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Abstract: Capacity and resource limits directly affect project risk. While risk
consideration is well developed in finance through efficient market theory and the
capital asset pricing model, management science has been slow to adapt these prin-
ciples into planning models. One reason for this apparent inconsistency may be
that analysis of a management science model does not reveal the level of risk until
the model is solved. Using results from option pricing theory, we show that this
inconsistency can be avoided in a wide range of planning models. By assuming
the availability of market hedges, we show that risk can be incorporated into plan-
ning models by simply adjusting capacity and resource levels. The result resolves
some possible inconsistencies between finance and management science and provides
sound financial basis for many planning problems.
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1 Introduction

Large management science models often involve a variety of limited resources and
uncertain parameters that may all affect decisions based on these models. The
combination of limited resources and uncertainty makes attitudes toward risk an
important consideration. Utility functions can capture these attitudes (see, for
example, Keeney and Raiffa [1976]), but the functions may be difficult to evaluate
in the most general cases.

For profit-making corporations, investor considerations can often be used for
general attitudes toward risk. In this case, the capital asset pricing model (see, for
example, Sharpe [1964]) provides a foundation for a utility tradeoff between risk
and return that can be observed in the market. With this relationship defined,
adjustments for risk can be incorporated into discount rates on future returns. The
result is a project evaluation based on discounted expected cash flows.

Problems may occur if cash flows are skewed in a way that might make investors
prefer risks of one nature (“upside” over “downside”) over another. This problem
is often avoided by assuming sufficient diversification that total returns appear
symmetric. The question for an individual project is only the fraction of risk that
it might contribute to the overall portfolio of investments.

Measuring this risk contribution can often be done using § values for common
stocks and other market instruments. The difficulty in these assessments with
capacitated problems is that the risk contribution varies with the capacity level
and often cannot be determined at the outset. A major contribution of option
theory has been to avoid this difficulty through the risk-neutral valuation method
(see, for example, Cox and Ross [1976]), in which, option values can be found by
treating all investors as if they were risk neutral.

This foundation of option pricing theory has broad implications for decisions on
projects with limited capacity (see, for example, Andreou [1990] and Myers [1984]).
In this paper, we apply the basic principle of risk-neutral valuation to general
forms of constrained resource problems, such as capacity planning. The application
of these results for linear problems leads to a modification of the constraints while
other characteristics of the problem remain the same. In this way, linear models can
still incorporate risk without changing the linear functional form in the objective.

In the next section, we give the basic option approach. Section 2 presents the
application of option pricing methods for simple capacity evaluation. In Section
3, we extend this approach to constrained linear models. Section 4 applies this
result to a capacity planning model for a manufacturing firm. Section 5 presents a
summary and conclusions.

2 Basic Model for Call Option Valuation

The basic observation begins with option pricing theory. For simplicity, we consider
a European call option on a non-dividend paying common stock. The option is to
buy one share of the stock at a fixed strike price, K, at a given time, T. We



assume the current time is ¢ when the share price is S;. The question is how to
value the call option given that we know the stock’s volatility (or annual standard
deviation on return, assumed constant), o, and a constant riskfree rate, r;. The
other assumptions are a frictionless market and that the share prices follow an Ito
process (see Black and Scholes [1973]).

With these assumptions, it is always possible to hold some amount of shares
with written calls to form a perfect hedge, a riskless portfolio that earns the riskfree
rate. Given this observation, the calculation of the value of the call option does
not depend on the investors’ attitudes toward risk. We then obtain the risk-neutral
valuation method, which states that the call option can be valued as if investors
were neutral toward risk. The price in this case is the same as if investors require
a premium for risk.

A result of the risk-neutral approach is the Black-Scholes formula (see Black
and Scholes [1973]) and various extensions. In the simple European call option
we have described, this formula amounts to assuming that stock price returns are
lognormally distributed with logarithmic annual mean return, g = Eflog(S1/S)],

and annual standard deviation on the logarithm of returns, o = \/ Var[log(S1/So)]-

62 .
This implies E[S;] = Spe#* 'z, where we assume r; = p+ i’; under the risk-neutral
condition. Denoting the resulting distribution function on prices, Sr, at time T by
FY, the call evaluation at time ¢ is to find:

C, = ¢TI0 /K " (Sp — K)dFy(Sy). (1)

Note that the distribution function in (1) assumes investors are indifferent toward
risk. In reality, expected annual returns should show a premium for risk, but we
can still use (1) to evaluate the call option because of the risk neutral equivalence.

To illustrate how these ideas are used, we consider a binomial approximation
of the lognormal distribution on stock prices. This approximation is well known
to approach the continuous time model as the number of intervals used in the
approximation increases (see, e.g., Cox, Ross and Rubinstein [1979] and Jarrow
and Rudd [1983]). The idea is that prices follow a random walk, increasing from
S(= S¢) to Se*s with probability p; or decreasing to Se?s with probability 1 — p;.
We can choose these parameters in a variety of ways. Following Jarrow and Rudd
[1983], we suppose that the interval to expiration, 7 = T —t, is divided into I equal
subintervals. Then, by choosing

1

up = (ry = o*/2r/I + o\Jr/1ds = (ry = 0*/2)r/T = o\[7/I,ps = e

we achieve a distribution with the same first two moments as the lognormal for
every [ and convergence in distribution of this binomial model to the lognormal as
I — oc.

We can also use this model to show how the risk-neutral assumption arises.
Suppose just a single interval (I = 1) and a call exercise price between Se*s and
Sedr (Se¥r < K < Se*). We next show how to construct a riskfree hedge with call
writing plus some amount of the share.



The written call requires payment of 0 if Se¥ occurs and Se* — K is Se*f
occurs. The return on § shares is 6S(e% — 1) if Se occurs and §S(e* — 1) if Se*s
occurs. The future payoff is then:

—Se¥ + K +46S(e% —1) if Se*s occurs,

FV = {6S(edf -1) if Se¥ occurs. 3)

A hedge represents an equating of these payoffs. For § = g%, the FV in
(3) is the same in each outcome. Discounting by the riskfree rate, we achieve an

equivalent present value of

(Se¥r — K)(Se¥ — S)

PV = ¢ (e ), (4)

Note that we were able to construct a hedge in (3) by choosing é independently
from the probability of rise or fall in the price, S. We can continue to find these
hedges (recursively) with increasing /. This result allows us then to choose a prob-
ability consistent with any risk attitude, justifying the risk neutral assumption. In
a single period, we then have the call value given by C, = e™/"ps(Se* — K).

3 Simple Capacity Valuation

We now apply the option valuation model to a simple capacity problem. Suppose
that the present value of demand (sales) forecasts for time T also follows an Ito
process as in the stock example above. In this case, we assume that all demand can
be met and that revenues are linear in demand with some margin, cr. Assuming that
investors require a return, r, based on the contribution to market risk (measured
by firm § for example) from these revenues, the present value at t for revenues at
time T should be ¢z multiplied by: '

Sy = (e TY) | SrdF(Sy), (5)
St '
where F' is now the distribution function on demand Sy at T.

Actual revenues are, however, limited by capacity. If we assume that capacity
limits actual sales to at most K units, then the actual present value of revenues is
cT(S’}— C;) where C} is the value of sales in excess of the capacity K. We can use the
formula in (1) for C; but must first convert from the original distribution in (5) to the
risk-neutral distribution in (1). We do this by transforming Sz (with distribution
function F') to Sty (with distribution function Fy) where E[Sry] discounted with
rate r; is equivalent to E[Sr| discounted with rate r. Defining this equivalent risk-
neutral distribution is not, however, necessary as shown in the following theorem.

Theorem 1 If Fy is the equivalent risk-neutral distribution function on Sy and r
is the rate of return expected on all sales in the case with risk premium, then C; in
(1) is equivalent to

Co=e / T (Sp = Ke"IT)dF(Sy). (6)

Ke(r—rf)f



Proof. Since we often will deal with discrete distributions, we use the binomial

approximation to establish this result. From the binomial derivation (Jarrow and
Rudd [1983]), we have that

Ce=Jim e ’fTZqI )(Se(e*) (e) = = K)F, (7)
=0

where g;(1) is the binomial probability that Sy = S;(e¥s)!(e)! =,
Now, if we suppose an environment with an annual expected rate risk premium
of a = r —ry, then the binomial model in the risk averse case would replace u; and

df in (2) with

u=(r=c* Q)T +o\T/Td=(r =2/l ~onfr/Tp=2 (@

Thus, we would have a binomial distribution with Se* = Sel("="/)7/1)% in place of
Se*s and Se? = Selr="1)7/Dd in place of Se®s. The result is then that ¢;({) is the bi-
nomial probability in the risk averse case for Sy = S, (e¥)!(ed)!~! = 27 S, (e )! (e ).
Substituting in (7), we obtain:

C; =limj_ e e 0T Z{:o qr(1)(See® (e ) (edr) 1=t — Keom)*,
= lim oo ™ T qr(1)(Se(€®) (€)1~ — Keom)*,
=e 7 }o{oe(r—rf)‘r (ST - Ke(r_rf)T)dF(ST), (9)

where we use the binomial approximation result again in the last step to obtain the
desired result. []
From the result in Theorem 1, we have that the present value of a finite capacity .
plant is given by:
Kelr=rp)T :
PV = e ep( / (ST)dF(St) + Kel"™)7(1 — F(Kel"™"97)), (10)

0

which involves the discount rate r that applies to the uncapacitated case, the original
distribution function on Sy, and an adjusted capacity level from K to Ke(m7/)7.
Note that when capacity is tight so that F(Ke"="/)7) = 0 is low, then the first term
in (10) disappears yielding:

Pl/tight = 6_TfTCTK, (11)

which is indeed the present value for a fixed, riskless future value K at T =T — ¢t
periods into the future. If the capacity is loose (F(Kel"™")7) = 1), then we obtain

PVigose = e /0 SrdF(Sr)), (12)

which is again the uncapacitated present value.



The advantage of (10) over manipulation of the distribution function into (1)
is that the only necessary additions to reflect risk attitude are the uncapacitated
discount factor, 7’7, and an adjustment of the overall capacity. In optimization,
this is especially useful because the actual distribution on St is often determined
within the problem. The transformation in Theorem 1 allows the modeler to pro-
ceed without determining a risk-neutral equivalent at the start. The next section
describes our generalization.

4 Generalized Problem and Multistage Stochas-
tic Linear Program

To generalize the result in the previous section, suppose instead of a single dimen-
sional St that St is a random vector with associated probability space, (X1, Br, Pr),
where the support, X7 C R, the corresponding Borel field is Br, and the proba-
bility measure is Pr. Suppose a linear revenue vector cr so that the uncapacitated
present value of the period T revenue is:

PV =& / ¢-(S7)Pr(dSy)). (13)

Zr

The result in (13) may also be expressed in an optimization problem. The main
requirement is that the returns have a symmetric form that enables determination
and use of the appropriate discount factor with rate r.

Now, suppose that actually revenues, z7, are restricted so that z7 must satisfy
both z7 < Sr, and Axzr < hy. The expected future revenues become:

FV = CIT(/E (ST)PT(dST) — max (ST - fL'T)+PT(dST))» (14) ‘

v Azr<hr

which has the same form as the simple capacity evaluation with the second term
being analogous to (1).

To evaluate the present value of the contingent claim term, Je, MaX Azr<hy (St —
z1)* Pr(dSr), in (14), we suppose again a frictionless market with no riskless arbi-
trage, short selling, continuous trading, and that the expectation process on each
component of Sy follows an Ito process. We also need to assume n instruments
other than the contingent claim term that also depend on the components of Sy.
These instruments may for example represent other products that can depend on
the same demand factors as Sy and that would be available in the market in some
way. With a wide range of products, this assumption becomes quite realistic. With
these assumptions, we can again (see, for example, Hull [1993]) assume that a risk-
less hedge is possible with these securities and that, therefore, we can again employ
the risk neutral valuation method.

We continue to make the assumptions consistent with risk neutral valuation.
We can then find a present value for FV in (14) by using a probability measure,
Pry, that includes no risk premium on the rate of increase in the present value of



the expectation of Sy. The present value of the contingent claim portion of (14)

becomes:
Ct = e_rfTCIT max (ST - .’L‘T)+PTf(dST). (15)

v Azr<hr

By applying an annual risk premium, e"~"f to each component of the present value
of the expectation of Sy as in Theorem 1, we obtain a probability measure, Pr,
such that Pr(A) = Pr;(es~77 A) for any A C B and thus obtain:

C;, = e"fTe“"Tc} fET max Agy <hr 6aT(ST - IL’T)+PTf(dST)
= C_TTCIIT fET maXAszhT(ST - €aT.’ET)+PT(dST)
= e_rTC/T fZT maxAx&Seth(ST - CL'{F)-{-PT(dST),

where in the last step we have substituted 27, for e*"zr.
The result is the following corollary to Theorem 1.

Corollary 1 Assuming the conditions for a riskless hedge given above, the present
value of the result in (14) is equivalent to

o / (Sr)Pr(dSr) - / max  (Sr—zr)*Pr(dSr)).  (16)
Sr T Azr<e®*Thr
From Corollary 1, we can derive present value equivalents for a broad range of
stochastic optimization problems with linear constraints. We consider the general
form of a multistage stochastic program with fixed linear recourse to maximize
expected utility. We express this model as

min ca:'o+E£[Ul(clml)+...UH(cHa:H)] o (17)

s.t. Az® =b,
T'20 + W't =h', as.,
THgH-1 + WHaH =h" as.,
0<200<z, t=1,...,H, as,
z!, ... ¥ nonancitipative,

where bold face indicates random quantities, the decisions, ! € R™, and the right-
hand side parameters, b € R™ and h' € R™, with other matrices defined ac-
cordingly. The functions, U*, represent the present utility of objective outcomes
in time ¢t. The term nonanticipative indicates that ' can only depend on out-
comes up to time ¢ (see Wets [1980] or Dempster [1988] for details). We assume
the stochastic elements are defined over a canonical probability space (=, 0(Z), P),
where ===, ® --- @ Ep, and the elements of Z; are {¢' = (T*, W', ', ')}

6



If a set of decisions are defined for each element or scenario in =, the expected
value can be written as a finite sum of the objective values of these decisions. The
requirement that each stochastic constraint must hold almost surely may be en-
forced by defining the same set of constraints for each realization. We can use the
result in Corollary 1 now to construct an equivalent deterministic linear program

o (17). First, we assume a discrete distribution with N; possible outcomes for &
in stage t yielding N, = N; x --- x N, total scenarios at time t. We also assume
a financial objective so that, if we knew the contribution of the current project to
overall portfolio risk, we could find a discount factor to represent the utility and
reduce (17) to a linear program. Using Corollary 1. we do not need to deter-
mine this contribution completely. We assume only that we know an appropriate
discount factor for the revenues without explicit capacity constraints. With these
assumptions, we find an equivalent program to (17) as:

N Ny
0 1,-r 1.1 H_-rH H_H
max cx’+ Y pee TG+ + Y pre e
k=1 k=1

subject to Ax® =b, (18)
t t—1 t .t _ it s \J —
j-j]x,y(]‘t)-l_WI] —h], ]——1,...,Nt, t—l,...,H,
z’jtx;gj{t)+wtz§. <ehf, j=1,...,N, t=1,...,H,

0 <z, j=1,...,N, t=1,....H,
where
zt = Decision vector to take in stage t given outcome i;
p! = Probability that scenario i in stage t occurs, i = 1,..., N;;
(ct,h:, T!) = Cost and RHS vectors and Technology matrix for scenario ¢ in stage t;
W' = Recourse matrix for stage t, W' e R™*™;
v(j3,t) = |[(j —1)/Nt) + 1, the ancestor (scenario sharing history up to time ¢ — 1)

of node j in stage t — 1.

In (18), we have split the period ¢t constraints into two components, T, W, h and
T' . W' h'. The first set without prime superscripts are constraints that depend on
overall market conditions (such as maximum possible demand) and not on specific
capacity decisions. The second set with coefficients, T', W', and &', distinguishes
specific resource restrictions that prevent realizations of full market potential. The
application of this to capacity planning is given in the next section.

5 A Capacity Planning Example

We consider a manufacturer with certain plants with installed capacity to pro-
duce specific products. The capacity planning question is to determine whether
additional capacity should be installed at a plant where no capacity for a product

7
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Figure 1: Adding flexible capacity at Plant 2.

currently exists. This additional capacity would allow the plant to continue produc-
tion if demand for the new product is higher than existing capacity at other plants
and if the demand for other products at the new plant is lower than the existing
plant capacity.

As an example, consider Figure 1. Here, there are two products, A and B, and
three plants, 1, 2, and 3. The solid lines in the diagram indicate that each plant
currently only produces a single product. We could assume that each of the plants
is built to meet the mean demand exactly. In that case, if demand for a product
ever exceeds the mean, then potential sales are lost.

By building additional capacity at 2 for product B (the dotted line in Figure
1), if demand for product A is lower than the mean and demand for product B is
higher than its mean, then the excess product B demand can be produced at 2 and
fewer sales would be lost. That is the motivation for our previous development and
the basic goal of flexible capacity. The decision problem is to trade off the costs of
adding additional capacity against the potential revenue from additional sales due
to the extra capacity. This basic problem has been considered by Eppen et al. [1989)
where they use a one-sided loss utility function and apply a mixed integer, stochastic
linear programming model. With our results above, we can avoid this somewhat ad
hoc procedure and use an objective consistent with the overall performance of the
firm.

For two-stages, this model becomes:

L R 8
max »_ Z[cijx% +e" Zp,lcc}cwija:}c,ij]
im1 =1 k=1

subject to 1, T ¢zl < b, (19)



zllka <hy Jj=L....Rk=1,.. N,

sz ”+T,”J < eah“j, i=1,...,L;j=1,...,...,Rik=1,....N,.
flx}m <e“h21,1—1 LLik=1,... Ny,
. EXB, :r,“]>()z-1 LLij=1,...,...,Rk=1,... Ny,
where
L = Number of plants,
R = Number of products,
$?j = New capacity installed for product j at plant i,
cij = Cost (negative revenue) for installing each capacity unit at start,
CL‘}C’ij = Actual production of product j at plant ¢ minus revenue from j ,
c,lc’ij = Unit production margin for j at ¢ under scenario k,
b = Initial budget constraint,
hjl-k = Maximum possible sales (demand) of product j under scenario k,
Ti'j1 = Negative of factor for increase in production capacity for j at 1,
h,ll,ij = Original production capacity for j at 1,
h;{i = Total production capacity for all products at 1,

X2 = Set of possible capacity levels (may be discrete).

Notice that (19) has the same form as (18). This model was used in Sims [1992]
to determine optimal additional flexible capacity levels for a class of products with
eight plants and sixteen products (as in Jordan and Graves [1991]). The assumption
was that capacity decisions were made once and that production could not be held
in inventory from one period to the next (sales were lost above the capacity limit).

The scenarios were chosen to reflect known characteristics of the sales forecasts
by using approximation techniques that bound the expected values with limited
information (see, for example, Birge and Wets [1986]). The model was then solved
to observe the effects of increasing lifetimes (production periods) on the installed
capacity. The expected number of lost sales and expected utilizations were also
considered but not added directly into the objective. In general, flexible capacity
increased as lifetimes increased, with corresponding increased utilizations (to 98%)
and decreased numbers (by 80%) of lost sales. The linear model allowed for efficient
solutions with binary capacity decisions using IBM’s OSL [1991] package on an IBM
RS/6000 workstation.

6 Conclusions

Measuring risk attitudes in management science problems often causes difficulties
for modelers as well as decision makers. We have shown that application of option
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pricing can readily incorporate financial risk attitudes into linear models. Our
capacity planning example illustrates an especially important case. In general.
however, a modeler must distinguish constraints as related to market or project-
specific restrictions. This distinction may not always be obvious and requires careful
consideration within a project context.

Other issues of importance to this development include the assumptions of the
completeness of the market and the absence of transaction costs. Specific evidence
may be necessary to justify these assumptions completely in practice, but the model
matches general portfolio conditions in the extreme cases of tight and loose con-
straints. Further studies should explore the decision-making significance of the
additional assumptions.
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