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Abstract

The goodness—of-fit of multiple linear regression models can often bhe improved
by preliminary transformation of the dependent variable. In this paper, we consider
the model h(y) = B'x + ¢, where A(-) is a monotone function, and present a method
for joint estimation of the transformation function f(-) and the regression coefficients
B. via minimization of a sum of absolute deviations loss function. The resulting
estimator is robust with respect to outliers, and has a simple and direct numerical
solution, using linear programming. The paper presents consistency results, and

applications of the technique to simulated and real economic data.
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1 Introduction

The goal of linear regression modeling is the identification of the statistical equation
relating predictor variables X to some response variable y. The standard linear regression
model assumes that the predictor variables are linearly related to the dependent variate:
the validity of this assumption is often improved by preliminarily transforming the
dependent variable nonlinearly, and then applying the linear model to the transformed
data. Box and Cox (1964)lwas an early and influential contribution to the understanding
of transformations in regression: Carroll and Ruppert (1988) provides an overview of
classical and modern methods for choosing transformations for regression models.

In this paper, we present a new method for automatically identifying a transformation
which optimizes the goodness-of-fit between the transformed dependent variate and
a linear combination of the predictor variables. In this approach, the transformation
function is chosen nonparametrically, without restricting the function to belong to a
class such as the power function class. Because the predictor is determined as a
parametric, specifically linear, function of the independent variables, the overall procedure
is termed semiparametric (Horowitz 1996). The method in this paper uses the least
absolute deviations (LAD) goodness-of-fit criterion, and as a result is resistant to
outliers in the dependent variable. Finally, the method is very computationally efficient:
the transformation function and the regression coefficients are estimated jointly as the
solution to a single linear programming problem. Throughout the paper, the proposed
procedure will be referred to as the “ROSE" technique, short for “Robust Semiparametric
Estimation”.

Section 2 of this article describes the proposed method for robust semiparametric
regression estimation, section 3 discusses inference issues, section 4 describes the
application of the ROSE technique on some real and simulated data, section 5 presents
results on the asymptotic properties of the estimator, and section 6 gives further

discussion, including references to related work.



2 The Algorithm

The data for the problem under consideration are pairs (yi, x;), 2 = 1..... n where the
y; are observations on a dependent variable, and x; = (o, ..., z;,) are predictor variables.
with. typically. z;p = | for all 7. The usual model for relating dependent and predictor

variables is the linear regression model:
yi = B'xi + e, (1

where the e; are zero mean residuals. In this paper, we consider a generalization of

model (1), namely:
h(y:) = B + e (2)

where A(-) is a monotone, nonlinear transformation function. The objective of the analysis
is to identify the function A(-) and the coefficient vector 3 to optimize the goodness-of-
fit between h(y;) and A'x;. In order to achieve robustness with respect to outliers in
the dependent variable, we use the LAD criterion to assess goodness-of-fit; see Dielman
and Pfaffenberger (1982) and Gonin and Money (1989) for overviews of LAD methods in
robust tegression.

The semiparametric LAD estimation problem can be formulated as:

min > [h(y:) - B'xil (3)
i=1
subject to
h(y1) =0 (4)
h(Yn) = Yo, (3)

where y; and y, are, respectively, the smallest and largest values of y in the dataset. The

optimization in (3) is over the product space H x R?*!, where H is the space of monotone



functions A(-) satisfving boundary conditions (4) and (3). The boundary conditions are
needed in order to prevent the trivial solution h(y) = 0. 3y = 3y = -++ = 3, = 0. which
would have a sum of absolute deviations equal to zero. Because the boundary conditions
constrain both the scale and location of the transformation. it will typically be necessary
to include the intercept term zj = 1, in order to achieve a good fit between the A(y;)
and #'x;. The values of A(y;) and h(y,) can clearly be constrained to have arbitrary.
distinct values; the choice represented in equations (4)-(5) leads to a location and scale
for the transformed variable that match those of the original dependent variable. which
correspondence may be helpful in interpreting the estimated model.

To implement the estimation, the function A(-) can be represented as a linear

combination of spline basis functions:
q
h(y) = ) awonly), (6)
k=0

where the ¢x(y) are the known basis functions. In the examples described in this paper.

the linear “power spline" basis (Smith 1979} is used. For a linear power spline with knots

at locations ki, ..., kr, the series expansion has r + 2 basis functions, and is given by:
7
hy) = o+ oy + ) o5y — k), (7)
j=12

where (), = max{z,0}, and ¢ = r + 1. In this parameterization. 2(y) is monotone
as long as the following linear restrictions on a are maintained: oy > 0, oy + a2 > 0.
oy o0+ -4+ a > 0. Ramsay (1988) presents an alternative parameterization for
splines, called I-splines, which have the convenient property that monotonicity of the
spline function is ensured simply by enforcing positivity on all coefficients oy in the basis
expansion (6); the [-spline basis could also be used in the procedure described below.

Given the linear power spline representation for A(y), the estimation problem can be



written as: \

minz (¢f +¢) (8a)
i=l

subject to
q »
Z o i (yi) — Zi'jkxik =¢ —€ (8b)
k=0 k=0
9
Z ade(n) =0 (3c)
k=0
9
Zamk(yn) = Yn (3d)
k=0
a 20 (3e)
a4] + Qo Z 0 (Sf)
ap+--fa, 20 (8g)
20, €20, i=1..... n. (8h)

The quantities ¢ and ¢/ are the positive and negative parts of the residual A(y;) — 8'x,.
The optimization in (8) is over the variables {¢]. 7. i=1..... nto{ar, k=1..... q}.
and {8, k=1,...,p}. The objective function and constraints are linear in the decision
variables: thus the problem can be solved as a single linear programming problem. using
standard methods such as the simplex, dual simplex, or interior point algorithms. The
robust semiparametric estimator (ROSE) is defined. then, as the minimizing solution to
linear program (8).

Because the model (2) is estimated using linear programming, it is simple to
incorporate additional linear constraints on the coefficients a and B, should such
constraints be appropriate. For example, in certain applications, the signs of the

linear predictor coefficients S, will be known a-priori; adding constraints 3, > 0 or

8¢ < 0 will not change the linear programming character of the solution. Incorporating

w



such prior information may be helpful in regularizing parameter estimates in cases of
multicollinearity. or small sample size: see, e.g., the example in section 4.3 below. Also, the
transformation h(y) can be restricted to be concave or convex through linear restrictions
on the a parameters. For example, with the power spline parameterization for A{y)} in
equation (7), h(y) will be guaranteed to be concave if ax <0 for k= 2,... ,q.

Solving the linear program (8) is typically rapid; for example, for the data described
in section 4.2, with 506 observations, 14 predictor variables, and with 6 basis function
coefficients used to estimate the transformation function, the optimal parameter estimates
are obtained in less than 1 second on a 66 Mhz PC with an [ntel 486DX CPU, using the
algorithm of Barrodale and Roberts (1978).

Because the transformation function #7(-) is constrained to be monotone,
oversmoothing is not as significant of a concern as it is in a typical nonparametric
regression problem. However, it is useful to have a heuristic for choosing a model with as
few knots as are necessary to achieve a good fit to the data. An approach which seems
to provide reasonable model choice is to consider a small number of different values for
¢, the number of parameters in the spline transformation (e.g., ¢=2, 4, 6, and 8) and to

select the model which minimizes the AIC-like measure AIC = 2¢ — 2(p + q). where

£ =nlogn —nlog (Z |(y:) —ﬂ’x.-l) —n+ ) K (y) (9)

i=1

=1

is a surrogate for a concentrated log-likelihood function, assuming Laplace errors, and
p+ q is the total number of free parameters (p+ 1 for the regression coefficients, ¢ + 1 for
the spline transformation, minus 2 for the normalizing constraints). The quantity A’(y;)
is the derivative of h(y) at y;, which enters the likelihood function via the Jacobian of
the transformation, and which can be evaluated easily as h'(y:;) = 3 1_, ax@'i(y:); for the
power spline basis, with ¢o(y) = 1, ¢1(y) =y, and ¢;(y) = (y — k;-1),, J = 2.... ¢, the
derivatives are ¢'o(y) = 0, ¢',(y) = 1, and ¢';(y) = I{y > kj=1), 7 = 2,...,q. Hastie
and Tibshirani (1990, chapter 7) describes a related approach to model selection in the

context of transformation estimation.



LAD methods have previously been employed in nonparametric regression settings
in Koenker, Ng, and Portnoy (1994), Young (1996), and He and Shi (1996). The model
described in this paper differs from earlier work in that the nonlinear transformation being

estimated is applied to the dependent variable, rather than the independent variates.

3 Inference on Regression Coefficients

The issue of how inference on regression coefficients should proceed in the face of
uncertainty about the appropriate transformation for the dependent variable is not fully
resolved. Bickel and Doksum (1981) showed that the sampling variability of the estimator
B in a Box-Cox regression model may be considerably greater when the transformation
parameter is estimated than when it is fixed. Box and Cox (1982) and Hinkley and
Runger (1984) have argued, though, that the parameter 3 is not “physically meaningful”
unless the scaling for the dependent variable is considered fixed, and therefore argue for
making inference on @ conditional upon the estimated transformation. If this latter view
is taken, then inference on the coefficients 3 in the robust semiparametric model can be
made, conditional upon the estimated transformation h(y), using the sampling theory for
LAD estimators developed in Bassett and Koenker (1978). This is so, because, if &(y) is
conditioned upon, or fixed, the estimate of 3 in the robust semiparametric regression is
an LAD regression estimate.

Bassett and Koenker (1978) demonstrated that an LAD regression coefficient estimator
(3 is asymptotically unbiased and normally distributed with covariance matrix X'X),
where X is the usual regression design matrix, and 7%/n is the variance of the median of
a sample of n observations from the error distribution. Thus, for example, a (1 - a)100%
confidence interval for a linear compound r’@3 can be written as r’ 3 +2,/27 [r' (X'X)™ r] 1
(Dielman and Pfaffenberger 1982). A consistent estimate of the quantity 7 can be obtained

based on the residuals from the regression. Let the ordered residuals be denoted by e(;).



then an estimate of 7 is given by:

e(‘] - e(s) (101

T i)

where ¢ and s are symmetric around the median sample residual. and ¢t —s is small relative
to n; Dielman and Pfaffenberger (1982) suggest the estimate is not sensitive to the choice
of t —s. Other estimates of 7 based on kernel density estimation or neighboring regression

quantiles may also be used.

4 Examples

4.1 Seasonal Regression Modeling

A common model for time series forecasting is the seasonal regression model {Crver

1986):

Yo =B+ At + 3.Q2 + F3Qs + 35Q4 + € (11)

where

y: = The time series value at time period ¢
()2 = 1 if period ¢ is in Quarter 2; 0 otherwise
(3 = 1 if period ¢ is in Quarter 3; 0 otherwise

@4 = 1 if period t is in Quarter +: 0 otherwise.

The term 8¢ in equation (11) captures the linear trend in the time series, while the terms
P2Q2, 33Q3, and B4Q4 account for seasonal variation. Often it is necessary to nonlinearly

transform the data y; before the linear trend model is appropriate. Here, we estimate the



optimal transformation automatically from the data. through fitting the model:
h{yi) = Bo + it + d2Q2 + Q3 + 34Q4 + €. (12)

Figure 1 displays aggregate sales figures for the Ford Motor Company. in nominal
dollars; note the nonlinearity of the trend. Also, the additivity of model (11 1s
questionable for these data, as the seasonal variation appears to increase in magnitude
over time. Figure 2 shows the transformation function A(y) estimated by solving (3)
using 4 knots spaced at the quintiles of the empirical distribution for y. Figure 3
shows the transformed time series: here the linear trend assumption appears more valid.
Fortuitously, this transformation also appears to render the model more nearly additive:
on the transformed scale, the seasonal variation is fairly constant over time. The model
in (12) provides a forecast equation for A(y,) for some future time ¢; it is elementary to

invert the function A(y), to obtain a forecast for ;.

[Insert Figures 1-3 Here]

4.2 Boston Housing Data

Harrison and Rubinfeld (1978) present a hedonic price index model for estimating
homeowners’ marginal willingness-to-pay for various characteristics of a neighborhood.
including crime rate, and environmental quality. The unit of observation in this study

was a census tract in Boston, and the entire set of variables used in the analysis were:

y = MEDV = median housing value (in $1000)
zy = CRIM = per capita crime rate
2o = ZN = proportion of land zoned for lots greater than 25.000

square feet



ry = INDUS = proportion of nonretail business acres

ry = CHAS = bounds Charles river (1=yes, 0=no)

r; = NOX = nitrous oxide concentration (parts per 10 million)

s = RM = average number of rooms in home squared

z7 = AGE = proportion of owner-occupied units built prior to
1940

rg = DIS = weighted distance to five employment centers in

Boston region

zg = RAD = index of accessibility to radial highways

rie = TAX = full value property tax rate (per $10,000)

rn = PTRATIO = pupil teacher ratio

r, = B = 1000(Bk-0.63)%, where Bk is the proportion of blacks

in the population 4

LSTAT

I
Il

Z13 proportion of the population that is lower status

Belsley, Kuh, and Welsch (1980) states that the data for this study “possess much
heavier tails than the Gaussian (normal) distribution”; they estimate the data using
iterative robust regression procedures, using log-transformed median housing value as the
y variate in the regression. Here, we use median value as the y variate, and automatically
select an appropriate scaling h(y) via the ROSE procedure.

With just 1 knot for the spline expansion of A(y), the estimated transformation is
very close to a log transformation, with a Pearson correlation between h(y) and log(y)
of 0.993. Table 1 displays the normalized coefficient estimates obtained via the ROSE
procedure, via robust (LAD) regression on log(y), and via OLS estimation on log(y). it
is seen that the robust semiparametric method produces coefficient estimates similar to
those obtained via robust regression applied to the log-transformed data. A possible
advantage of the semiparametric method is that it does not require the user to recognize

the need for a log transformation prior to analysis of the data.
[Insert Table 1 Here]

10
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4.3 Automobile Fuel Efficiency

Lock (1993) provides a dataset of specifications for new car models from the 1993.
year: measures are provided for evaluating price, fuel economy, engine size, body size.
and features. The cars included in the dataset were selected at random from among
1993 passenger car models. Here, regression models are estimated for predicting city
fuel economy, as a function of various covariates. The analysis includes all complete cases

listed in the dataset — a total of 82 observations - and incorporates the following variables:

y = CITYMPG = city fuel efficiency {mpg)
rn = CYL = # of cylinders

r, = ENGSIZE = engine size (liters)

r3 = HP = horsepower (100's)

rs = LENGTH = length (feet)

zs = WIDTH = width (feet)

rg = WEIGHT = weight (1000 pounds)

r; = DOMESTIC = 1if U.S. manufacturer, 0 otherwise

Table 2 presents the coefficient estimates obtained via OLS; the positive coefficients
on LENTGH and WIDTH obtained from OLS seem counterintuitive, and are due to the
extreme multicollinearity in the data. A further deficiency of the OLS model is revealed
in the residual plot, shown in Figure 4, in which there appears to be a nonlinear pattern
not captured by the linear model.

The data were also analyzed using the semiparametric regression model estimated via
the ROSE procedure. The estimation was regularized by adding the restrictions that the
coefficients on the f; must all be non-positive, except for the coefficient for DOMESTIC.
The coeflicient estimates are presented in Table 2, and the estimated transformation
function is plotted in Figure 5. The zero coefficient estimates are, if not completely
satisfactory, more reasonable than negative coefficients. Figure 6 displays the residuals
from the transformed regression model; these seem more nearly random than do the
residuals from the untransformed model.

This example provides an illustration of the three potentially beneficial features of

11



the ROSE procedure: the robustness with respect to outliers, the ability to nonlinearly
transform the dependent variable, and the ability to easilv constrain the parameter
estimates to a space that appears “reasonable” a-priori. The modeling approach presented
here does not represent the conclusive analysis for these data: in particular. the analysis
might benefit from judicious use of case deletion (Anscombe 1960: Andrews and Pregibon
1978), variable selection (Mallows 1973), and/or such techniques as ridge regression (Hoerl
and Kennard 1970) or principal components regression (Mansfield. Webster. and Gunst
1977). The ROSE approach, though. can be useful in general as a simple method for
generating plausible candidate models in the face of multicollinearity. nonlinearity. and

residual outliers.
(Insert Table 2 Here]

(Insert Figures 4-6 Here]

4.4 Monte Carlo Analysis

A modest Monte Carlo study was performed to evaluate the effectiveness of the joint

estimation procedure. Data were generated from the model
Yi = Bo+ Sz 4 Bakia + B3z + e, i=1,....n, (13)

with 3o = 1, ) = 11, §, = 21, B3 = 31, with z,; all uniformly distributed on (0. 1].
and with the e; coming from the Laplace (double-exponential) density with mean 0 and
standard deviation o. The j were then nonlinearly transformed into observable quantities
y by |

T T+ exp(= (7 ~ 40) /5)

Y + 4, (14)

with a and b chosen so that y; = §; for the smallest and largest values of 7 in the sample.

Figure 7 shows a plot of y vs. A'x for a sample dataset, using the true values of 3.

12
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Inverting equation (14) shows that the optimal transformation function from y back to y
is not a member of the Box-Cox class of functions.

The regression coefficients @ were estimated three ways: via the ROSE procedure
presented in section 2, via LAD regression of y vs. x, and via OLS regression of y vs. x.
The latter two methods would only be appropriate for estimating the direction of 3: thus.

in each case, the estimates of 3 were normalized as ﬁn = ﬂ/ 3/,3 The goodness of fit

for each simulation replication was measured as (ﬂn - Bn)' (ﬁn - ,8,1) * and the overall
performance of the estimators was assessed as the mean of this quantity over all simulation
replications. The statistical significance of the difference in performance was assessed by a
binomial sign test, for which the test statistic is the proportion of simulation replications
in which the ROSE estimator is more accurate than a competing estimator (LAD or
OLS). Table 3 shows the performance of the three methods for different noise levels «
and different samples sizes n. In each case examined, the ROSE method substantially
outperformed the methods which do not employ a preliminary transformation. with
the differences statistically significant. These results suggest the value of applying the
appropriate nonlinear transformation to the dependent variable, even when all that is

desired is an estimate of the direction of the regression coefficient vector.

[Insert Table 3 Herej

5 Asymptotic Analysis: Consistency

This section is concerned with asymptotic consistency of the proposed estimates in
Section 2. We argue that when the model (2) holds. the direction of 8 is being estimated
consistently under rather general conditions on the predictor variables. If both the
predictor and the error variables are normally distributed, the estimated transformation
also approximates the true link function A up to a multiplicative constant.

To facilitate our arguments, we consider an equivalent form of the model (2) with the

13



intercept term absorbed into the link function:
ho(Y) = .4’(,,30-}‘6 (13)

where Jy € S,. the p-dimensional unit ball, and hg € H, the space of increasing functions
that are Lipschitz on any compact interval [A, B] C Dy, where Dy is the interior of the
support of Y. Note that Dy could take the form of (0, 00) or (—c0, 5c) or a finite interval
like (0.1). Since the Lipschitz condition is imposed on a compact set contained by Dy.
the function Aqg is allowed to have arbitrarily large derivatives at the “boundaries™ of Dy.
Furthermore. we assume that E|X| < oo and that the median of e is zero.

Let (h".3*) be the minimizer of E|A(Y) — X'8| over 3 € S, and h € H.

Lemma 1: If the distribution of X is elliptical, then 8* = fy. In addition, if X’3, and
e are independently and normally distributed, we have h*(y) = c*ho(y) for some constant
cT.

In general, there is no assurance that A* would recover the true link function Aq.

Proof: Since $* is the solution to the problem of minimizing E |A*(Y) — X’3| over
B € §,, Theorem 2.1 of Li and Duan (1989) implies that if the distribution of X is
elliptical, the solution (h*,8*) is Fisher consistent in f, that is, §* = .

To prove the second part of Lemma 1, we assume without loss of generality that
E(X'30) = 0, Var(X'8y) = o2, and Ee? = 0. The conditional distribution of € given ¥

(or equivalently ho(Y)) is normal with mean a2ho(y)/(0? + 02). Consider
[h(Y) = X'8°| = [e - (ho(Y) = R(Y))]. (16)

Note that ~* minimizes the expected value of (16) over A € H. By a well-known
property of population median, the conditional expectation of (16) given Y = y is
minimized by h(y) satisfying ho(Y) — A(Y) = median [e|y] = o2ho(y)/(0? + ¢2). Thus,
h*(y) = o2ho(y)/ (o2 + 02). The proof is then complete.

In fact, we have also seen that the solution (h*, 5*) is unique, but A* is not equal to Aq.

A scale multiplier however does not affect the goodness-of-fit through a linear equation.

14



Next, we consider the sampling property of the estimator (h,,J,) that minimizes
S 1y} —zi3| over h € H and 3 € 5,. The observations are assumed to be independent
from the model (15).

It is easy to see that for every sequence h, in H and any given compact interval
[A. B] there exists a subsequence h,, that converges to a limit h,, in H in the sense that
SUP ¢y [ (¥) = hooly)] = 0. |

Lemma 2: The estimator (h,,0,) is consistent in the sense that 3, — #* and
ho(y) — h*(y) for any y € Dy.

Proof: If the estimator (h,,3,) is not consistent for (", 3*) as stated in Lemma 2. we
consider, for some given pairs A < B (to be chosen later), a convergent subsequence, still
denoted by (hn,Bn) for notational simplicity, such that 8, — 3; and maxscy<B |ha(y) -
hi(y)] — 0. In this case. we have either 8; # §* or maxa<,<B [hi(y) — 2*(y)| > 0.

For any arbitrarily small § > 0, we can choose A = A(§) and B = B(§) to be
sufficiently close to the boundaries of Dy and then extend Ay outside [A, B] so that
hy € H and E{|l,(Y) = X'B|I(ALY < B)} 2 E|l(Y) = X'B1| = &. Then, there exists
sufficiently large N = N(8) such that n > N implies

EIA(Y) = X8 +6 207 5 (w) — 2i67]

>0y () = 28l 207 Y [ha(m) — 2iBal

A<u<8B

207 Y h(y) - <l -6 2 B{lm(Y) - X'BII(AS Y < B)} -2

A<yi<8B

> E|h(Y) - X'Bi - 36.

Letting § — 0, we would arrive at E |A(Y)— X'8;| < E|h*(Y) — X'8*|, which contradicts
the definition of (A", 8*). The proof is then complete.

Finally, we consider the estimator (hy, 3,) that minimizes 5 |A(y;)— X!8| over h € Hpg
and 3 € S, where Hp is the space of “power splines” defined on the interval [y, y,] with

the set of knots &y < -+ < k&, see (7).

15



Theorem 1: If the knots are quasi-uniform in the sense that

ming (ki — k;)

max;(kiy1 — &)

for some constant v > 0, and the number of knots in each finite internal tends to infinity
with n. then the estimator (fzn,,}n) is consistent in the sense of Lemma 2.

Proof: For any choice of [A. B], we know from the theory of spline approximations
that there exists &, € Hg such that MmaxX4<y<B |fzn(y) — h*(y)| = 0 as n — 2. Without
loss of generality, we can choose A, to be bounded outside [A. B]. Thus. for sufficiently

large n and sufficiently large interval [A. B],

nT R =28 2Tt D (hal) =237 = 2 a7 Jha(y) - 237 - 26

A<u<B A<yi<B
>0ty haly) = 2Bl =282 07 Y [haly) - Hidal - 26,
ALy <B
Then the same arguments used in the proof of Lemma 2 for the consistency of (A,.J,)
apply to that of (B, Br).

The consistency result we obtained for the function estimate is not uniform due to
the fact that the true link function hq may not have a bounded derivative function on
its support. If we start with a finite support such as Dy = (0,1), the model (15) with
Gaussian error has to be satisfied with a link function with unbounded derivatives at 0
and 1. [n this sense, uniform consistency in compact intervals inside Dy is the best result

that can be achieved.

6 Conclusion

We cousider the joint estimation of a vector of regression coefficients and a monotone
transformation on the dependent variable of the regression. An estimation procedure is
presented which has the desirable properties of robustness to outliers, and computational

efficiency. The algorithm can be easily implemented using a standard linear program

16



solver.

In recent decades, a number of useful extensions to the standard multiple linear
regression model have been developed: these include ACE (Breiman and Friedman
1985). AVAS (Tibshirani 1988), generalized additive models (Hastie and Tibshirani 1990).
projection pursuit regression (Friedman and Stuetzle 1981), ATS methods (Cleveland.
Mallows. and McRae 1993) slicing regression {Li 1991), transform-both-sides methods
(Nvchka and Ruppert 1995), robust transformation estimation (Carroll 1980: Carroll and
Ruppert 1985; Carroll and Ruppert 1987), and semiparametric regression (Powell and
Stoker 1989; Ichimura 1993; Bonneu. Delecroix, and Malin 1993; Horowitz 1996: Wang
and Ruppert 1996; He and Shen 1997). Bayesian contributions to flexible regression
modeling include West, Mueller, and Escobar (1993), Mallick and Gelfand (1994). and
Laud, Damien, and Smith (1996). The ROSE algorithm presented in the present paper
offers a potentially useful addition to the currently available set of techniques. The
ROSE technique may be of use in cases in which the data may contain outliers. and
the response variate requires nonlinear transformation, but in which the modeler wishes
to have explanatory variables enter the model in an easily understandable linear and

additive fashion.
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Table 1: Parameter estimates. Boston housing data.

Variable  ROSE LAD OLS
CRIM  -0.0198 -0.0239 -0.2693
ZN 0.0020 0.0031  0.0907
INDUS 0.0065 0.0079  0.0498
CHAS 0.1586 0.1596  0.0806
NOX -0.8490 -0.8203 -0.2478
RM 0.4889  0.5296 0.1932
AGE -0.0020 -0.0019 0.0067
DIS -0.0799 -0.0940 -0.3002
RAD 0.0192 0.0208 0.3728
TAX -0.0012 -0.0014 -0.3233
PTRATIO -0.0752 -0.0900 -0.2574
B 0.0018 -0.0018 0.1144
LSTAT  -0.0464 -0.0569 -0.6313
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Table 2: Parameter estimates. 1993 car fuel economy data.

OLS ROSE
INTERCEPT 29.289 54.380
CYL -0.241  -0.915
ENGSIZE +0.888  -0.000
HP +0.655  -0.395
LENGTH +0.251  -0.085
WIDTH +4.228  -0.000
WEIGHT -23.72  -13.618

DOMESTIC  -1.804 -0.830
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Table 3: Results of Monte Carlo evaluation of estimators.

RMSE
Signif. Signif.
n o |ROSE LAD OLS | LAD OLS
100 2.0 [ 0.0263 0.0495 0.0360 * *
100 4.0 |1 0.0397 0.0666 0.0521 * *
50 2.0]0.0402 0.0791 0.0621 x *
50 4.0} 0.0665 0.1010 0.0856 * *

* = Semiparametric estimator more efficient. p < .01. binomial sign test.
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Figure 1: Aggregate sales in millions of dollars, Ford Motor Company
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Figure 2: Estimated transformation of dependent variable in seasonal regression model of
Ford Motor Company sales data
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Figure 3: Transformed sales data. Ford Motor Company
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Figure 4: Residual plot, OLS regression of 1993 cars fuel economy data
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Figure 5: Estimated transformation of dependent variable in 1993 cars fuel economy
regression mode]
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Figure 6: Residual plot, robust semiparametric regression of 1993 cars fuel economy data
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Figure 7: Sample dataset from Monte Carlo study: n =100, ¢ = 2.0.
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