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Abstract

A common objective of social science and business research is the modeling of
the relationship between demographic/psychographic characteristics of individuals
and the likelihood of certain behaviors for these same individuals. Frequently, data
on actual behavior is unavailable; rather, one has available only the self-reported
intentions of the individual. If the reported intentions imperfectly predict actual
behavior, then any model of behavior based on the intention data should account for
the associated measurement error, or else the resulting predictions will be biased.
In this paper, we provide a method for analyzing intentions data that explicitly
models the discrepancy between reported intention and behavior, thus facilitating a
less biased assessment of the impact of designated covariates on actual behavior. The
application examined here relates to modeling relationships between demographic
characteristics and actual purchase behavior among consumers. A new Bayesian
approach employing the Gibbs sampler is developed and compared to alternative
models. We show, through simulated and real data, that, relative to methods which
implicitly equate intentions and behavior, the proposed method can increase the

accuracy with which purchase response models are estimated.

Key Words: Bayesian Methods, Hierarchical Bayes, Markov Chain Monte Carlo,
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1 Introduction

A common objective of applied social science and business research is the modeling of
the relationship between the demographic/psychographic characteristics of individuals.
and the behavior of these individuals. For example, in many marketing research
applications, the goal of many concept and product tests is to understand the purchase
behavior of a population of consumers, to determine whether or not to introduce a product
to the market, and, if so, to which market segments. Typically in such concept and
product tests, one cannot observe the actual purchases of individuals, so self-reported
purchase intentions for the new product or concept are measured and used as a proxy
variable. Intentions are also often used to predict sales over time for existing products
among different segments of customers. In order to determine the purchase propensity
of members of different market segments, models relating demographic, psychographic,
or other characteristics of consumers to purchase intentions are often developed. When
there is an imperfect correspondence between self-reported purchase intentions and actual
behavior, estimates concerning consumer characteristics obtained from these models will
be biased.

A key question, then, is what is the relationship between self-reported purchase
intentions and actual behavior? Research in social psychology suggests that intentions
should be the best predictor of an individual’s behavior because they allow each individual
to independently incorporate all relevant fa,ctors that may influence his or her actual
behavior (Fishbein and Ajzen 1975). However, most empirical evidence suggests that
purchase intentions cannot be taken literally.

Over the last fifty years, several studies have examined the relationship between stated
purchase intentions and actual purchase behavior. The U.S. government conducted studies
and experiments concerning purchase intentions between the 1940s and the 1970s. Their
goal was to predict short term movements in future expenditures based on stated purchase
intentions and the financial position and demographic characteristics of American

households. In many of these studies, significant relationships between intentions to buy



durable goods and subsequent purchase were found using various econometric models on
panel data (Juster 1966; Tobin 1959). Although the relationships are significant, Juster
describes the performance of binary intentions measures as unimpressive. He notes that
although intender purchase rates are higher than those of non-intenders, intender purchase
rates are significantly lower than one, and non-intender purchase rates are significantly
greater than zero. In fact, since for most durable goods, the majority of households report
that they are non-intenders, most of the actual purchases are made by non-intender
households. Juster therefore advocated the use of purchase probability measures over
direct binary intent measures. However, he noted that self-reported purchase probabilities
also provide biased estimates of actual purchasing, typically underestimating the actual
purchase rate. |

Several other s;tudies have examined the relationship between purchase intentions and
purchase behavior for durable goods (Adams 1974; Clawson 1971; Ferber and Piskie
1965; Granbois and Summers 1975; McNeil 1974; Pickering and Isherwood 1974) and
for nondurable goods (Gormley 1974; Tauber 1975; Taylor, Houlahan, and Gabriel 1975;
Warshaw 1980). The observed relationship between intentions and purchase is generally
positive and significant, however, the strength of the relationship varies from study to
study. For example, in Juster (1966). of those respondents who claimed they would
“definitely or probably” purchase a car in the next six months, only 50 percent actually
purchased. Jamieson and Bass (1989) and Morwitz and Schmittlein (1992) found similar

results in different marketing contexts. Table 1 summarizes the results from these studies.
[Insert Table 1 Here]

Overall, based on the empirical evidence, intentions appear to almost always provide
biased measures of purchase propensity, sometimes underestimating actual purchasing and
other times overestimating actual purchasing. Manski (1990) provides further support
that intentions data should not be taken literally. Manski develops a model of the
relationship between binary intentions measures and subsequent behavior under the

» . . . . . . .
best-case” situation where respondents have rational expectations. In this situation,



respondents’ reported intentions are their best predictions of their future behavior.
However, respondents typically do not have perfect information about changes that
may occur in the future that may affect their probability of purchase. Based on his
model, Manski demonstrates that intentions data do not identify a specific probability
of behavior, but rather bound the probability of behavior, and that the bounds are
nonparametrically estimable. Manski notes that, in contradiction to prior assertions,
there is no reason to expect individual-level differences between intentions and behavior
to average out in the aggregate. In other words, we should expect to observe that not all
intenders purchase and that some non-intenders do purchase even with perfectly rational
respondents.

More recent studies of purchase intentions have developed models that incorporate
the discrepancies between stated intentions and actual behavior. The psychometric beta
binomial model of Morrison (1979) is a descriptive model of the relationship between
stated purchase intent and subsequent purchase. Morrison incorporated the observed
discrepancies between intent and purchase by taking into account measurement error of
intentions (the difference between true intent and stated intent), the impact of exogenous
events (that true intent may change over time), and systematic bias (the systematic
tendency for intentions to overestimate or underestimate purchase). Kalwani and Silk
(1982) report further analyses and applications of Morrison’s model. Bemmaor (1995)
more recently extended the Morrison (1979) model to the case of heterogeneous switching
probabilities to attempt to explain the sign and magnitude of the discrepancy between
overall mean purchase intent and subsequent proportion of buyers. In a different modeli.ng
effort, Infosino (1986) assumed that one can interpret a purchase intention response as
a monotonic transformation of value (willingness-to-pay minus price), truncated to an
integer on the intention scale. Infosino further assumed that, at the individual level,
willingness-to-pay is stochastic. He also assumed that exogenous events, such as changes
in the marketing mix, shift, but do not change the shape of the distribution of willingness-
to-pay. According to this model, the proportion of customers who purchase is equal to

the proportion of the transformed distribution of value above some threshold value.



The Morrison (1979) and the Infosino (1986) models both capture systematic biases in
intentions measurement. The goal of several other intentions studies has been to identify
causes of systematic biases in intent measurement. One determinant of the magnitude
and direction of bias in intent measurement is the type of product under consideration.
Research by Kalwani and Silk (1982) and Jamieson and Bass (1989) demonstrates that
the relationship between purchase intentions and purchase behavior is different for durable
goods than for non-durable goods. For example, Kalwani and Silk find that for durable
goods, a linear model provides a good fit between intentions and pﬁrchase behavior,
‘but for nondurable goods, a piecewise linear model provides a better fit. Morwitz and
Schmittlein (1992) find that the relationship between purchase intentions and subsequent
purchase also varies across demographic and product usage based segments. They find
that some segments of intenders are more likely to fulfill their intentions than others, and
that some segments of non-intenders are more likely to purchase despite their intentions
than others. One additional cause of systematic bias in intent measurement is the effect
~ of measuring intentions on actual purchasing. Morwitz, Johnson, and Schmittlein (1993)
demonstrate that merely asking respondents whether or not they intend to purchase a
durable good actually increases subsequent purchasing of the product.

In summary, based on past empirical research on the relationship between intentions
and behavior, we know that although intentions are often used as a proxy variable for
actual purchase in applied marketing research, not everyone who says they intend to buy
will actually purchase, and conversely not everyone who says they do not intend to buy
will not make a purchase. The reasons that intentions are not perfect measures of behavior
include measurement error in measuring intentions, changes that occur between the time
intent is measured and the purchase occasion, systematic biases that might arise from the
effect of product characteristiés, the effect of respondent characteristics, and the effect of
measuring intentions on behavior.

~ The imperfect correspondence between purchase intentions and behavior suggests that
standard (regression) models relating demographic/psychographic covariates to intentions

can provide inaccurate estimates of the relationship between these covariates and actual



| purchase behavior. In this paper, we develop a model and estimation procedure for
analyzing purchase intention data that explicitly take into account the discrepancy
between purchase intentions and purchase behavior. While the models previously
described are concerned with identifying the specific mechanisms by which pufchase
intention deviates from purchase behavior, our methodology takes this discrepancy
between intention and behavior as a given, and then uses this known discrepancy to
help correctly identify correlates of behavior based on data from intentions only. An
extension of the model is developed for the case in which intentions data is available for
multiple brands within a product category; this extended model uses hierarchical Bayes
methods (e.g., Berger 1985) to achieve optimal pooling of information across brands.
The estimation procedure introduced in this paper makes use of Markov chain Monte
Carlo techniques (Gelfand and Smith 1990; Roberts and Smith 1993) to identify model
parameters. We show via a simulation study that, when the model underlying the
proposed methodology is valid, the proposed method can accurately estimate coefficients
driving purchase activity, while methods that ignore the inequivalence between intentions
and behavior lead to substantially biased parameter estimates. We also show that,
given data on multiple brands, the optimally pooled estimates derived in this paper can
provide significant gains in efficiency relative to the natural unpooled estimates. Finally,
we consider a marketing dataset collected in Morwitz and Schmittlein (1992) in which
personal computer consumers were surveyed regarding their purchase intentions, and then
surveyed again, a year later, to discover their actual purchase histories. We demonstrate
that our proposed method for analyzing intentions data provides a more accurate estimate
of the relationship between covariates and purchase behavior, suggesting that the proposed
method may be valuable to researchers working in the usual setting in which only purchase

intentions data are available, but in which inferences about purchase behavior are desired.



2 The Model

The model presented here is used for analyzing the simplest form of intentions data,
namely binary response questions, but can be generalized to categorical, ordinal, or
continuous response. The model states that purchase behavior is related to covariates
according to a binary regression model, and that the purchase intention data represents
a randomly distorted version of the purchase behavior data.

Let variables y; and w; denote purchase intention and purchase behavior, respectively:

1 if consumer 1 indicates intention to purchase the product
Yi = 9 within the designated time horizon,

0 otherwise

1 if consumer 7 actually purchases the product

w; = J within a designated time horizon,

0 otherwise.

The declaration of intention, or lack of intention, to purchase the product necessarily
occurs prior to the actual purchase. The variable w; is postulated to be directly dependent

‘on covariates x;, according to the model:
P (w; =1) = ®(8'), (1)

where ®(-) is a cumulative probability function; if ®(-) is the cumulative normal or
cumulative logistic, then (1) denotes a probit or logistic regression equation. The
covariates X; in (1) typically represent demographic or psychographic characteristics of
respondent ¢; e.g., age, gender, present job category, etc. The objective in many marketing
research studies is to identify the relationship between the covariates x; and purchase
behavior w; for market segmentation purposes; i.e., to estimate the parameters 3.

Since the w;’s are not observed in a typical marketing research survey, one cannot




perform a probit or logistic regression of w versus x to infer the coeflicients 3. If the
observed purchase intentions y; exactly correspond to the w;, then one can clearly perform
binary regression of y versus x to obtain consistent estimates of the coeficients in (1).
Suppose, though, that the observed intentions y; are only imperfect proxies for the actual

purchase actions w;, related to one another by the probabilities:

Plyi=1|lwi=1) = ppn, (2a)
P(yi=0|w;=0) = poo. (2b)

If either pi; or pgo is different from 1, then the observed intentions will not perfectly
match the purchase behavior, and so regression of y versus x will give biased estimates
of the relationship between the covariates and actual purchase. We will assume, for the
present, that the probabilities p;; and ppo are known, at least approximately. As seen
in Table 1, such probabilities are well established in the marketing literature for many
product categories.!

The model proposed, then, is a corrupted binary regression model; Copas (1988)
presents a somewhat similar model in which the corruption probabilities p1; and poo are
necessarily equal. As in Albert and Chib (1993), the analysis of the model is facilitated by
data augmentation; i.e., by the introduction of particular latent variables. Let z; denote a
latent utility for each consumer that determines product purchase; in particular, consumer

¢ will purchase whenever the utility z; is positive. This utility is assumed to be determined

by the covariates x; according to the linear model:

zi=B%+e e~N(O, 1) (3)

!The probabilities in Table 1 refer to P (w| y), the probability of purchase given the stated intention,
while the probabilities py; and pgo refer to P (y| w). However, as is discussed in section 2.2, the necessary
quantities P (y | w) can be inferred from P (w| y) using Bayes theorem.



The purchase behavior, w;, then is determined by:

1 ifz >0,
w; = (4)
0 otherwise. :

Equations (3) and (4) are in fact equivalent to equation (1). The stated purchase intention

depends on w; as before:
P(y,-:jlw,-:k) = DPjk, j=0,l, k’—‘oal- (5)

The data for the problem consist of independent observations (vi,%i), 1 = 1,... ,n.
The objective of the study is to infer the -parameters 8 relating the x; to actual, but
unobservable, purchases w; (which may occur in some future time period). It is this
modelling objective, the identification of the demographic factors predictive of purchase
behavior, which distinguishes the model presented here from other marketing models for
purchase intention and behavior such as those of Morrison (1979) and Bemmaor (1995).
As is shown in the following sections, the B coefficients in the model, which measure
the effect of covariates on purchase behavior, can be estimated via Bayes estimation

implemented with Gibbs sampling (Gelfand and Smith 1990).

2.1 Bayes Estimation with Gibbs Sampling

There are advantages to adopting a Bayesian estimation approach for the problem of
analyzing purchase intentions data. Ope potential benefit of applying a Bayesian analysis
to purchase intention data is that the inferences are exact for finite samples (conditional
on the assumption that the model (3)-(5) is cofrectly specified), while confidence intervals
obtained through maximum likelihood estimation are valid only asymptotically. Another
advantage of the Bayesian approach is that, as is to be discussed in section 2.2.1, it is
possible to incorporate uncertainty about the probabilities Poo and pq; into the estimation
Procedure. A final advantage is that, if parameter vectors are to be estimated for a

number of related product lines, a hierarchical Bayes approach can be used to achieve

8
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an optimal pooling of data across products; this technique can significantly improve
estimation accuraéy, as is shown in section 2.3.

The posterior for 3 will be proportional to the likelihood function times the prior.
The likelihood function for the parameters B in terms of the observable data (y;,x;),

i=1,...,n is given by:

n

L(y18,X, poo, pr1) = [ [ [P (v = 1| B, oo, p11)* P (v = 0| B, i, poo, 11)' ™).

1=1
(6)
Here,
p (yi =1 l ﬁ,xi,Pompn) =
P (yi = 1| B, X4, poo, pr1, wi = 1)P (w; = 1| B, X, poo, p11) +
P (yi = 1| B,%i, poo, p11, wi = 0)P (w; = 0| B, X, poo, P11)
= pu®(B8'%:) + (1 = poo)(1 - ¥(8'x:))
= p1o + (p11 — P10)®(B'x:), (7)
and
P(yl = Olﬁ,xiapoo,Pn) =1- P(yl =1 ' ﬁaxi)pOOapll) ‘
= Poo — (oo — P01)‘I’(,3/X£), (8)

where p1o = 1 — poo, and po; = 1 — py;.

Thus, the likelihood function is given by:

n

E(YIﬁ,X,Poo,Pu) = H [(Plo + (pn — Plo)‘I’(.@'Xz‘))y‘ * (oo = (Poo ~ POI)‘I’(ﬁlxi))l_yi
(9)

Regardless of the form of the prior, the posterior distribution for B will not be from

9



a standard family, so quantities like the posterior mean and standard deviation cannot
be computed analytically, but can only be obtained through some numerical integration
approach. Here, we use a Markov chain Monte Carlo method (Roberts and Smith 1993)
to perform this integration, by generating a Markov chain whose steady-state distribution
is equal to the posterior distribution of 8. One particular Monte Carlo technique which
is convenient for this problem is Gibbs sampling (Gelfand and Smith 1990; Roberts and
Smith 1993; Albert and Chib 1993). Gibbs sampling is a multivariate random number
generation technique that may be used in the frequent case in which a joint density to
be sampled from is complex, but in which the conditional distributions are simple. As
is described in Tanner (1993), the Gibbs sampler works by sampling alternatively from
the full conditional posterior distribution of each parameter in turn. Under appropriate
conditions (Tierney 1994), the stationary distribution of the chain produced by this
alternating technique is in fact the desired, complex, multivariate posterior density of
the unknown model parameters. Since the chain is ergodic (Geman and Geman 1984),
the posterior mean and standard deviation of the parameter of interest, 3, can be obtained
by simply computing the sample mean and standard deviation over the generated samples
(in practice, the first several hundred samples generated are typically discarded, to avoid
transient effects). Allenby and Lenk (1994) and McCulloch and Rossi (1994) present
further applications of Gibbs sampling to marketing models.

In the context of the purchase intentions data, the entire set of unobservable
parameters consist of 3, as well as the z; and the w;. The full conditional distributions for
these unknown parameters are all easily obtained. If the 2;’s are known, and if the prior
on A3 is the non-informative uniform distribution, then the conditional distribution for
the coefficient 8 is obtained‘by standard results on Bayesian linear models (e.g., Zellner

1971):

7(Blz,y,%) ~ N((X'X)"' X'z (X'X)™), (10)

10



where:

21 1 X3

Zn 1 x,

The mean of the full posterior conditional distribution for 8 in (10) is just the usua
ordinary least-squares estimate obtained by regressing z versus x, and the variance of the
distribution is the usual sampling variance for the least squares estimate of B.

If one has available an informative prior on 8 which is multivariate normal, with mean

p and covariance T, then the conditional posterior for beta is also of simple form:
w(Blz g% T) ~ N((XK+ 1) (X2 + T), (XX +7T)7). (11)

Also, as is discussed in section 2.3, it is possible to estimate the informative prior
empirically, given purchase intention data on multiple related brands.

If B and the w; are known, then the full conditional of z; is obtained as:

N(,BIX;, 1)](2,’ Z 0) if w; = 1 .
Tr(zilﬁ7w7y7x) ~ (12)
N(,B’X,’, 1)](2,‘ < 0) if w; = 0.

That is, if w; = 1, then 2 is restricted to be positive, while if w; = 0, then z; is restricted
to be negative (Albert and Chib 1993).
Finally, the unobservable w; have to be generated as well. Their posterior distributions

can be obtained via Bayes theorem:

m(yi = jlwi = k, B, x:;)m(w; = k|B,x;)
Yoo (v = jlwi = 1, B, %) (w; = 1B, x;)

m(wi = k|B,yi = 5, %) = (13)

The prior, 7(w; = 1|8, x;), is given by ®(8'x;), by equations (3) and (4). The likelihood,

m(yi = ljw; = 1,8,%;), is given by py;, from equation (5). The necessary full conditional

11



probabilities are given by:

= o 1) = r®(B'x;)
(i =118, = bx) = Pu®(8'x;) +p1o(1 — @(B'x)) (1)
(i =118,5 = 0,%) = Po?(Bx) . (145)

P®(B8'%:) + pui(1 - 8(8'x;))

The Gibbs sampler then alternates between the three steps of generating the
coeflicients B from (10), generating the z; from (12), and generating the w; from (14a-
14b). This sequence forms a Markov chain; at convergence, the values of B come from
the desired posterior distribution. These values reflect the imperfect match between w;
and y;; the correction is accomplished through appropriate random generation of the w;,
by equations (14a) and (14b). The chain can be started at some rational starting point,
for example with w; = y;, and with z; = 1 or —1 according to the value of y;. If the values
of B generated by the Markov chain scheme are denoted ,B(l), . ,,B(G), then the usual
Bayes estimate for 3 is the sample mean of the 89 ignoring the first B samples: le.,
B = (G - B) chzB " BY). The posterior variance is similarly estimated as the sample
variance for the last G— B iterates. The first B samples are discarded in order to guarantee
that the Markov chain has reached the correct steady state distribution.

Considerable research has been devoted to diagnosing convergence of the Gibbs
sampler; that is, to identifying acceptable values of G' and B above. Tanner (1993)
provides guidance for implementation of Gibbs sampling techniques, and Roberts (1992),
Robert (1995), and Zellner and Min (1995) describe diagnostic measures for assessing

convergence of the Markov chain.

2.2 Determination of P11 and py

The quantities p;; and poo defined in (2) are the probabilities for intentions conditional
on actual purchase behavior, while the probabilities described in Table 1 describe the
probabilities of purchase behavior conditional on purchase intention. Since it is these latter

probabilities for which published historical values (or product class level estimates vis a vis

12



industry standards) exist, it would be desirable to be able to express the required inputs
p11 and poo in terms of these more familiar probability figures. Let ¢jx = P(w =j|y = k),
so that, for example, ¢;; denotes the proportion of survey respondents who indicate an
intention to buy that actually do complete a purchase. The p;r can be written in terms

of the g;jx via Bayes theorem:

pm = Ply=1{w=1)

Plw=1[y=1)P(y=1)
Plw=1ly=1)P(y=1)+P(w=1|y=0)P(y=0)

P (y=1)
P (y=1)+gqoP (y =0)’ (15)

po = Ply=0lw=0)

Plw=0[y=0)P(y=0)
Pw=0]y=0)P(y=0)+P(w=0y=1)P(y=1)

q00P (y = 0)
qooP (y =0) + ga:P (y = 1)° (16)

The quantities P (y = 1) and P (y = 0) can be calculated by the marketing researcher
based on the survey of intentions at hand, since P (y = 1) simply denotes the proportion
of respondents indicating an intention to buy. Thus, using these values, and the industry
standards for ggo and g7 as listed in Table 1, one can obtain approximate estimates of

the required probabilities p;; via equations (15) - (16).

2.2.1 Uncertainty about p;; and pgy

Since the appropriate probabilities p;; and pgg may not be known exactly, one may
wish to incorporate uncertainty about these parameters into the estimation procedure.
Instead of regarding these probabilities as fixed and known, one can instead assign prior
distributions to these quantities, and can then draw random values of pgy and py; from

their full conditional posterior distributions at each iteration of the Markov chain. The
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beta probability distribution provides a flexible family of distributions on [0, 1] that can be
used to express knowledge about p;; and pgo. Suppose that the prior for py; is beta(ay, ag):
7(pn) < p537H(1 = pir)®t. Let nj denote the number of observations in the dataset for
which y; = j and w; = k. Then the full conditional posterior density for p;; is proportional
to the prior times the likelihood, and the likelihood is proportional to pyi*(1 — pyp)™*;
thus, the full conditional posterior is proportional to pfit™1=1(1 — py)o0tm1=1 Te the
density is beta(ay + 111,09 + no1). Similarly, if the prior for peo is beta(yo,v1), then
the full conditional posterior for pgo is beta(yo + noo, 71 + n10). Note that the data is

informative about p;; and pgo, since these parameters appear in the likelihood function

for the observable data (y;,x;) in equation (9).

2.3 Hierarchical Bayes Estimation

Frequently, marketing researchers will obtain purchase intention data on multiple
brands and/or product lines within a common product class; a typical survey may ask
the survey respondents: “Do you intend to purchase Brand 1 in the he;xt year? Do you
intend to purchase Brand 2 in the next year? ... Do you intend to purchase Brand M in
the next year?” Given this data on multiple (M) brands, one may wish to identify the
coefficient vector 3, for each brand k, k= 1,..., M.

One approach to estimating the 8, parameter vectors is to simply estimate model (3)-
(5) separately for each brand, in effect, assuming that the ﬂk are completely unrelated.
Alternatively, one could make the strong assumption that the 3, vectors for the different
brands are in fact all equal; under this assumption, one could then pool the data from the
M brands, thus considerably multiplying the amount of data available. The advantage
of the former approach, of estimating the M models separately, is that it makes no
assumptions about the data, and thus cannot introduce bias. The advantage of the latter
approach, pooling the data, is that it increases the effective sample size, and hence reduces
the sampling variance of the estimates. The former method will be superior in cases when
the vectors 8 » are very dissimilar for the different brands, while the latter will be superior

when the 3, are homogeneous. To appreciate the potential gain from pooling, if the 3,
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| are truly all equal and data from M brands are pooled, the sampling standard error of the
parameter estimates will decrease by a factor of v/M; thus, with 9 brands, the unpooled
estimates will have 200% larger sampling error than the pooled estimates. ‘

Hierarchical Bayes and empirical Bayes methods (e.g., Berger 1985) are designed to
obtain the optimal tradeoff between a completely unpooled and a completely pooled
estimator. The methods are based on a supposition that the 3, vectors are not identical,
but that they arise from a common distribution. Let 7(83) denote this common prior
distribution, and assume that the distribution is multivariate normal, with mean g and
covariance 3 = T~!. In the Gibbs sampling framework, each vector B, will be generated
using equation (11), based on the informative prior 7(8) ~ N(g, X). From (11), if T is
'Zero, indicating the variance of the B’s, X, is very large and the brands are heterogeneous,
then the posterior mean for 8, will be (X'X)™'X'z; which is equivalent to the mean
given in equation (10), the formula for the simple, unpooled estimate for brand k.
Alternatively, if T is infinite, indicating that the brands are completely homogeneous,
then the conditional posterior mean for 8, is equal to p for all k; i.e., the estimate
behaves like a pooled estimate.

Thus, if appropriate prior parameters p and X are available, the Bayes estimator
behaves as desired, acting as a disaggregate estimator when the brands are heterogeneous,
and as a pooled estimator when the brands are homogeneous. However, because response
data is available on multiple brands, the prior parameters can in fact be estimated from
the data themselves. Suppose at a given iteration in the Gibbs sampling scheme, one
has samples (B3,,...,3,,) for the M brands. Then sensible point estimates of the prior

parameters are:

y .

p=M7"1>"B, (17)

A k;[l

=M1 (B i)(B— i) (18)
k=1

i.e., the prior mean and covariance for the 3’s is estimated by the sample mean and

15



covariance of the B’s. For the true hierarchical Bayes method, one would not use a point
estimate of (p,X) but would instead sample values from their respective conditional
posteriors. To obtain these conditional posteriors, one must specify a prior on the hyper-
parameters. A hyper-prior on (u, %) which is proportional to 2—5’ with p denoting the
dimension of 3, can be said to represent “maximal uncertainty” about these parameters
(Wakefield et al. 1994). Under this non-informative prior, the conditional posteriors for

the hyper-parameters are:

w(ulBy, - B D) ~ N(MT YL, B, M) (19)
w5718y, Bes ) ~ W(M +p, T (B — By — 1)), (20)

where W(d, A) denotes the Wishart distribution with d degrees of freedom and expected
value dA™! (Wakefield et al. 1994). Odell and Feiveson (1966) present a procedure for
generating deviates from the Wishart matrix distribution.

To summarize, the Gibbs sampling estimation algorithm for the hierarchical Bayes

model involves iterative repetition of the following steps:

1. For each brand k, generate the vector B, using the prior 7(8) ~ N(g, X), via
equation (11).

2. For each brand k and subject i, generate the values wj; using equation (14),

conditional on the current value for 3,.

3. For each brand k and subject i, generate the values z;y using equation (12),

conditional on the current value for 3,.
4. Given the values B3,,...,8), and X, generate the prior mean g using equation (19).

5. Given the values f3,,...,8),, and u, generate the prior covariance & using

~ equation (20).

The procedure can be initialized by, for example, setting g = 0, & = I. See Lenk and Rao
(1990), Allenby and Lenk (1994) and Allenby and Lenk (1995) for further applications of
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hierarchical Bayes models in marketing science.

2.4 Potential Degeneracies

There is a potential problem that can arise with model (3) - (5), regardless of
estimation technique employed. The problem is that under certain conditions, the
likelihood is maximized for infinite values of the 8 coefficients. To illustrate, consider
a simple case in which there is just one covariate, z, which is binary, taking values
0 or 1. Then, from equation (7), P(y; = 1| B,z = 0,poo, p11) = p1o + (P11 — P10)®(Bo);
similarly, P (y: = 1| 8,2 = 1,po0,p11) = P10 + (P11 — p10)®(Bo + B1). If mo denotes the
empirical proportion of observations for which y; = 1 given that z; = 0, and 7 denotes
the proportion of observations for which y; = 1 given that z; = 1, then the MLE’s of -
(Bo, B1) can be found simply by setting the probabilities implied by the model to be equal

to the observed proportions:

To = pio+ (P11 — p1o) (o) (21)

T = po+ (P11 — P10)@(Bo + B1), (22)

and the solution is:

Bo = o7 (-—;p—) | (23)

P11 — Prwo
P 1 [ ™1 — Do -
b = <I>1<—————>——ﬁ. 2
! P11 — Pio 0 ( )

The degeneracy arises if the argument of ®'(-) in (23) or (24) falls outside the interval
(0,1); this event occurs if either mo or m; falls outside the interval (pyo,p1;). In such
a degenerate situation, the likelihood function is maximized for coefficient values that
are infinite. The model given by equations (3)-(5) implies that for any value of z, the
conditional probability that y = 1 must be between pjp and p;;; the degeneracy arises
when the data conflicts with this assumption.

Degenerate cases are diagnosed by observing the Gibbs samples of the 8 coefficients
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wandering toward infinity. Degeneracy may, but does not necessarily, indicate that the
values assumed for pgy and py; are inappropriate for the given dataset. The degeneracy can
be prevented by putting constraints or bounds on the parameters. In the Gibbs sampling
framework, this implies rejecting any generated set of coefficients 3 that fall outside of
some “reasonable” neighborhood. Alternatively, the use of a proper prior distribution
on 3, such that the prior probability of infinite 8 is sufficiently small, will prevent the

incidence of the degeneracy.

-3 A Simulation Study

A modest simulation study was performed to evaluate the potential ability of the
Bayes estimators to recover the true parameters relating covariates to product purchase,
based just on data from purchase intentions. Data were generated from the model
described in (3) - (5), with 8 = (B, 51), xi = (1,2:), and with the z; generated
uniformly over [0,1]. Four different simulation blocks, with different sets of generating
parameters, were evaluated. Table 2 lists the parameter values (n, fo, 51, poo, p11) used
in the study. The values were chosen to examine the performance of the estimation
method over a range of possible parameter settings. Table 2 also displays the results
obtained by analyzing the data using both the Gibbs sampling technique described in this
paper, and the results obtained using the naive approach of simply performing maximum
likelihood probit regression of the intention data y; versus the x;. This latter approach
is essentially equivalent to applying the method of this paper, but erroneously assuming
that poo = p11 = 1. The Gibbs sampling procedure was run for 2000 iterations, and the

 final Bayes estimate was chosen as the mean of the last 1500 samples generated.
[Insert Table 2 Here]

~ In the first simulation block, a modest amount of discrepancy between intentions and
purchase was assumed: pgo = p1; = 0.8. Note that even for this apparently small amount

of error, the naive parameter estimates are grossly biased; the mean naive estimate for
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p1 was 0.63, though the true value was 3.0. The Bayes estimator proposed in this paper
has much less bias, with a mean of 3.93. When the measurement error is increased to
poo = 0.9, p11 = 0.6, the Bayes estimator is still able to recover the parameters governing
purchase behavior (the w;) based on data from simulated intentions (y;). The Bayes
estimator appears to be unbiased in Block 3, with f; = 2, §; = —3, but the standard
deviation is more than twice that in Block 2, with 8y = —2, 8; = 3. The reason for the
different performances in Blocks 2 and 3 is that, given the different coefficients, more w;’s
have a value of 0 in Block 3 than in Block 2, and since pgy > p1; for these blocks, there
will be more misclassified y;’s with Block 3 than Block 2.

The generally higher variance of the Bayes estimator relative to the naive estimator
seems to be due to the fact that the probability function for the data y; assumed with
the Bayes estimator is less sensitive to changes in f; than is the model used in the naive

approach. For the Bayes model, the probability function is:

p (y; = 1] IB,X:‘,POO,PH) = pio+(pu - plo)(I)(,B'x;), (25)

while for the naive estimator, the probability function is simply:
Plyi=1]8,x) = &(Bx). (26)

The sensitivities to changes in the coefficients are, for the Bayes estimator,

52 ) .
——Jﬂkdﬂrp (yi =1 I ﬂ,Xz’aPOO)Pll) = (Pll - PIO) :L‘,'ka:,',-(ﬁ(,B Xi)’ (27)

and for the naive estimator,

52

mp(yi=1lﬁ,xi) = zazy(B'%). (28)

The quantity p;; — pio = P11 + poo — 1 must be less than or equal to 1 in absolute value,

equalling 1 only when p;; = poo = 1, or when p1; = poo = 0. The relative insensitivity of

The latter case indicates a condition in which all respondents claiming an intention to purchase do
not in fact purchase, while all respondents denying an intention to purchase do purchase. In this very
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the probability function when P11 Or poo 1s less than 1 corresponds to a relatively flatter

likelihood surface, and hence smaller Fisher’s information.

3.1 Hierarchical Bayes Estimation

A further modest simulation study was performed to evaluate the potential gains from
using the hierarchical Bayes (HB) approach described in section 2.3. In this study, data

from M brands were generated from the model:

zik = Bix; + €y, €k ~ N(0, 1) (29)
wik = 1 if 2 > 0, 0 otherwise A (30)
Py =1 wy = 1) = py, (31)
P (yix = 0] wir = 0) = pyy, | (32)

with the 8, distributed normally across brands: Br ~ N(u, ¥ k=1,....M. In
each simulation trial ¥ was equal to 0%/ for some scalar o, Small values of ¢ indicate
homogeneity of 8, across brands, and thus a favorable condition for pooling of data. The
coefficients 8, were estimated two ways: using the hierarchical Bayes procedure described
in section 2.3, and by a disaggregate estimator in which the Bayes estimator with non—
informative priors is applied to each brand separately. Both the hierarchical Bayes and
the non-informative Bayes estimates were based op correct values of the p;; probabilities.
For all the simulation replications, py; and Poo Were set to 0.9, and the prior mean B was
set to (—2,3). The cross-sectional variance o, the number of subjects n, and the number
of brands M were varied to ﬁdiscover the benefit of hierarchical Bayes methods under
different conditions. For each replication. the accuracy was measured by the root meap

squared error for estimating the M coefficient vectors B3,: l.e., the RMSE for estimating

untypical situation, a researcher could reverse the intentions data, and apply simple binary regression to
the reversed data, to obtain an accurate model for purchase behavior.
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fo in a given replication was given by (3 Eﬁl(ﬁko — B5,)?)/?, where B, denotes the
true value for the parameter.

Table 3 lists the estimation results. As can be seen, the gains in estimation accuracy
from using the hierarchical Bayes approach are signiﬁcaﬁt. For example, in Block 1, the
mean RMSE for the HB estimate of §; is 0.736, while the mean RMSE for the non-
informative Bayes estimate is 1.051; thus, the pooling -achieved by the HB approach
reduces estimation error by 43%. As expected, the gains are greatest in cases in which
the number of subjects n is small, and when the cross-sectional variation o is small.
Even if the cross—sectional variation in the 8, is fairly large (¢ = 0.5), the gains from
using HB appear to be non-negligible. In the limit, if ¢ is large, or n is large, the HB
method will essentially reduce to the simple Bayes estimate, which will be similar to
the non-informative Bayes estimate. Thus, for small cross-sectional variation, the HB
method will significantly outperform the non-informative Bayes estimate, whereas the

two methods should have comparable performance under conditions less favorable to HB.

[Insert Table 3 Here]

3.2 Parameter Estimation: A Summary

In section 3, it was demonstrated that equating intentions with actual behavior can
lead to substantially biased inferences, and that, given knowledge of the relationship
between intentions and behavior, one can obtain relatively unbiased estimates of the model
relating covariates to purchase behavior, by using the technique described in section 2.1.
In section 3.1, it was shown that, given intentions data on multiple brands, one may
be able to achieve substantial gains in estimation efficiency by pooling the data through
hierarchical Bayes methods.

It is worth noting here the assumptions and limitations underlying the methodology.
Model (3)-(5) assumes that correlations between the covariates x and stated iﬁtentions
y are explained strictly through the relationships between the variables x and actual

purchase behavior w, and through the relationship between purchase behavior w and
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intention y. Thus, it is assumed that the parameters pgo and p;; relating behavior and
intentions are independent of x. Also, it is assumed that one has fairly informative
prior knowledge concerning the values poy and p;;. While section 2.2.1 shows that the
observable intentions data will be informative about these parameters, in practice it will be
difficult to get accurate estimates of the probabilities, unless one has substantial numbers
of observations with extremely large, and with extremely small, values of B'x;, thus
affording a view of the tails of the probability function P (y; = 1| B,X:,poo, p11) given

in equation (7).

4 An Application Involving Personal Computers

Morwitz and Schmittlein (1992) present a study in which members of a large consumer
panel were surveyed multiple times concerning their intentions to buy and their actual
purchasing of personal computers. In addition, extensive demographic and product usage
variables about the panel households were obtained. At the time of the first survey, none
of the sample households currently owned a personal computer. During the first survey,

respondents were asked the following intention question:

Do you or does anyone in your household plan to acquire a personal computer
in the future for use at home?

- Yes, in the next 6 months

—~ Yes, in 7 to 12 months

- Yes, in 13 to 24 months

- Yes, sometime, but not within 24 months

- No, will not acquire one

One year later, the same sample of respondents indicated whether or not they had
purchased since the first survey.
" Note that the intention question asked to panel households is not a binary intentions

question, but rather is a variation of a standard binary question that contains a purchase
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timing element. In order to estimate the model, we classify those respondents who
indicated that they intended to purchase within the one year time frame of interest as
intenders (i.e., they either intend to buy in 6 months, or in 7 to 12 months). Respondents
who indicated that they did not intend to purchase a personal computer and those who
indicated that they intend to buy sometime after the first year are classified as non-
intenders.

The covariates available to predict purchase probability included household income,
profession, geographic region, and current level of PC usage. Due to the confidential
nature of the dataset, we have rescaled the data and shuffled labels of the predictor
variables; however, these operations should not effect the suitability of the model for the

application. The particular set of variables included in the analyses reported here were:

PROFESS = 1if a professional; 0 otherwise
STUDENT = 1 if a student; 0 otherwise
USE = 1if a household member uses a PC at work or school;

0 otherwise
PACIFIC = 1 if house is in pacific region of U.S.; 0 otherwise

INCOME = household income.
To achieve approximately equal scaling for the variables, income was coded in $100,000’s;
e.g., a respondent with income of $60,000 was coded as 0.6 for the INCOME variable.

The binary intentions data y; were analyzed under several different specifications for
the parameters (poo, p11): Analysis 1, with pgo = 0.691, p;; = 0.812, corresponding to .
the actual conditional probabilities observed with the given dataset; Analysis 2, with
poo = 1.0, pi; = 1.0, corresponding to the naive assumption that stated purchase
intention corresponds exactly to purchase behavior, and is thus equivalent to simple probit
regression analysis of the intentions data; Analysis 3, with py = 0.658, p;; = 0.907,
obtained by using the values of goo = 0.962, ¢;; = 0.429 reported in Jamieson and Bass
(1989) for purchases of persbnal computers, and applying formulas (15) and (16). In
addition, an Analysis 4 was performed, in which the true actual purchase responses w;

were analyzed using the standard probit model. The Gibbs sampling procedure was run
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for 10,000 iterations, and the coeflicient estimates were taken as the means of the final
5,000 samples. Table 4 lists the estimated coefficients and standard errors for the different

analyses.

[Insert Table 4 Here]

The coeflicient estimates based on Analysis 1 of the purchase intentions, with pgo
and p;; chosen based on the corresponding values in the dataset under analysis, are
very close to the values obtained from simple probit regression of the purchase responses
as presented in Analysis 4. Perhaps one interesting finding is the significant impact of
geographic region (PACIFIC) on purchase behavior, even when controlling for income
and professional status. One possible explanation is that PACIFIC is acting as a proxy
for employment in the computer industry, and that such employees would be more likely
than other professionals to purchase a personal computer.

The coefficient estimates based on Analysis 2 of the intentions data, with po and pi;
taken to be equal to 1.0, are quite far from the values obtained in Analysis 4, though
the order of the magnitudes appears to be correct. Analysis 3, using values for poo
and p;; based on the intention conversion probabilities observed in Jamieson and Bass
(1989) provides estimates that are somewhat close to the estimates of Analysis 4, and
- substantially less biased than when pgo and p;; are taken to be 1.

The coefficient estimates from Analysis 2 all appear to be substantially attenuated; i.e.,
the impact of the covariates on purchase probability is underestimated by the analysis of
the purchase intentions. Ignoring the discrepancy between intentions and behavior would
lead an analyst to conclude that the covariates have weak effects on purchase probability,
when in fact the effects are fairly strong. The phenomenon of measurement error leading
to underestimation of regressioﬁ coefficients is common in econometrics (e.g., Fuller 1989).
In the case of ordinary regression, it is measurement error in the independent variables
which leads to attenuated parameter estimates, whereas measurement error added to the
dependent variable does not lead to bias in OLS estimates of regression coefficients. In

the case of binary regression models, measurement error in the independent variables is
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known to lead to biased parameter estimates (e.g., Stefanski and Carroll 1985), but here
it is seen that error in the response variable leads to bias in the parameter estimates as
well.

Finally, as expected, the standard errors of the coefficient estimates for analyses 1
and 3 are considerably higher than those for analyses 2 and 4; since analyses 1 and 3
acknowledge the presence of uncertainty about true purchase behavior, the uncertainty
about the parameter estimates is correspondingly greater.

As a simple test of the assumption of conditional independence of y and w given x, a
probit regression analysis was run of the y; vs. (w;,X;). The results, which are presented in
Table 5, show that the coeflicients for the covariates x are not significant. Non-significance
does not prove the model is correct; however these results suggest that the assumption of
conditional independence between y and x given w may be reasonable for these data. In
usual practice, one will not be able to empirically verify the assumption that the pj) are

independent of the covariates x, since data on actual behavior are typically unavailable.
[Insert Table 5 Here]

In summary, it appears that ignoring the discrepancy between purchase intentions and
purchase behavior leads to grossly inaccurate estimates for binary regression coefficients,
and that taking the discrepancy into account through use of model (3)-(5) can lead to
improved accuracy in parameter estimation. lFurther, significant imbrovement can be
obtained even if the correct parameters pyy and p;; are not known precisely. In practice,.
a researcher may wish to fit the model for a variety of different values of pyy and pyy,
in order to assess the sensitivity of the inferences with respect to assumptions about the

conversion of intentions to actual purchases.

5 Alternative Models

Equations (3)~(5) describe one possible model for characterizing both the effect of

covariates on purchase behavior, as well as the discrepancy between stated intentions and

25



actual behavior. As an alternative model, one could suppose that z; and w; are defined as
in (3) and (4), but that y;, the stated purchase intention, equals 1 if and only if z; + J; is
positive, where &; ~ N(g, ¢2).® The parameter o here measures the correlation between
intentions and behavior, and the parameter p measures the asymmetry of the switching
process. The naive model, in which intentions are treated as equivalent to behavior, is
characterized by ¢ = 0 = 0. Reasonable values for y and o2 could be inferred from studies
such as are listed in Table 1,

This alternative specification implies that, for the observable data y;,

P(ti= 1) =8 ( 2L, (33)

while for the model (3)-(5), the corresponding probability is:
P(Y; = 1|x) = pio + (p11 — p10)@(B%). (34)

A choice between the two models could be based on the shape of the empirical probability
curve P(Y = 1|x). Log-likelihood ratios and criteria such as AIC could provide a scheme

for choosing between different model specifications.

6 Conclusion

The models and analyses of Morrison (1979), Infosino (1986), Manski (1990), and
Bemmaor (1995) provide interesting insights into the psychological mechanisms by which
purchase intentions deviate from actual purchase behavior. These and other papers have
documented the typical magnitude of the discrepancy between intentions and behavior.
The present paper takes this discrepancy between intentions and behavior as a given,
and develops an estimation procedure for identifying the demographic/psychographic

correlates of behavior based on data on intentions. When data on multiple brands from a

3We thank an anonymous referee for suggesting this interesting model.
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common product class is available, the hierarchical Bayes method introduced in this paper
can be used to obtain optimal pooling of data across brands. We show, with simulated
data and with data from a recent marketing study, that the proposed estimation method
can be useful in improving upon the accuracy of estimates of the relationship between
the covariates and true purchase behavior. This ability to make better use of intentions
data may lead to more accurate market segmentation, and thus improved marketing
management decisions. Future research will attempt to extend the current model to
include multi-level intentions scales, to explicitly take into account the elapsed time
between intent measurement and purchase occasion, and to incorporate latent class and

multivariate generalizations.
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Table 1: Correspondence between purchase intention and purchase behavior observed in
different markets and different studies.

Purchase Probability (%)
Study Intenders Non-Intenders Product
Juster 1966° 50 11 Automobile
Jamieson and Bass 1989° 52.2 16.7 Pump toothpaste
61.5 17.1 Diet drink mix
43.5 15.6 Fruit sticks
2.8 4.7 Stay fresh milk
56.3 12.3 Salad dressing
42.9 3.8 Home computer
12.5 114 Cordless phone
0.0 2.7 Touch lamp
0.0 0.0 Cordless iron
0.0 1.3 Shower radio
Tauber 1975¢ 26 12 Packaged goods
Infosino 1986¢ 34.5 9.7 Service option
Pickering and Isherwood 1974¢ 37.5 7.6 Automobile

%Derived from Table 3, based on six month probability scale. Intenders defined as those in the
“Definite, Probable” intentions class, non-intenders, those in the “No” intentions class.

5Derived from Table 1. Intenders defined as those who “Definitely/probably will buy”, non-intenders,
those who “Definitely/probably will not buy”.

“Derived from Table 1. Intenders defined as those who will “Positive purchase intent, solves need”,
non-intenders, those with “Negative purchase intent”.

4Derived from Figure 1. Intenders defined as those with likelihood rating 7-10, non~intenders, those
with likelihood rating 1-6.

¢p. 205, derived from Theil and Kosobud, 1968.
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Table 2: Results of simulation study of Bayes estimator with 200 replications.

Estimates of §g
Bayes Naive

Estimates of £,
Bayes Naive .

Block n fo Bi poo p1n | Mean SD Mean SD |Mean SD Mean SD
1 200 -2 3 8 .8(-251 081|-046 035 3.93 1.22| 0.63 0.54
2 200 -2 3 9 .6|-210 034 -0.8 0.12( 3.19 0.52| 0.57 0.14
3 20 2 -3 9 61| 215 082} -0.09 0.10] -3.27 1.21| -0.41 0.09
4 200 3 4 9 6 -2.88 086} -094 0.23| 3.87 1.16| 0.63 0.43
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Table 3: Results of simulation study of hierarchical Bayes (HB) estimator and disaggregate

(DIS) estimator with 100 replications.

Block

n

M

Mean

RMSE, fo

HB

SD

DIS
Mean SD

RMSE, p

HB

Mean

SD

DIS

Mean

SD

> W o

200
100
200
200

12
12
12

0.50
0.50
0.25
0.50

0.308
1.176
0.618
0.704

0.082
0.448
0.196
0.327

0.445 0.116
1.478 0.272
0.911 0.272

1.030 0.407

0.736
0.368
0.224
0.306

0.302
0.121
0.057
0.091

-1.051  0.348

0.541 0.159
0.313 0.081

484

151
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Table 4: Parameter estimates for Morwitz and Schmittlein (1992) PC dataset. ®

Analysis

Doo

D11

USE

Mean

SD

INCOME
Mean SD

PROFESS
Mean SD

PACIFIC
Mean SD

STUDEW;

Mean 9

o

B o b

0.691
1.000
0.658
1.000

0.812
1.000
0.907
1.000

1.163
0.513
1.128
1.235

0.164
0.069
0.140
0.076

0.773 0.154
0.320 0.067
0.753 0.148
0.792 0.072

1.853 0.204
0.813 0.071
1.652 0.145
1.546 0.078

0.539 0.150
0.213 0.063
0.472 0.163
0.627 0.069

0112 0
0.052 0.07

“Numbers in the table represent posterior means and standard deviations of respective regression

coefficients.

YProbit regression of actual purchase responses.
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Table 5: Probit regression analysis of purchase intention versus purchase behavior and
demographic covariates for the Morwitz and Schmittlein (1992) PC dataset.

Coefficient  Variable Estimate Std Err P-value
INTERCEPT 0.5212 0.131  0.0001
PURCHASE w  -1.3690 0.086  0.0001
USE T 0.0181 0.114 0.873
INCOME zo  -0.0314 0.113 0.781
PROFESS z3  -0.0491 0.112 0.661
PACIFIC zg -0.0730 0.112 0.516
STUDENT Ts 0.0234 0.111 0.833
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