
linear program. The principle is referred to as “Minimax”: the optimal portfolio is defined
as that one which would minimize the maximum loss (in dollars) over all past historical
periods, subject to a restriction on the minimum acceptable average return across all
observed time periods. This principle leads to portfolio selections similar to those obtained
by the mean-variance selection rule of Markowitz (1991), in the case when returns have
a sample distribution which is approximately multivariate normal.

Since linear programming is becoming a standard feature on personal computer spread-
sheet programs, this new minimax rule has the potential to make portfolio optimization a
tool accessible to any financial manager. Framing the portfolio selection process as a lin-
ear optimization .problem also makes it feasible to constrain certain decision variables to
be integer, or 0-1, valued; this feature facilitates the use of more complex decision making
models. For example, a linear-integer programming model can accommodate fixed trans-
action charges, a cost commonly encountered by portfolio managers. In addition to the
minimax rule’s computational convenience, the method may also have logical advantages
when the returns are non-normally distributed, and when the investor has a strong form

of risk aversion.



1.1 The Minimax Portfolio Selection Rule

Suppose data are observed for N securities, over T' time periods. Let

y;jz = Return on one dollar invested in security j in time period ¢

y; = Average Return on security j
1 I

T

=1

ortfolio allocation to security j.

1

|

i)

w; =
" ypt = Return on portfolio in time period ¢
N
= Z WjYjt
=1

E, = Average Return on portfolio
N
=Y wil;
3=1

M, = Minimum return on portfolio

= Iin Yp:.
t

[he “Minimax Portfolio” maximizes the quantity M,, subject to the restriction that E,

:xceeds some minimum level, say G, and that the sum of the portfolio allocations does not

:xceed some total allocation budget, say W. That is, the minimax portfolio minimizes

he maximum loss, where loss is defined as negative gain, or, alternatively, maximizes the

ninimum gain. !

It can be seen that the minimax portfolio is given by the solution to the following

inear program:

1Thus, it might be more descriptive to refer to the rule as a “maximin” portfolio selection criterion;

he term “minimax” will be used throughout, though, due to its greater familiarity.



max M, -~ (la

Mp,w
subject to
N .
ijyjf—-MpZO, t=1,...,T ; (1b
i=1
N
Z wif; 2 G (1c
7=1
N

w; >0, j=1,....N (e

Equations (1b) guarantee that M, will be bounded from above by the minimum portfolic

return; since this is the only constraint on M, and since M, is being maximized, it wil

take on the value of the maximum minimum return, or the minimum maximum loss.
An equivalent formulation seeks to maximize expected return, subject to a restriction

that the portfolio return exceeds some threshold H in each observation period:

N
max F = ijgjj 4 (2a)
subject to
N
Y wiyp > H, t=1,...,T (2b)
J=1 ‘
N
ij <WwW (2¢)
3=1
w; 20, j=1,...,N (2d)

The minimax portfolio is defined as being optimal with respect to the dataset {y;i}.

The {y;;} may be a set of historical observations; they may also be values simulated



from a probabilistic model for future returns. If one lacks both historical data on past
returns, and a predictive probability model for future returns, the minimax method will
not be applicable. In such a case, one may need to resort to simpler methods of portfolio

selection; e.g., equal weighting across all securities.

2 Relation to Mean—Variance Analysis

Markowitz (1952) presented a quantitative approach to portfolio analysis; his prescription
remains the dominant technique in use today. Markowitz proposed choosing the portfolio
which minimizes variance, subject to a restriction on the mean return. The inputs to
this procedure are the means for each security, and the cbvariances between all securities.
In terms of observed data {y;:}, the Markowitz mean—variance portfolio optimization

problem is:

N N
rrgn Z Z W WSk (3a)

7=1 k=1

subject to
N
ijﬂj >G (3b)
j=1

N
ij <W (3c)

w; >0, 3=1,...,N, (3d)

with sj; = Tl—N Z?:l(yjt — ¥;)(yke — Ux) being the sample covariance between securities
J and k. Problem (3) is a quadratic programming problem. In this section, we examine
the relationship between the minimax portfolio selection rule, and the mean-variance, or

Markowitz, selection rule.



2.1 Normally Distributed Returns

The minimax rule uses minimum return as a measure of portfolio volatility. More
specifically, the minimax rule considers the first order statistic of the portfolio returns,
out of a sample of size T', as an estimate of a portfolio’s downside risk. The mean-variance
rule, on the other hand, uses variance as the measure of portfolio volatility. In the case
of normal data, these two measures of risk ~ minimum return and variance of returns -
will be quite similar.

When the security returns are jointly normal, all portfolios are univariate normal,
with some mean p, and variance o2. For a variate X with arbitrary density f(z) and
distribution function F(z), the expected value of the first order statistic from a sample

of size n is given by

(o}

e1n = B [Xin] = / 2f(z) (1 - F(z))™ da. @)

While (4) is not tractable for arbitrary n in the case when f(z) is N (g, 0?), David (1981)

provides an approximate bound:

(n—1)o

€ :nZﬂ—
5 (2n — 1)}

An alternative approximation sometimes used is

ot (L), o

o n+1

where @1 is the inverse of the standard Gaussian cumulative distribution function.
Using either approximation (5) or (6), it will be the case that for all portfolios with a
given mean return, the portfolio with the smallest variance is also the one with the largest
(approximate) expected first order statistic, for any sample size n. Thus the minimax
portfolio, the solution to the linear program (1la)-(1le), will be similar to the portfolio
which solves the quadratic programming problem (3) minimizing portfolio variance given

a restriction on the mean.



2.2 Non—Normally Distributed Returns

If the returns of the individual securities are not jointly normal, then a portfolio
formed from these securities may be non-normally distributed. A non-normal portfolio
distribution cannot in general be characterized by just a mean and a variance. It is known
that the mean-variance portfolio selection rule can have counter-intuitive behavior given
non-normal probabilities on portfolio returns. For example, given the two portfolios A
and B described in Table 1, portfolio B is dominated by portfolio A, in that portfolio A
has higher return regardless of the future state of nature. Thus, no investor should want
to put 100% of i1is‘or her holdings in portfolio B. However, portfolio B is “mean-variance
efficient”, since it has lower variance than portfolio A. Mean-variance analysis, then,
would suggest that investing 100% of ones holdings in portfolio B is reasonable, though

logic and utility theory suggest otherwise.
(INSERT TABLE 1 HERE]

The reason mean-variance analysis fails in this setting is that what one truly wishes
to achieve in a risk-averse portfolio selection rule is the avoidance of low returns, whereas
mean-variance selection penalizes variation even among high returns.

The minimax rule is defined in terms of representative data, rather than in terms
of a predictive probability distribution function. However, the same situation arises in
this setting. Given the data on two securities A and B in Table 2, a mean-variance
analysis based on observed sample moments would indicate that a portfolio with 100% of
its holdings in security B is efficient, on the grounds that it is less risky than a portfolio
with 100% of holdings in security A, even though security B’s return is always lower than
that of security A. On the other hand, the only minimax-efficient portfolio based on the
data in Table 2 will be one with 100% holdings in security A.

[INSERT TABLE 2 HERE]



2.3 The Minimum as a Measure of Volatility

For normal portfolio data, the sample variance will be the most efficient estimator of
population variation; i.e., it will attain the Crameér-Rao lower bound for estimation
error (Lehmann 1983). However, the lower order statistic, which is the measure of
risk used in the minimax selection rule, may prove, under certain distributions, to be
a better estimate of the riskiness of an asset or portfolio tilan is the sample variance,
which is the measure used in mean-variance analysis. Consider, for example, a dataset
{1,... ,zn}, with the variates z; following the log-normal distribution LN (g, 7) with
probability density f(z) = z! (27!‘7'2)_% exp (— (log z — p)’? /2r%). The parameter 7
is the scale, or risk, parameter of the distribution; a question is, which summary
statistic of the z; is better for estimating 7: the minimum, z,.,, or the sample variance,
v=y" ( —,:7:)2/ (n — 1)? Neither statistic is sufficient for 7, the sufficient statistics
for p and T being the sample mean and variance of the logs of the z; (see, e.g, Lehmann
1983 for a definition of sufficiency). However, either statistic can be used, together with
the sample mean of the z;, to form a moment estimator of .

The mean and variance of the LN (g, 7) distribution are given by

ElX]= exp"+'r2i (7)
Var[X] = exp®t™ (exp’2 —1) ; (8)

equating sample moments to population moments leads to the moment estimator:
#, = {log(1 + v/z%)}"/? 9)

based on the statistics (z,v).
Alternatively, since the variable log (X ) will have the normal distribution, one can

base an estimator on the first order statistic 1., using the relation 6:

log (e1:n) — p -1 1
o . n+l)’ (10)



where, again, e;., is the expected value of z;.,. Equations (7) and (10) together imply

1 1
-2—7'2 - 0! <n+ 1) 7+ log (¢/e1:m) = 0. (11)

A moment estimator 7 based on the sample statistics (Z, z;.,) can thus be defined as the

positive solution of the quadratic equation:

1o af 1\, ]
57'12 = 2 <n - 1) 71+ log (Z/z1:) = 0. (12)

A simulation study shows that 7 is frequently superior to 7, for estimating the scale
parameter of the log-normal distribution. Table 3 presents the mean squared error for
estimation of 7 based on samples of sfze n from the LN (g, 7) distribution, for different
values of n and 7. For each combination of parameters, 500 simulation replications were
performed; the mean squared error was computed as MSE(7) = Y oo (F — 7)2/500,
where 7 is the estimate (7; or 7,) at the kth replication, and 7 is the true value of the
parameter. In all cases examined, 71, the estimator based on the first order statistic,
significantly outperforms 7,, in terms of having lower mean square estimation error. This
result suggests that, for log—normal portfolio data, maximizing the lowest order statistic

may lead to more stable portfolios out-of-sample than does minimizing variance. This

issue 1s examined in section 6.2 of this paper.

[INSERT TABLE 3 HERE]

3 Utility Analysis

Numerous authors have shown that a rational decision maker makes his or her decisions
by maximizing the expected value of a utility function with respect to some probability
-distribution; Fishburn 1981 offers a survey of these results. Mean-variance procedures
for portfolio selection are known to be consistent with maximization of expected utility

if either the predictive distribution of returns is jointly normal and the utility function is

8



concave, or if the utility function is quadratic. The latter assumption is a peculiar one, as
the quadratic function is non-monotone, and thus implies that one may prefer less money
to more. Counter-examples to the mean-variance procedure occur when neither of the
above assumptions are appropriate.

It is of interest to discern whether or not the minimax portfolio selection procedure is
consistent with an expected utility framework. In fact, the minimax rule can be motivated
by the assumption of a utility function U (y) which implies an extreme form of risk aversion.

In particular, assume that the utility function takes the form

Uy) =y —exp(—a(y — §)) * ‘ (13)

for some constants § and a > 0.

For the sake of simplicity, assume the random variable Y corresponding to future
wealth is discrete, taking values in {y1,y2,...,¥m}, With y1 < y2 <+ < Ym, and with
associated probabilities {p1,p2,. -+ sPm}s 2opey Pk = 1. Let § = > e, PkYx denote the
expectéd value of Y. The expected utility is given by |

E[UY) =) pU(y)
k=1

= Zpk (yk — exp (—a(yk - g)))
k=1

=7- > peexp(—a(ys — 7))
k=1

= —exp(—a(ys =) Y _ prexp(—a(ye — y1))- (14)
k=1

Let a increase toward infinity; then all components of the summation in (14) will become



negligible except the first, since yx > y; for k > 1, and the expected utility will tend to

E[UY)] = - prexp(—a(y1 - §))

y ify, >9 :
— o (15)
-0 if 7 < g

A\

Thus, according to (15), given a choice between several random portfolios, a decision
maker with utility function given by (13) with a very large will choose the portfolio
which has the largest expected return §, subject to the restriction that the minimum
possible return of the portfolio is larger than §. This is in correspondence with
the minimax prescription given in equations (2). In this latter case, the implied
probability distribution for the portfolio with weights. w = (wy,...,wy) is the empirical
distribution of that portfolio; i.e., the discrete uniform distribution on the T points
{Ejvzl wiye, t=1,...,T}

The minimax portfolio selection principle is compatible, therefore, at least in the limit,
with an expected utility maximizing framework. Markowitz (1991) (p.293) considered a
related “Maximufn Loss” portfolio selection principle, which considers only maximum loss
and expected return, and found a contradiction with the axioms of expected utility. The
reason for this contradiction was that the maximum loss was considered without regard
to its probability. In the minimax rule as defined here, two portfolios with equal observed
minimum return M, are also assumed to have equal probabilities for this event to occur
in the future; namely, -% Markowitz’ objection would apply to the minimax principle if
there were two portfolios with equal observed mean return, and equal observed minimum,
but with one portfolio there were two time periods that had the given minimum return.
In this case, the risk averse investor would prefer the portfolio without the tie, but the
minimax principle would suggest indifference between the portfolios.

The absolute risk aversion (Pratt 1964) implied by the utility function U(y) is given

10



3 _U”(y) 3 a2
A=) = spl -t e

As a goes to infinity, A(y) tends to zero for all y > §, and tends to infinity for y < 7.
Thus there is a discontinuity in the implied attitude toward risk. This might be consistent,
if not with the attitude of investors, then at least with the attitude of an agent whose
contractual target return is .

It should be noted that while this extremely risk-averse utility function U(y) leads to
behavior similar to that mandated by the minimax principle, it is not necessarily the case
that the minimax rule is appropriate only for such forms of risk aversion. As was seen
in section 2.1, the minimax rule is a good approximation to the mean-variance rule for
normal data for a large dataset, and this mean-variance rule is in turn optimal for many
typical utility functions given a normal distribution on returns. It is plausible to believe
that a minimax rule will be a reasonable approximation to the utility maximizing rule
for other combinations of utility function and joint probability distribution; this is seen
to be the case, for example, in the simulation study presented below in Section 6.2, with

log—normally distributed returns.

4 Relation to other LP Approaches

Because of the obvious advantages of casting portfolio analysis in an LP framework,
other authors have sought to make such a connection feasible. Sharpe (1971) uses a
piecewise-linear approximation to the quadratic term in the mean-variance quadratic
program, enabling the problem to be solved using linear programming methods. Stone
(1973) derives a similar approximate solution to the mean-variance optimal portfolio
in the case when returns are determined by a single-index model, and also introduces
an approximate linear-programming solution to the portfolio selection problem when

investors have preference for skewness.

11



The minimax rule, by comparison, doqs not require a linearization of a nonlinear
objective function, and does not require preprocessing of data, such as estimation of beta
coefficients. The minimax procedure, though, does require a dataset {y;;}, whereas the
Sharpe (1971) and Stone (1973) procedures are based on'a probability model of returns.
In cases where the first and second moments of the joint distribution are determined
subjectively, without the benefit of data, the Sharpe and Stone procedures can be applied
directly, whereas the minimax procedure could be applied only by generating a random
dataset with the specified moments. In most cases, however, a model would be determined
by estimating parameters from a past dataset, so that the minimax procedure will offer
the more direct approach to utilizing the data. Also, the minimax rule does not suffer
from the potential drawbacks of the quadratic or cubic utility functions assumed in the
work of Sharpe and Stone.

Yamakazi and Konno (1991) discovered a solution by using an L; measure — the sum of
absolute deviations about the mean - as a measure of risk; the optimum portfolio is then
the solution to a linear programming problem. The notation “L;” refers to the fact that
the portfolio variation is measured in terms of the first power of the absolute deviations.
As with the usual quadratic, or L, measure, minimizing the L; measure of risk implies a
non-monotone utility function; namely, a piecewise linear function. The minimax portfolio
uses a different norm, the so—called Lo—norm (Gonin and Money 1989), as the measure
of downside risk. The L; and the L, risk aversion measures are qualitatively somewhat
different. The piecewise linear L; measure represents an indifference to risk over any linear
region of the piecewise function, while the minimax, Lo, rule implies, as was shown via
the analysis of the absolute risk aversion function, a strong absolute aversion to downside
risk. Both rules can be sensible; the question of which rule is more appropriate will depend
on the particular investor’s attitude toward risk. One logical consequence of using the Lo
criterion, which may be seen as an advantage or a disadvantage, is that the minimax-rule
will be strongly affected by individual outlying values in the historical data. If, out of
T observation periods, a certain asset has T — 1 large positive returns, and one large

negative return, the minimax rule will react more strongly to this single negative return

12



than would an L, rule. Because this asset will have a high mean value, the minimax
optimal rule may still include this asset, though possibly with less weight than would the

L,-optimal allocation.

5 Linear—Integer Programming

An advantage of framing portfolio selection as a linear programming problem is that
linear optimization can accommodate constraints that certain decision variables take
on only integer values (see, e.g., Murty 1995, for a treatment of mixed linear-integer
programming). This feature allows for the portfolio selection model to treat added

complexities. Examples of such extensions to the basic model follow.

5.1 Fixed Transaction Charges

Yamakazi and Konno (1991) noted that a potential advantage of solving portfolio
optimization problems as a linear program is that many of the allocations in the optimal
solution will tend to be 0, by nature of the corner solution property of linear programs.
The reason that this can be advantageous is that there may be some fixed cost associated
with buying or holding any amount of a given stock. By incorporating integer-valued
variables in the decision model, it is possible to explicitly take into account such fixed
charges. | -

Suppose the transaction cost for purchasing a security j involves a fixed charge Cj, -
plus a variable cost of V; per unit purchased. If the fixed cost is substantial, then it may
be desirable to reduce the incidence of purchases of small lots of securities. That is, if
purchasing any amount of stock j involves incurring the fixed cost, then one would expect
that an economically optimal allocation would avoid purchases of small odd lots of that
stock.

To accommodate this possibility in the portfolio selection model, one can add to the

13



model the 0-1 variables

1 if any shares of stock j are purchased
zj = (16)
0 otherwise.
That s, if w; > 0, then z; = 1, and if w; = 0, then z; = 0. Suppose the investment w is

to be held for P periods. Then the expected return on the investment, net of transaction

charges, will be

N
E =) [Pw;f; — Cjzj — Vyuw).
i=1
As in problem (2), the objective E is to be maximized, subject to the constraints that
the minimum return exceed some threshold A , and that the total allocation not exceed

- the original stake W:

N
max » [Pw;f; — Cjz; — Vyw] . (17a)
Yz j:l
subject to
N
Y wiyn > H, t=1,...,T (17b)
j=1
» N :
Z (wj+ Cizj + V) < W (17¢)
3=1
w; >0, j=1,....N (17d)
zi=0orl, j=1,...,N (17e)

ijLij, j=1,... ,N. (17f)

The quantities L; in (17f) are large positive numbers, and are introduced to enforce
the condition stated in (16). It can be verified that if w; = 0, then the optimal value of
z; will be 0, while if w; is positive, z; will necessarily be set to 1. Since each w; must be

less than W, it is sufficient to set L;toW.

14




Thus, problem (17) maximizes the return net of transaction costs, subject to the
limitation on risk. See Winston 1994 for a general discussion of fixed charge problems
in integer programming. The analysis can be extended fairly directly to accommodate

piecewise linear transaction charge schedules.

5.2 Logical Side Constraints

By allowing integer-value restrictions on decision variables, it is possible to include logical

constraints on the allocation. Examples of logical constraints are given below:
1. “The portfolio may not include both asset j and asset k.”

2. “The portfolio must hold a; or more dollars of asset j, or a; or more dollars of

asset k.”

In general, if one wishes to enforce the logical constraint that either f(w) < 0 or

g(w) < 0, then one can add the constraints:

f(w) < Lz (18a)
o(w) < L(1 - 2) (18b)
z=0or1, (18¢)

(Winston 1994), where L is a suitably large number (larger, that is, fhan the maximum
possible values of f(w) and g(w)). Applying this general rule, along with the laws of
Boolean algebra, one can devise linear-integer constraints for “exclusive or”, “if-then”,
“if and only if”, and other, more complex types of logical restrictions on allocations.
The minimax portfolio selection method, then, can be modified to handle a wide
range of modeling complexities. Algorithms have recently been developed for solving
quadratic integer programs (see, e.g., Bienstock (1995) and Fletcher and Leyffer (1994));
thus, it may also be possible to accommodate integer constraints in the mean-variance
optimization framework. However, linear-integer programming codes can handle much

larger problems than can be handled by the quadratic-integer programming methods;

15



also, software for linear-integer programming is currently more widely available than is

software for nonlinear-integer programming.

6 Applications

In this section, the minimax rule is applied to real and simulated datasets, in order
to examine the performance characteristics of the portfolio selection method. A small
study using real hisforicﬁl data is performed, which provides a visual depiction of the
~ optimization being performed. The simulation is then presented to provide insight

concerning the long-run performance of the minimax selection approach.

6.1 International Stock Index Data

A set of historical data on the returns from international stock indices was examined using
the minimax and mean-variance portfolio selection rules, to illustrate the difference in
the performance characteristics of the two principles. The data consist of monthly returns
on the stock indices from Canada, France, Italy, Japan, United Kingdom, United States,
and West Germany, from January 1991 until December 1995. The returns data y;; were
derived from the stock index prices, Pj;, as listed in the Citibase database.? The returns
y; were defined as yj; = (Pji41 — Pjt)/ Pjs-

The data from the first 30 months ~ January 1991 to June 1993 — were used to obtain
the minimax portfolio and the mean-variance portfolio; the performance of the resulting
weights was then examined out-of-sample during the following 30 months of July 1993
to December 1995. The minimax portfolio was obtained by solving problem (1), and the
mean-variance portfolio was pbtained by solving optimization problem (3). In both cases,
the target monthly expected return G was set to 1.0%.

The performance of the portfolios, both in-sample and out-of-sample, is displayed in

Figure 1. As expected, the minimax portfolio has a higher “floor” during the estimation

>The prices P;; are listed as Citibase variables FPS6CA, FPS6FR, FPS6IT, FPS6JP, FPS6UK,
FPS6US, and FPS6WG.

16



period of January 1991 to June 1993, while the mean-variance portfolio has less variance
during this period. The summary statistics for the returns of the two portfolios are
given in Table 4. In this example, the minimax portfolio’s performance appears to be

competitive with that of the mean-variance portfolio.
(INSERT TABLE 4 HERE]

[INSERT FIGURE 1 HERE)

6.2 A Simulation Study

A simulation study was performed to examine the performance of the minimax and mean-
variance portfolio rules over a large universe of data realizations. In the simulation,
random realizations of a stock market were generated from a joint probability distribution

based on a simple index model:
Yjt :exp(aj+ﬂjmt+ajejt), J=1...,N, t=1,...,2T,

with the index m; normally distributed as N (4m,0.), and the ¢j distributed
independently as N (0,1). Thus, the marginal distribution of y;, was log-normal for each
security 7 and time ¢. The common dependence on an index m; introduced correlations
among the N securities. The parameters o; fof the different securities were distributed
uniformly over the range (o, @); similarly, the §; and o; were distributed over the ranges -
(B, B) and (g, ), respectively.

For each simulation replication, 2T periods of data were generated. The observations in
the first T' periods were used to estimate optimal minimax and mean-variance portfolios,
by solving linear program (1) and quadratic program (3) respectively, with an identical
constraint value G. The estimated portfolio weights were then evaluated on the second T
simulated periods.

The simulations were performed for a number of different parameter values, in order

to observe the effects of sample size and joint probability distribution of returns on the

17



relative performances of the two optimization methods. In particular, the number of
securities N, number of observations T, the index volatility o,,, and the range of «
values (a, @), were varied across the different simulation blocks. For each combination
of parameter values, (8,5) was fixed at (0.5, 1.5), and (¢,5) was fixed at (0.8, 2.0).
500 simulation replications were performed for each combination of parameter values.
Table 5 lists the values for the parameters used in each simulation block, along with
the simulation output: the average and standard deviation of the out-of-sample portfolio
mean and variance. The performances of the minimax and mean-variance approaches
~were compared by paired-t tests on the mean and variance. For example, the first two
rows of the table indicate that, for the simulation replications performed with N = 12,
T =18, (4m,0m) = (0,1), and (e,@) = (—1,1), the minimax portfolios had an average
mean of 18.37 while the mean-variance portfolios had an average mean of 18.18; also, the
‘minimax portfolios had an average variance of 37.63, while the mean-variance portfolios
had an average variance of 34.74. As can be seen in Table 5, the minimax and mean-
variance portfolios had performances that were not significantly distinguishable; p-values
for testing for equality of mean and equality of variance between the two methods varied
from 0.104 to 0.999, and were generally above 0.25. 500 simulation replications were

performed for each set of parameter values, so this result does not appear to be due to

lack of statistical power.
[INSERT TABLE 5 HERE]

This finding that the minimax and the mean-variance portfolio selection methods
perform similarly on these simulated log-normal data may seem to be in conflict with the
simulation results described in Section 2.3, in which the sample lowest order statistic was
seen to be a significantly better predictor of future volatility than was the sample variance,
for log-normally distributed data. The conflict may be at least partly explained by the fact
that both portfolio optimization methods are concerned with minimizing the volatility of
the portfolio, which is a linear combination of the individual assets. Central limit theorem

results suggest that the portfolio will have a distribution which is close to normal, though

18



the individual assets have non—normal distributions. For a portfolio with a finite number
of log-normally distributed assets, the distribution will appear somewhere between log-
normal and normal in character. For example, Table 6 displays a skewness coefficient for a
hypothetical portfolio P generated by P = ]lv Zjvzl Y; where Y, = exp (am + Mej),
g=1,...,N,m~N(0,1), ¢, ~N(0,1).

The marginal distribution of each Y; is LN(0,1), and the correlation between
log(Y;) and log(Y;) is p = a® for all j # k. The skewness coefficient displayed
is (P75 — Pso)/(Pso — Pos), where Pas, Pso, and Pgs are the 25th, 50th, and 75th
percentiles respectively for the distribution of P; for symmetric distributions, tlllis
coefficient will equal 1.0. The percentiles were computed by Monte Carlo simulation
with 5000 replications. The table shows that as N, the number of securities in the
composition of P, increases, the skewness decreases, indicating a shift towards normality.
Log—normality in the distribution of the portfolios might favor the minimax approach,
while mean-variance analysis is optimal for normal data; a distribution between log-
normality and normality could lead to comparable behavior for the minimax and the

mean-variance optimizers, as was in fact observed.

[INSERT TABLE 6 HERE]

7 Conclusion

Given historical or simulated future returns data on a collection of assets, an optimal
“minimax portfolio” can be constructed using linear programming techniques. Under
weak conditions, the minimax principle corresponds approximately to an expected utility
maximizing principle, with the implied utility function representing an extreme form of
risk-aversion.

There are certainly settings in which previously proposed portfolio selection methods
will be preferable to the minimax method. For example, if the assets under analysis follow

a single index model whose parameters are known to a reasonable degree of accuracy, and
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if the utility function implied by mean-variance analysis is a reasonable approximation
to the investor’s true utility function, then the simple portfolio-selection rule suggested
in Elton, Gruber, and Padberg (1976) will be preferable to the minimax rule, in terms of .
both ease of computation, and long run performance.

On the other hand, if an investor’s utility function is more risk-averse than is implied
by mean-variance analysis, or if returns data are skewed, or if the portfolio optimization
problem involves a large number of decision variables, including integer valued variables,

the minimax rule may provide a sensible approach to portfolio selection.
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Table 1: Returns with non-normal predictive distribution

Returns
State of Nature | Prob. | Port. A I Port. B
1 .25 0.20 0.10
2 .50 0.40 0.20
3 .25 0.60 0.30

Table 2: Returns with non-normal empirical distribution

Returns

Time | Port. A | Port B
1 0.10 0.01

0.20 0.02

2 0.20 0.02
3 0.10 0.01
4

500 0.20 0.02
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Table 3: Monte Carlo evaluation of moment estimators for the scale parameter of the
log—normal distribution. 7, is the estimator based on the sample variance, and 7; is the
estimator based on the sample minimum.

g 7 n MSE(#,) MSE(#) P-valx

0.0 1.5 25 0.1685 0.0697 p < 0.0001
0.0 1.5 100 0.0783  0.0306 p < 0.0001
0.0 1.5 500 0.0336 0.0178  p < 0.0001
0.0 2.0 25 05160  0.0968 p < 0.0001
0.0 2.0 100 0.2778 0.0488 p < 0.0001
0.0 2.0 500 0.1295 0.0304 p < 0.0001

#: P-value for paired-t test of hypothesis MSE(#) = MSE(7,)

Table 4: Performance of minimax and mean-variance optimal portfolios, in-sample and
out-of-sample.

In-sample:
January, 1991 - June, 1993

MEAN VAR MIN MAX
Mean-Variance 1.0E-2  4.84E-04 -1.96E-2 9.18E-2
Minimax 1.0E-2  5.76E-04 -1.40E-2 1.03E-1
Out-of-sample:
July, 1993 - December, 1995

MEAN VAR MIN MAX
Mean-Variance 9.2E-3  3.57E-04 -2.75E-2 3.51E-2
Minimax 1.03E-2 2.69E-04 -2.66E-2 3.21E-2
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Table 5: Performance of minimax and mean-variance portfolio optimizers on 500
replications of simulated data.

Minimax Mean-
Variance P-valx P-v
N T (pmyom) (o,@) Mean  Var. | Mean  Var. Mean Ve
12 18 (0,1) (-1.0,1.0) Avg. | 1837  37.63 | 18.18  34.74 | 0.826 0.3
S.D. | (24.75) (86.26) | (21.37) (72.84)
6 18 (0,1) (-1.0,1.0) Avg. | 20.13  44.20 | 21.62  47.61 0421 0.5
S.D. | (33.31) (110.00) | (36.86) (116.14)
12 36 (0,1) (-1.0,1.0) Avg. | 23.76  64.27 | 21.33  51.66 | 0.108 0.1
S.D. | (28.52) (130.89) | (35.88) (196.31)
12 18  (0,1)  (-2.0,1.0) Avg. | 4.43 8.62 4.51 8.37 0.748 0.7
S.D. | (5.19) (14.24) | (4.32) (13.19)
12 18 (-3,2) (-1.0,1.0) Avg.| 1.61 4.98 1.60 4.71 0.879 0.5
S.D. | (449) (16.43) | (4.76) (17.04)
16 18 (0,1) (-1.0,1.0) Avg. | 6.57 12.92 6.57 12.09 | 0999 05
S.D. | (9.39) (30.90) | (5.60) (17.24)
10 12 (0,1) (-1.0,1.0) Avg. | 2347  46.85 | 20.30  36.74 0.287 0.2
S.D. | (73.63) (215.67) | (38.45) (108.83)
*: P-value for paired-t test.
Table 6: Skewness of averages of N correlated log-normal variables with cross—

correlation p.

p 1

N
) 10 50

0.00 1.96
0.25 1.96
0.75 1.96

1.36 141 1.14
145 1.36 1.21
1.48 1.33 1.11
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Figure 1: Monthly returns from minimax and mean-variance optimal portfolios of
international stock indices.

0.12 I T T T T 1 T i T

0 Mean—Variance —
dr Minimax — 7]
0.08 .

0.06 .

L
|

Ret. 0.04

0.02

0 V 1

-0.02 - .

-0.04 1 I | 1 { | 1 1 |
91 91.5 92 92,5 93 93.5 94 945 95 955 96
Month

24



oy

References

Bienstock, D. (1995). Computational study of a family of mixed-integer quadratic
programming problems. In Integer programming and combinatorial optimization,

Berlin, pp. 80-94. Springer.
David, H. (1981). Order Statistics (2nd ed.). New York, NY: John Wiley and Sons.

Elton, E., M. Gruber, and M. Padberg (1976). Simple Criteria for Optimal Portfolio
Selection. Journal of Finance 31, 1341-1357.

Fishburn, P. C. (1981). Subjective expected utility: a review of normative theories.

Theory and Decision 13, 139-199.

Fletcher, R. and S. Leyffer (1994). Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming 66, 327-349.

Gonin, R. and J. Money (1989). Non-linear L,~Norm Estimation. New York, NY: John
Wiley and Sons.

Lehmann, E. (1983). Theory of Point Estimation. New York, NY: John Wiley and Sons.
Markowitz, H. (1952). Portfolio Selection. Journal of Finance 7, 77-91.

Markowitz, H. (1991). Portfolio Selection (2nd ed.). Cambridge, MA: Basil Blackwell
Ltd.

Murty, K. (1995). Operations Research: Deterministic Optimization Models. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Pratt, J. (1964). Risk Aversion in the Small and in the Large. Econometrica 32, 122-
136.

Sharpe, W. (1971). A Linear Programming Approximation for the General Portfolio
Analysis Problem. Journal of Financial and Quantitative Analysis 6, 1263-1275.

Stone, B. (1973). A Linear Programming Formulation of the General Portfolio Selection
Model. Journal of Financial and Quantitative Analysis 8, 621-636.

25



Winston, W. (1994). Operations Research: Applications and Algorithms (3rd ed.).
Belmont, CA: Duxbury Press.

Yamakazi, H. and H. Konno (1991). Mean Absolute Deviation Portfolio Optimization
Model and its Application to Tokyo Stock Market. Management Science 37, 519-
531.

26



