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Robust Seasonal Adjustment by Bayesian Modelling

Abstract

Akaike’s BAYSEA approach to seasonal decomposition is designed to
capture the respective merits of several preexisting adjustment techniques.
BAYSEA is computationally efficient, requires only weak assumptions about the
data generating process, and is based on solid inferential (namely, Bayesian)
foundations. We present a model similar to that used in BAYSEA, but based
on a double exponential rather than a Gaussian error model. The resulting
procedure has the advantages of Akaike’s method, but in addition is resistant
to outliers. The optimal decomposition is obtained rapidly using a sparse linear
programming code. Confidence bands and predictive intervals can be obtained
using Gibbs Sampling.

Keywords: Gibbs Sampling, L1-Regression, Linear Programming, Outlier



Introduction

In a 1980 paper, Akaike categorized then existing seasonal decomposition methods
into three classes: methods based on moving averages (e.g., X-11, Shiskin, Young,
and Musgrave, 1976, and, we might now add. SABL. Cleveland et al., 1982 and
STL, Cleveland et al., 1990); methods based on multiple regression; and methods
based on time series ARIMA modelling (e.g., Box, Hillmer, and Tiao, 1978). Akaike
introduced a method, which he termed BAYSEA, for “Bavesian Seasonal Adjustment”,
which, like the moving average procedures, makes only very weak assumptions about
the underlying probability model; which, like the regression techniques, admits
computationally efficient estimation; and which, like the direct modelling techniques,
allows for the incorporation of likelihood and Bayesian inferential tools as means of
model selection and for providing predictive intervals.

While one feature of the modern moving average techniques is their flexibility,
another important feature contributing to their popularity is their incorporation of
sophisticated outlier detection methods, which produce programs that are resistant
to defective observations. The BAYSEA program, on the other hand, is based on a
Gaussian model; the associated constrained least squares estimation procedure has the
same poor breakdown properties possessed by all least squares estimation procedures.

In this paper, we use a flexible modelling framework similar to that upon which
BAYSEA is based, but in which the innovations for the various underlying random
processes are assumed to have a double-exponential distribution. The trend/seasonal
decomposition is achieved by maximizing the posterior distribution for the unknown

parameters; this maximumis shown to be obtainable by solving a sparse linear program.
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In Akaike’s model, the posterior is Gaussian, so that inferential statements such as
predictive intervals can easily be derived. In our model, the joint posterior is complex;
however, samples from the joint posterior can be obtained by Gibbs sampling, thus
permitting the construction of confidence bands and predictive intervals. Finally, we
show that the flexibility of BAYSEA in treating such issues as trading day and leap

year effects is retained in the double-exponential version of the model.

The Time Series Model: Likelihood and Prior

The usual additive model for seasonal decomposition states that an observed time

series Y; can be written as

Y}=Tt+St+It, t=1,...,n

where T; is a smoothly varying underlying trend component, S; is a seasonal component
with some period, say p, and I, is the irregular component. Akaike (1980) treated the
irregular component I; as a Gaussian white noise process. We will assume that I isa

white sequence, with each I; having the double ezponential distribution:

fi(i) = Xexp(=Ali]),

where A is not necessarily known. The use of the broad-tailed double exponential
distribution is a common procedure in robust statistical modelling. In the simple one-
sample problem with

yp=0+1,
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the MLE for the location parameter § under a Gaussian model for I, ¢ 1s the sample mean
of the y;, whereas the MLE for 6 under the double exponential model is the median of
the y;, an estimator with a breakdown fraction of 50%. Gonin and Money (1989)
describe the use of the double-exponential, or “L,”, model for robust linear and
nonlinear regression modelling.

As in Akaike (1980), we do not restrict the sequence T} to be represented by a
simple function, such as a linear or quadratic function. Neither is the sequence S,
required to be representable by a simple sum of harmonics. Thus, each T; and each

St;t=1,...,n, is an unknown parameter to be estimated. The log-likelihood for the

parameters T = (Ty,...,T,), S = (S1,...,5,), and X is
e(T,S,AlY) =nlog(’\)—AZIYt "‘Tt_Stl (1)
t=1

Clearly, some additional prior knowledge must be added to this specification, as there
are 2n + 1 unknown parameters and only n observations. The additional knowledge
will be contributed through prior distributions on the parameters T; and S,. In the
case of T, our prior knowledge consists of the fact that the sequence, while perhaps
nonlinear, is “smooth”. The prior distribution (Ty,... ,T,) is thus formulated to give
high prior mass to those functions which are smooth. The log-prior we use, up to a

constant, is

n-1
log7r(T) = —dz ITH-I —2T¢ +T1_1|. (2)
t=2



The log-prior is maximized for sequences T; which are such that the second differences
Ty41 — 2T+ T,_; are zero; namely, linear sequences. The joint prior for the T; does not
belong to any well known functional form. However, by analogy with the quadratic
smoothness log-prior used in Akaike (1980), the prior in (2) can be understood as
a specification of the believed degree of smoothness of the time series components.
with parameter d governing the extent of the smoothness. A value of 0 indicates no
preference for smoothness, whereas a value of co states that non-linear sequences have
no prior mass (and, hence, no posterior mass given any observed data sequence). As
is described in a later section of this paper, one can use Gibbs sampling (Gelfand and
Smith, 1990) to simulate realizations of T from the posterior distribution of T given
Y; similar techniques can be used to simulate from the prior distribution in (2), thus
enabling a user of the model to visualize the meaning of a certain choice of prior hyper-
parameter d. Alternative priors can be chosen without requiring substantial changes

in the estimation algorithm. For example, one might use

n-2

]Og W(T) = —d Z |Tt+2 — 3Tg+1 + 3T¢ - T1_1| . ‘ (3)
=2

Realizations from this prior will have a higher degree of smoothness than would those
from the prior in (2).

In the case of the parameters S;, a reasonable and non-restrictive specification of
typical prior knowledge consists of the facts that (a) the value of a seasonal index S,
should be similar to S;—,, the value of the index at the same point of the previous

cycle; and (b) the sum of the seasonal values over a single period should be close to




zero. These facts constitute a minimal definition of “additive seasonality”. This prior
knowledge about the sequence S; can be encoded in a prior probability distribution as

follows:

n P-1
log7(S) = —r Z |Se = St—p| - 2 Z |Sips1 + -+ Siptal (4)
t=p+1 : j=0 .

where P = [n/p] is the number of fully observed periods in the dataset. According
to this specification, the most likely seasonal series, a-priori, are those for which the
seasonal component is equal from period to period at all times, and in which the sum
over each set of p adjacent observations is exactly zero. The hyper-parameters r and z
regulate the extent to which deviations from these conditions are permitted, or believed
possible.

The optimal point estimate of the components (T,S) does not depend on the
particular prior chosen for the scale parameter A. However, the system for computing
the posterior variances for the parameters (T,S) described below does require
spécifying a complete prior distribution, so for that purpose we will use the ﬁsual
non-informative prior #(A) o 1/A. Finally, to complete the specification of the prior,
we assume that T, S and ) are independent a-priori; thus the joint log-prior is just the
sum of the respective marginal log-priors.

The prior distribution (2) is improper; a sequence (Ty,...,T,) has the same
probability as the sequence (T +¢,...,T, + ¢) for any ¢ € (—o0,+00). In effect,
the prior identifies the shape, but not the level, of the function T,. However, the

data (Y,...,Y,) are informative about the level of the sum of the trend and seasonal



functions, and the prior (4) is informative about the level of (S1,... ,S5); as a result. the
joint posterior for (Ty,... ,TnyS1,... , Sn) is proper. The prior in (2) can be modified
so that it is a proper joint density, for example by adding to it terms of the form
do |T1 “T1|+do T, - Tn

, where d is a small but finite prior precision parameter. and

T, and T, are prior mean parameters. A data-driven choice for T, and T, might be

Tl =Y, Tn =Y.
Point Estimation by Linear Programming

The log-posterior distribution for the parameters (T, S) is given by the sum of the

log-likelihood and the log-prior:

n n-—-1
log W(T, SlY) = C - AZ l}’g - Tt - Sgl - dz ‘TH-I - 2Tg + Tt—ll
t=2

t=1

n P-1 (5)
-r E |5t — Se—p| — 2 Z 1Sipt1 + -+ + Siptal s
t=p+1 =0

where C is a constant independent of T and S.

One reasonable point estimate for the unknown components is the maximizer of the
joint posterior - the so-called MAP (maximum a posteriori) estimate. We now show
that, as in the case of least absolute deviations (L,) regression, this maximizer can be
obtained using linear programming techniques.

Define &} and §; as the positive and negative parts of the irregular sequence I, so

that

Y- S —T, =6} - 6, (6)




with both & a{ld d; non-negative. Similarly define quantities (¢f,€), (Wi, wi), and

(vi,v) as follows:

Ty — 2T+ Ty = fg+ —€ (7)
St = St-p = wif —w; (8)
Sipt1 -+ Sipep = V; -V, (9)
with
Jf,Jf,ef,ef,wf,w[,uf,V; >0, Vi,Vj. (10)

Then the maximum of the log-posterior can be obtained by solving the minimization

problem
min
Tg,Sg,J?',S:,cf.cf,wf ,w,—,u)"’,u;
n n-1 n P-1
AY (G +6)+dY (e +¢) +r Y (W +w)+2 YF+vy) (1)
t=1 t=2 t=p+1 j=0
Subject to

Y-S -Ti=6f-67, t=1,...,n
Tn—-2Ti+Tiov =€ —¢;, t=2,...,n-1

S,—S,_p:—-wf—w,", t=p+l,...,n



Sipt1+ o+ Siptp = 1/;L -vi, j=0....,P-1,
Jf,éf,ef,ef,w;",w[,uf,uj >0, t=1,...,n, j=0,...,P
This minimization problem is a linear program. It is fairly easy to see that, at the
optimum, at most one of the terms ;" and d; will be non-zero, and that the absolute
value of this term will necessarily equal that of the corresponding residual ¥; — T; - ;.
Similar results apply to the other absolute deviation terms. This establishes the
equivalence between the LP problem and the maximization of the log-posterior, which
is a sum of absolute deviations. Furthermore, if one divides the objective function
through by the scalar ), it becomes apparent that one needs to specify only the three
ratios (d/A,r/A,z/)), and not the four separate values (A, d.r,z). in order to find the
maximizer of the posterior. Given the MAP decomposition ('i‘, S), an estimate of the

scale parameter A can be obtained using the MAP estimate:

n

A= et
PDHIRE ) Al PR

(12)

The linear program has 8n + 2P — 2p — 4 variables, and 3n + P — p — 2 equality
constraints. The constraint matrix is sparse however, with the number of non-zero
entries depending only linearly on n. The maximum can thus be found efficiently using
a sparse LP solver. In the examples given below, the optimal decomposition is obtained
using Vanderbei’s “LOQO” optimizer (Vanderbei and Carpenter, 1990), a code based
on an interior point linear programming algorithm. This procedure does not make

use of the special structure in this problem, which implies, for example, that at most




one of the terms & and d; are positive. Nevertheless, convefgence to the optimum is
rapid. Gonin and Money (1989) describe efficient linear programming algorithms for
L, regression which might be modified to further improve the efficiency of the seasonal

decomposition algorithm presented here.

Missing Data and Future Forecasts

Missing data is easily treated with this estimation procedure. For any ¢ for which
Y; is unobserved, simply exclude the terms §; and d; from the objective function, and

exclude the constraint
Y,-Ti— S =6 - ¢ (13)

from the set of constraints. Alternatively, one can include the value Y; as an
unknown to be chosen by the linear programming routine; thus the decomposition
routine can serve as a missing data imputation system. This latter approach
is the means by which a future value may be forecast: include the values
Yatt, Tut1, 6541, 00 +i,e,f +13€n41s W1, W1, as unknowns, add the appropriate terms

to the objective function, and add constraints

Yn+1 - Tn+1 - St+1 = 5:+1 - ‘5;+1 (14)
Ty - 2T+ 1oy = ‘:-H = €nt1s (15)
Snt1 = Snt1-p = Wiy — Wiy (16)



The optimal value of Y4, will exactly equal T4y + Snt1. Tngr will equal 2T, — T, _y;
i.e., will represent a linear extrapolation of the last two estimated values of the trend

component.

Trading Day, Holiday, and other Time Series Phenomena

The discussion so far presumes the existence of only two time series components, a
trend and a seasonal component. The modelling framework, though, easily admits
the inclusion of additional components. For example, there can be two seasonal
componehts, daily and monthly: Y; = Ti+S;:+S2:+1;. Each seasonal component would
have a prior distribution as in (4), guaranteeing that the component be appropriately
“periodic”. One can also add indicator variables to the linear model corresponding to
such effects as trading day or holiday. If an intervention to a process occurred at some

time j, then one can add an indicator variable

1 t>3
0 t<y
to the model, obtaining
=T+ 5.+ BE: + I; (18)

the parameter 3, which quantifies the impact of the intervention, can be estimated
using the linear programming algorithm. In general, any time series effect that can

be modelled in a linear regression framework can be incorporated in this L; version of
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BAYSEA.

The linear programming algorithm also makes it easy to include structural
constraints on model parameters. For example, if one believes that the coefficient
B in (18) must be positive, one can simply add the constraint 3 > 0 to the set of
linear programming constraints. If one has reason to believe that the trend must be
monotone increasing, or concave, one can add constraints of the form Tijhn =T, >0
or Ti41 — 2T + Ti—, < 0 to the constraint set. The monotonicity constraint, when

appropriate, can provide a useful guarantee that the estimate of trend is smooth.

Choice of Smoothing Parameters

The estimates of the time series components depend on the choice of the parameters
(d,r,z). Akaike (1980) suggests applying the BAYSEA procedure for a finite set of
values for the smoothing parameters, and then choosing the model which minimizes
the “ABIC” criterion, which is defined as twice the negative log-posterior. A similar
approach can be applied in the present context, with the log-posterior given by
equation (5). An alternative approach to automatically selecting the smoothing
parameters is the cross-validation technique (e.g., Stone, 1974, or Geisser and Eddy,
1979). In such a scheme, a subset of the data {Y;|t € A} is withheld from the estimation
procedure, and the model s fit based on the remaining data {Y[t ¢ A}, using a number
of different choices for the smoothing parameters. The predicted values {Yilt e A} are
then compared to the actual values {Y;|t € A}, where ¥; = T, + S,. and the smoothing
parameters which lead to the closest fit between Y; and Y, are chosen as the final

values. The earlier discussion on missing values provides the means by which such
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withholding of data can be easily implemented. Ansley and Kohn (1987) and Kohn,
Ansley, and Tharm (1991) discuss the use of cross-validation in time-series smoothing.
The discussion below on the Gibbs sampling implementétion of this model offers a
further alternative approach to choosing the smoothing parameters.

It may be noted that the sensitivity of the adjustment procedure to the choice of
smoothing parameters can be reduced by the addition of constraints on the components,

such as a monotonicity restriction on T.

Examples

Exhibit 1 displays the logarithm of quarterly sales figures for General Motors
Corporation, over a period from 1962 to 1991. There is clearly a seasonal variation;
there is also at least one observation that seems to outly the typical pattern. The
trend component, obtained using the parameter values d = 10.0,7 = 10.0,z = 10.0,
is superimposed. The estimate seems reasonable, capturing such details as the hump
occurring near 1978. Exhibit 2 shows the estimated seasonal component, the amplitude
of which is seen to vary over time. An examination of the original data in Exhibit 1
appears to support this inference. This observation would seem to indicate that the
logarithm is not exactly the correct transformation for the raw data. The example
shows that ';he L; BAYSEA model can capture phenomena such as an interaction

between the trend and seasonal components.
[Insert Exhibits 1- 2 Here]

The MAP estimation procedure was applied to a simulated data set featuring two
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gross outliers, one each at the beginning and end of the series. Exhibit 3 shows the raw
data, together with the estimate of the trend component, obtained using smoothing
parameters d = r = z = 1. The estimate appears to be unaffected by the outliers.
Note, though, the unexpected dip in the trend at the end of the series; this would
be undesirable in a forecasting context. Exhibit 4 was obtained using smoothing
parameters d = 10, r = 1, z = 1; this appears quite satisfactory. Alternatively,
the downturn in the trend estimate could be prevented by constraining the trend

component to be monotone.

[Insert Exhibits 3- 4 Here]

Estimation by Gibbs Sampling

The linear programming procedure of the previous section locates the mode of
the joint posterior m(T,S|Y). One might also wish to identify other features of
the posterior, in particular marginal posterior distributions for the parameters of
interest. The joint posterior is not of a standard form, and it is not feasible to
directly compute marginal quantities by integration, nor is it convenient to sample
from the complex joint posterior. However, it is the case that the conditional
distributions of the joint posterior are fairly simple, and it is feasible to sample from
these conditionals. One can use these simple conditionals to generate samples from the
Joint distribution, using the Gibbs sampling procedure (Gelfand and Smith, 1990). The
Gibbs sampling procedure is an iterative technique for sampling from some complicated
multivariate distribution. Suppose f(zi,...,z,) is a joint distribution, with associated

conditionals f(z,|22,23,...,2a), f(z2|21,23,... ,Zn)y- .., f(ZnlT1,Z2,...,Z01). The
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Gibbs sampling procedure starts with an arbitrary initial vector (zy,...,z,). A
new realization of z; is then generated from the conditional f(z|z,,z3,...,2,),
a realization of z, from the conditional f(zs|z;,z3,...,2,), and so on, with the
cycle repeated several - typically hundreds or thousands - of times. The stationary
distribution of the vectors (zy,... ,z,) generated by this Markovian procedure is equal
to the joint distribution f(zy,...,,). Because the process is ergodic (Gelfand and
Smith, 1990), the marginal variance of any variate z; can be estimated by the sample
variance of zj over the realized stream of numbers generated by the Gibbs Sampler.

A convenient notation introduced by Gelfand and Smith (1990) is to refer to an
unconditional distribution of a variate X as [X], and to the conditional distribution
of X given Y as [X|Y]. Also, we will refer to the set {Ty, t # j} as TV, and
the set {S;, .t # j} as SU). In the following, the scale parameter A will be treated
as an unknown parameter to be estimated; the smoothing parameters (d,r,z) will be
assumed to be fixed.

By examining the terms in equation (5), it can be seen that the conditional posterior
distribution of {Tt | Y, TS, A], for ¢ = 3,...,n— 2, depends only on the quantities

Y., Sty Tiay Tiv, Tig1, Teqa, A In particular the conditional distribution is given by

[T Y, 70, 8,)] o exp( = AY; = Ts = 5 = d|Tiga = 2Tes + T

—d|Toy1 = 2T + Toch| = d | Ty — 2Ty + Tia)) (19)

This conditional distribution is piecewise exponential; i.e., the log-conditional is

piecewise linear. The “knots” in the piecewise linear function occur at the abscissae
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{Y; = Sy 2Tiy1 — Tipay (Teta + Ti-1)/2, 2Tiy — Ti—z}. The cumulative distribution,
say F(T), associated with this conditional density is just that associated with
a piecewise exponential; namely F(T)= ao— a;exp(—a,T'), where the constants
(ao, @1,a2) depend on where T lies relative to the set of knots. This CDF is easily
inverted; thus one can generate samples from the conditional density in (19) using the
inverse transform method (Law and Kelton, 1982). Simple modifications are required

to treat the endpoints Ty, Ty, Ty-1, and T,. For example, the conditional distribution

of [T Y,TW,8, | is just
[7:1Y,TW,8,\] cc exp (=A[Yi = Ty — S| - d|T5 - 2T3 + Ti]).
Also, the conditional distribution of the future value T4, is given by
[Tusa | Y, T4, 8,)] o exp (=d|Tusa = 2T + Toca) (20)

which is the usual double-exponential distribution with location parameter 2T, — T},_;
and scale parameter d.

If one’s prior knowledge suggests that the underlying trend component should
be monotone, then one can restrict the distribution [T, |Y,T®,S, /\] to the domain
(Ti=1,Ti41). The restricted density is also piecewise exponential, and so one can use the
inverse transform method to generate a T; within the interval (T}_;, Ti41); each sample
of T generated in this fashion will necessarily be monotone. A similar approach can

be used to guarantee that the realizations of T be concave or convex.



The conditional distribution of [S, Y, T,S®, /\], fort=p+1,...,n—p,is given
by '

[Se1 Y, T,80), 2] o exp( = A[Y; = T, = S, — 7 [Se = Siyl o
= 7|Setp = Sel = 2[Sjps1 + -+« + Siptal);

where j = [t/p]. This is again a piecewise exponential density, with four knots at the

abscissae {(Y;—T3), Si—p, Sttps (Sjps1+..-+St=1+Ses1+...4+Sjp4p)}. Thus samples

from the conditional distribution of S; can be generated using the inverse-transform

technique. Obvious modifications are made for the endpoints Sy, ¢ = 1,...,p and

t=n-p+1,...,n. For example, the conditional distribution of [51 | Y, T,s®), /\] is

given by

[$11Y, 7,50, 3] ox exp(=A[¥; = Ty = S| = v [S1sp — Sal = 211 +... + 5.
(22)

The conditional distribution of the future valu¢ Sp41 18 given by
[Sns1 ] Y, T, 8749, )] o exp (=7 |u1 = Sas1osl) (23)

which is the double-exponential distribution with location parameter Sp41-p and scale
parameter r.
The parameter A plays the role of a scale parameter, and can be estimated using

the usual Bayesian techniques for scale parameters. Given the prior [A] & 1/), the
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conditional posterior is
(A Y,T,S] oc A" exp (—/\ Y IV -T - St|) : (24)
t=1

This is just the Gamma distribution, with parameters (n, Y_j., |Y: — T; — S¢|). Law and
Kelton (1982) describe schemes for generating deviates from the Gamma distribution.
If one is interested in making inference on a future observable value Y; 4, the

conditional distribution is given by
[Yot11 Y, T, T041, S, Sn1, A < xp (= A [Yerr — Tip1 — Sea), (25)

which is the double exponential distribution with location parameter T4y + Sy,

and scale parameter A. Ti;; and Si4; are themselves generated using equations (20)

and (23).

Estimation of Smoothing Parameters

Lenk (1993) has noted, in the context of nonparametric density estimation, that the
Gibbs sampling approach can be used to automatically generate appropriate smoothing
parameters, based on observed smoothness attributes of the data. The smoothing
parameters (d,r,z) appear in the likelihood in the form of scale parameters, and so
can also be estimated in the same way as is A; namely, by generating from their
conditional posteriors, which will be of the Gamma form.  The use of a Gamma

prior [d] « d*°~!exp(—a;d) leads to a Gamma posterior for d; in particular, the
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conditional posterior distribution for d will be Gamma with parameters (ao+n—2,a;+

"1 |Ty1 — 2T, + Ti-1|). Similarly, the conditional posterior for 7 will be Gamma with
parameters (ag + n — p, a1 + Yj—p4q 1St — Si—p|), and the conditional posterior for z
will be Gamma with parameters (ao + P, a; + Z;___'Ol |Sip+1+ - -+ Sip+pl). The hyper-
parameters ap and a; will generally be chosen to be small positive numbers, to reflect
prior ignorance about these parameters. If ap < n and oy € Y1y |Tegr — 214 + Tiei,
then the prior will have a small effect on the posterior, and the choice of the smoothing

parameter will be essentially data-driven.

Implementation Issues in Gibbs Sampling

The work of Carlin et al. (1992) suggests a quite different approach to implementing
the double exponential model via the Gibbs Sampler. Namely, one can model the
error term I, as coming from a Gaussian distribution, with 0 mean and variance Awy,
where w; is an exponential variate with fixed mean. This scale mixture of normals
implies a double exponential model (Andrews and Mallows, 1974). A Gibbs sampling
procedure can alternate between generating the desired parameters T, S for given values
of @ =(w, t=1,...,n), and generating values of § for fixed T,S. A possible
advantage of this approach is that in this case the posterior distribution of [T,S | €, A]
will be multivariate normal; thus one could use a multivariate generator to obtain all the
variates (T,S) at once. However, one would probably wish to adapt the multivariate
normal generator to make use of the sparseness of the conditional posterior covariance
matrix.

In addition to the particular issues that arise in Bayesian modelling of seasonal
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time series, there are general implementation issues involved in any application of
Gibbs sampling: diagnosis of convergence, choice of the order of sampling, and use
of sequential versus parallel streams of random numbers. Gelfand et al. (1990)
and Tanner (1991) provide guidance with respect to many of these questions.
Roberts (1992) and Zellner and Min (1995) describe diagnostic measures for assessing

convergence of the Markov chain.

Example

The Gibbs sampling procedure with direct modelling of the double exponential
errors was applied to the simulated data set featuring two outliers. The smoothing
parameters were themselves estimated, using the Gibbs sampling scheme described
above. 20,000 Gibbs iterations were performed, and the first 5000 samples were
discarded to avoid startup transient effects. The procedure was initialized by setting the
values for (T3, S:), t=1,...,n at the respective MAP estimates obtained via linear
programming, and A at the MAP estimate given in equation (12). The smoothing
parameters d, r and z were initially set at 10, and non-informative priors on d, r,
and z were obtained by setting the values of the hyper-parameters (g, 1) at ag =1,
ap = .01,

Exhibit 5 displays the data, the posterior mean estimate of the trend component,
~ and the posterior mean plus and minus one posterior standard deviation for the trend
component. The pointwise standard deviation for each T; was obtained by using the
sample path standard deviation of the T;’s generated by the Gibbs Sampler. Posterior

standard errors can also be obtained from the Gibbs Sampler for the seasonal factors
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S;, and for predictions of Y,4;. The data were informative about the smoothing
parameters; for example, the 95% highest posterior density interval for log(d) was

3.1+ 0.36.
[Insert Exhibit 5 Here]

Conclusion

The Bayesian paradigm allows for flexible rﬁodelling of seasonal time series
phenomena, in a fashion which is insensitive to outlying data values. Important
contributions to the Bayesian analysis of time series with outliers include
West (1981), West and Harrison (1986), Tsay (1986), Kitagawa (1987), Meinhold
and Singpurwalla (1989), Carlin et al. (1992), and McCulloch and Tsay (1994). In
this paper, a seasonal decomposition method is presented which requires only weak
assumptions about the nature of the underlying trend and seasonal components;
robust point estimates of the time se;ies decomposition are obtained rapidly via linear
programming, with marginal and predictive inferences obtainable by Monte Carlo
sampling from the joint posterior. The method is shown to effectively reject outliers

in time series data. Extensions to multiple time series models are possible.
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Figure 1: MAP Estimate of Trend Component, Y = log(GM Sales)
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Figure 2: Estimate of Seasonal Component, ¥ = log(GM Sales)
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Figure 3: MAP Estimate of Trend Component,d=r=2=1
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. Figure 4: MAP Estimate of Trend Component, d =10, r = z = 1
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Figure 5: Estimate and Confidence Intervals for Trend Component,

Y = log(GM Sales), Obtained from Gibbs Sampling




