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Abstract: Multistage stochastic linear programs can represent a variety of practical decision
problems. Solving a multistage stochastic program can be viewed as solving a large tree of linear
programs. A common approach for solving these problems is the nested decomposition algorithm,
which moves up and down the tree solving nodes and passing information between nodes. The
natural independence of subtrees suggests that much of the computational effort of the nested
decomposition algorithm can run in parallel across small numbers of fast processors. This paper
explores the advantages of such parallel implementations over serial implementations and compares
alternative sequencing protocols for parallel processors. Computational experience on a large test
set of practical problems with up to 1.5 million constraints and almost 5 million variables suggests
that parallel implementations may indeed work well, but they require careful attention to processor
load balancing.

'Supported in part by the National Science Foundation under Grant DDM-9215921.



1 Introduction

Most sequential decisions must be made in uncertain environments. Multistage stochastic programs
may model these decisions by seeking to find decision variable levels that attain an optimal ex-
pected value subject to possibly uncertain constraints on available resources. Multistage stochastic
programs (MSPs) have been applied to a variety of problems, ranging from forestry management
(Gassman, [10]) to portfolio optimization (Mulvey and Vladimirou, [19]) and capacity expansion
(Sims, [28]).

A multistage stochastic program assumes that a sequence of periodic decisions incur costs which
are affected by a known set of stochastic parameters. After making each decision, an observation
of these parameters becomes available. Following each observation, an additional “corrective” (or
recourse) decision may be made. The decision process then starts over, with a new decision that
must consider the effects of further uncertainty. The objective of the model is to minimize the sum
of costs associated with each period’s decision subject to model constraints and nonanticipativity
constraints that require each period’s decision to depend only on the information available at the
time. To avoid ambiguity in the solution, we require that the constraints hold for all possible data
realizations.

We focus on the special case of this decision problem where the objective and constraints are
lincar functions of the decision variables. This simplifies the mathematical program, but still
requires multivariate integration of an implicitly defined cost function. Many characterizations of
the random parameters may yield computationally intractable formulations. To reduce the problem
to manageable size, the most common simplification is to solve a stochastic program that assumes
a finite time horizon and discrete probabilistic representation of the uncertainty. This allows the
expectations to be written as finite sums and the constraints to be enforced explicitly for each
realization.

The resultant deterministic linear program can still be quite large and difficult to solve, since a
linear program must be solved for each event. The number of events generally grows exponentially
with the number of periods considered. Approaches for solving these problems generally either take
advantage of the problems’ structure within the context of a general optimization algorithm (see,
e.g. |31] or |5]) or decompose the problem into subproblems.

Decomposition algorithms can define subproblems as linear programs to find an optimal solution
for all periods in a scenario (scenario-decomposed methods) or for one period given an event history
(period-decomposed methods). Algorithms in the former category include the progressive hedging
algorithm [24] and diagonal quadratic approximation ([18], [20]).

Many methods follow the period-decomposed form, which can also be interpreted as a form of
dynamic programming. Van Slyke and Wets [29] first applied these methods to two-stage stochastic
programs. Multistage extensions appear in Birge [3]. The multistage algorithm is also known as a
nested decomposition method, since an n stage program has the same form as two-stage program
when the first n — 1 stages are considered as one problem.

Several improvements to the original algorithm appear in the literature, including multicuts [4],
varying sequencing protocols [32], and bunching [31]. (These will be discussed in further detail in
Section 2.) All of these improvements have been implemented in the implementation by Gassmann,
MSLIP ([11]). A variant of the nested decomposition algorithm called the regularized decomposition
method has also been implemented to solve large problems ([26]). This method adds a quadratic
term to the objective of each subproblem to keep successive solutions closer together and hence
stabilize the progress of the algorithm.

Nested decomposition procedures are well suited for parallelization, since solutions to subtrees
are independent of one another. The efficiency of any parallelization depends heavily on the speed
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of the processors available and the speed of communications between them. A goal of this paper
to assess this efficiency in a distributed environment with similar processors.

Other studies have considered tightly coupled architectures, such as a Connection Machine, with
comparatively little power in each processor, but high communications bandwidths between each.
These machines are more suited for fine decompositions that communicate repeatedly with each
other (see, e.g. [23]. Implementations by Ariyawansa and Hudson [1] and Entriken (7] showed
that speedups on a Sequent/Balance computer with shared memory architecture with up to 24
processors approached a linear function for two-stage problems, but decreased substantially for
some multistage problems. .

Ruszczyniski [25] suggested parallelizing the regularized decomposition method by queuing sub-
problems for idle processors. His simulations of solving a multistage stochastic inventory problem
using a Sequent-like architecture suggested near linear speedups for 4 stage problems with up to 7
processors and up to an increasing number of processors as the number of stages increase.

At the other extreme from tightly coupled architectures are groups of distributed workstations,
which have a few powerful processors but may have slow communications. They have a practical
advantage over massively parallel architectures, however, due to their availability in many sites.
These “machines” are best suited for large tasks that do not communicate often. One example of
their use in a multistage stochastic programming methods is Berger, et. al.’s [2] Diagonal Quadratic
Approximation (DQA), which showed a maximum speedup of 5.3 for 8 processors for a large asset
allocation problem. DQA, introduced in [18], is a scenario-based method.

i The implementation of the nested decomposition algorithm discussed here is ideally suited for
loosely distributed computing environments. The only communications necessary between proces-
sors occurs between subproblems in the first few stages. A more detailed description of the nested
decomposition algorithm is in Section 2, followed by a discussion of distributed implementational
issues in Section 3. Sections 4 and 5 report numerical results and conclusions based on experience
with a large test suite of stochastic programming problems from the literature.

2 The Nested Decompositon Method
The general form of a multistage stochastic linear program with fixed recourse can be expressed as
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where bold face vectors are (possibly) stochastic. We assume the stochastic elements are defined
over a discrete canonical probability space (Z,0(Z), P), where £ = Z; ® --- ® Ep, and the S;
elements of E; are {¢¢ = (Tt,W¢ ki, ct),s = 1,...,5;}. Since the probability space is discrete, we
can define a deterministic equivalent linear program by replicating the deterministic linear program
for each possible event in Z, and requiring that each decision not depend on the future.

If a set of decisions is defined for each scenario in =, the expected value can be written as a
finite sum of the costs of these decisions. The Iéequirement that each stochastic constraint must



hold almost surely may be enforced by defining the same set of constraints for each realization. The
decisions meeting these restrictions correspond to a decision tree where each node at stage t contains
a linear program which determines the optimal decision to take given all realized data (¢y,...,&:-1).
Using the decision tree characterization, we refer to the stage ¢t — 1 node (or subproblem) connected
to a stage t problem as a parent of that subproblem. Other relations, such as grandparents, siblings
and cousins, are defined analogously.

Formally, the deterministic equivalent we consider here can be written as

Nl NH
min  czg+ Y prckTE -+ Y prck Tl
k=1 k=1
subject to Az =b (2.1)
T}rf;(;yt)wLth; =ht j=1,....,N;, t=1,...,H
E<ab<ul  j=1,...,N, t=1,....H

where
N; = Number of possible outcomes in stage ¢
N; = Cumulative number of scenarios through stage t, Ny = Ny x --- x Ny
xg = Decision vector to take in stage t given outcome j
pt = Probability that scenario i in stage t occurs, i =1,...,NV;
(¢, hE, Tf) = Cost and RHS vectors and Technology matrix for scenario i in stage ¢
W' = Recourse matrix for stage t, W* e ®*">*™"

a(j,t) = |(j —1)/N) + 1, the predecessor of node j in stage t.

For ease of explanation in this formulation, we use the same number of scenarios as descendants in
stage t of cach scenario in stage t — 1. Other structures can be used without loss of generality.

2.1 The Nested Decomposition Algorithm

The basic subproblem used by the nested decomposition algorithm (ND) for scenario j in period- ¢
is min{cjz} + Q'*!(zt) | Wiz} = bl - T;‘lxg"(}'t), It <ot <ub}, where Q'+1(zt) is the optimal
expected value of stages t + 1 to H, given an input :r§ (Additional constraints, such as Az} = b,
are added where necessary.) The objective can be parameterized by introducing a free variable 0;-
and solving the equivalent problem
min {ca} + 04IWiaf = S - Ti'alr) 1 <o < a0 2 Q1 ()}

Since Q“*1(yt) is the solution to a linear program that parametrically depends on right-hand side
constraint parameters, it is a polyhedral convex function. The ND algorithm avoids describing the
entire function by finding selected linear supports and constraining 0;- with them. These pieces,
also called optimality cuts, are formed from the dual solutions to descendant subproblems.

To sce how these cuts are constructed, consider a subproblem in period H. (We drop time su-
perscripts where the context is clear.) This subproblem has the same form as a two-stage stochastic
program, where

K
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The dual to this problem at a given 2 is

max YK pr[me(bk — Te) + Melk — picux] (2:2)
s.t. W + A — e = ¢k k=1,...,.K
Ak, ik > 0.

Note that this problem is separable into K subproblems, and that A; and p can be chosen to force
feasibility in (2.2). The solution (f, A, u%) to each subproblem will be dual feasible for any z. By
duality theory,

K
Qz) > Y prlmi(be — Thx) + Mebk — ]
k=1

with equality holding for Z. Let Ej = Zszl pkmiTk and ex = Ele D[mEbk+ Aflk—pxuk). Inequality
(2.1) can be rewritten in these terms to constrain 0§ in the corresponding H — 1 subproblem as

H-1 H-1

If the dual problem (2.2) is unbounded for any k, then the primal subproblem must be infeasible.
The Z obtained from the previous period must be rejected. This can be done with a feasiblity cut,
which is derived from a dual feasible direction of unboundedness, (7}, A, ), which must satisfy
T (be — TkZ) + Aplk — ppux > 0. Thus, the constraint

Tr(bk — Tkf) + Aelk — prue <0

eliminates the infeasible £. Letting Dy = —mfT and di = mgbk + Ailk — prux, a feasibility cut in
scenario k in period H — 1 becomes D,f"lzzrfe > df'l.

We can now describe the full subproblem for scenario k in stage t. This problem, designated
NLDS(t,k), is

NLDS(t,k) min chat + 6}

s. t. Wizt = hi =T ey
Dit"sz; z > dti’j’ ] =1,... ’T% (2.3)
Ek,]x] +9k Z ek,j’ ] = 1,...’3k

<z <

with dual solutions (f, AL, ut, ok, oL).
The basic nested decomposition algorithm is shown in Figure 1. The algorithm assures that all
variables are bounded to avoid complications, but this restriction can be dropped as in [29).



Step 0. Set t =1,k = 1,7 = st =0, add the constraint 6% = 0 to NLDS(t, k) for all t and k. Let
DIR = FORW and goto 1.

Step 1. Solve the current problem NLDS(t,k). If infeasible and ¢t = 1, then stop, sxnce the
entire problem is infeasible. If NLDS(t, k) is infeasbile and ¢ > 1, then let ra(t k) = ra(t K 11
and let DIR = BACK. Find a dual feasible direction of unboundedness (r}, AL, pk, pf.) such that
(mEW* + X, — k) + o Df < 0 but w(hf — Te ™ aiye ) + Mk — phuf + phdf 2 0. Let &' = a(k, ?)
and

Df;” = mT!
a5y = b+ ML~ pad + phd

k’

Let k = a(k,t),t =t — 1 and return to step 1. If NLDS(t, k) is feasible, update the values of z%,
and 6% and store the basic dual multipliers as (%, AL, uf, pt, 0f). If k < K, let k = k+1 and return
to step 1. Otherwise, k = K?, and we are done with this stage. If DIR = FORW and t < T, let
t =t+1 and restart step 1. If t =T, let DIR = BACK and go to step 2.

Step 2. For all scenarios j = 1,...,K*! at t — 1, compute

-1 _ t—1
EJ‘ - Z 1 lec
k€D (5
t—1 Pfc L % t _t
-1 _ trt ytt bt ¢t gt
e = Z =1 | Tehie + Akl — ppug + Z Pkidk i + Zak,iek,i
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The current conditional expected value of all scenario problems in D%(5) is then 0‘ 1= ; 1

e
E{~'24"!. If the constraint 65~ = 0 appears in N LDS(t —1,) then remove it, set st =1, and
add the optimality cut deﬁned by Ef ;at + 0} > e ; to NLDS(t -1, 7).
If0t I 9‘ then increment st !'and add the optimality defined by Et and et Yto NLDS(t-1,7).
If t =2 and no constraints are added to NLDS(1,0) then stop w1th x} optlmal Otherwise, let

t=t—landk=1.1ft=1,set DIR=FORW. Go to step I.

Figure 1. Nested Decomposition Algorithm for Multistage Stochastic Linear Programs

Communications between nodes in the solution tree are bidirectional. Each stage’s right-hand side
depends on the previous stage’s decision vector via constraints (2.3). Primal solutions must be
passed down the decision tree. Dual solutions for future periods are passed back up the tree in the
form of cuts on the primal solutions.

Other communications within the tree are possible. For example, a cut placed in any node is valid
for every other node in that stage, since it defines a support for the recourse function. Also, a basis
which is optimal for a node in stage t may be optimal for other nodes in stage t. Communicating
bases between nodes may reduce the effort necessary to solve all nodes in a stage. In a parallel
computing environment, however, a trade-off exists between more detailed communications among
parts of the tree (reducing the effort to solve the tree) and the (potentially) high time cost of that
communiction.

The ND algorithm terminates finitely (Birge, [3]), since each cut can uniquely be assigned
to an optimal basis of a subproblem, and there are a finite number of bases. Furthermore, the
process terminates with an optimal solution (if one exists) since the algorithm only terminates
when 0;-"1 = Qt(:v;"l) or the problem is infeasiblg or unbounded.



Several improvements to the above algorithm have been suggested in the literature. Three of
these are described in the subsections below.

2.2 Sequencing protocol

The first concerns the order in which subproblems are are solved. Scott [27] investigated the
issue for deterministic problems and suggested that a particular subproblem within a period need
only be solved if it receives new information in the form of a new ancestor solution or cut. The
choice of which period to solve (sequencing protocol) may vary without disrupting the algorithm’s
convergence. Once stage t (where 1 < t < H) is solved, the algorithm can solve stage t — 1 to
recalculate new solutions to the nodes in that stage, or continue on to stage t + 1 with a new RHS.
At stages t =1 and t = T, the choice is limited.
Three basic sequencing protocols have been suggested in the literature:

1. Fast-Forward-Fast-Back (FFFB). Wittrock [32] suggested that the fastest way to propagate
information through the tree would be to change directions as little as possible. Specifically,
the FFFB protocol starts going forward through the tree at stage 1, and continues to go in
the same direction until a move in that direction is blocked. Blockage can occur when an end
of the tree is reached or an infeasibility is discovered. (The FFFB protocol is also described
in Figure 1.)

2. Forwards first (FF). Birge [3] first suggested an ND algorithm that only moves to stage t — 1
when all current solutions for periods ¢ through H are optimal, and no new primal solutions
from stage t—1 are forthcoming. The effect of this protocol is to spend the most computational
effort in the latter stages of the decision tree.

3. Backwards first (BF). Alternatively, the ND algorithm can always move back to stage ¢t — 1
unless no new cuts to that stage are generated. This was also described in (Gassman, [11]) as
the “path of least resistance”, since the algorithm returns to stages with fewer nodes whenever
possible.

Gassman (11] tested these three protocols in a serial implementation of the ND algorithm. He
showed that the FFFB protocol was slightly superior to the FF protocol for larger problems and
that both were superior to the BF protocol. Opposite conclusions were drawn for smaller problems.

2.3  Multicuts

Birge and Louveaux [4] suggested that more information from a node’s descendants may be gained
by disaggregating optimality cuts (2.1). The cuts developed in the previous section summed the
(weighted) dual variables from each node. The new set of cuts at each node are

H-1 H-1
0 2ejx—Ejxz
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t
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Multicuts may reduce the number of subproblems which must be solved to find a solution to the
tree, but at the expense of a larger (and more complicated) subproblem at each node. Gassman
[11] concluded that multicuts reduced serial solution time for large problems, but was not worth the
additional overhead for smaller problems. Moreover, he found that multicuts may not be effective
for tightly constrainted problems, since infeasibility in any descendant node renders the multicuts
obsolete.

2.4 Bunching

When all objective coefficients and within period constraint matrices (W?) are deterministic, a
useful characteristic of the nested decomposition algorithm’s subproblems is that they only differ
in their right-hand sides if the same cuts have been added to every problem. Two techniques
have been proposed in the literature for solving LPs with multiple right hand sides, sifting [9] and
bunching [30]. (An overview may be found in Wets [31]). Since sifting assumes independence of
the components of the right-hand side vector, we consider only bunching here.

The basic assumption Suppose we are given a list of right-hand sides, H = (x1,...,Xp) Where
Xi = hi — Tz. Bunching takes a basis B which is optimal for some x; and tries to identify any
other problems in H which are optimal for that basis. The goal is to minimize the number of full
simplex pivots which must be performed to solve linear programs for all vectors in H.

~ Two variants of bunching are possible. For both, a paradigm problem x; is chosen from H. The
first variant, also called trickling, performs (see Gassman, [11]) a simplex pivot on this problem and
checks whether that pivot is also valid for other problems in H — {;}. If so, the pivot is taken, and
the problem is marked DONE if the problem satisfies optimality conditions. The last basis visited
for cach problem is stored, along with a pointer to the next-to-last basis. Eventually, the paradigm
problem will be finished. The procedure then travels backwards along the chain of (stored) bases
until all other problems have been solved.

The second variant (see, e.g. [31]) solves the paradigm problem, and then checks other problems
in H for dual feasibility. These problems are marked as done. A new paradigm problem is then
chosen, preferably one only a few pivots away from the previous paradigm. This variant is simpler
than the first, but requires more operations since the entire basis must be solved for each unclassified
problem.

All of these procedures can be implemented in serial as well as parallel versions. Parallel imple-
mentations have special implications, however. The next section reviews the serial implementation
used for this study and its adaptation to a distributed computing environment.

3 Serial Implementation

To implement the nested decomposition algorithm, the program ND-UM was written in C for IBM
RS/6000 workstations. ND-UM works interactively with IBM’s Optimization Subroutine Library
(OSL, [17]), which solves each of the linear programs generated during the algorithm.

ND-UM is not restricted by any preset upper bounds on the number of variables, number of
stages, or number of right-hand side realizations. The code allocates memory as needed. It is only
limited by the memory capacities of the machines on which the code is run. For each stage t in the
problem, ND-UM stores the linear program

cx
st Wizt =Rt (3.4)



in OSL’s memory. (The programs (3.4) are input sequentially in a separate file.) Cuts are stored
in separate data structures and added to (3.4) as each node is solved.

Due to the sparsity of the T matrices of the problems considered, the T matrix for each stage
t < H is input and stored separately in memory. For each node in the scenario tree, ND-UM
also stores: stage number, size of corresponding stage’s W matrix, the set of right-hand side and
interperiod constraint matrices, (ht,T%;i = 1,...,N;), the probability of realization i, and the
number of possible descendants. Note that ND-UM currently only considers right-hand side and
interperiod stochastic parameters so that bunching is possible.

To complete the description of the solution tree, each node contains pointers to the set of
feasibility and optimality cuts and pointers to this node’s parent, sibling or cousin, and eldest
(first listed) child nodes. The code is capable of handling problems in which the right-hand side
realizations in stage ¢ + 1 are either dependent or independent of stage t realizations. All problems
considered here assume independence between successive stage right-hand side realizations.

ND-UM uses several techniques to speed the solution times to sets of nodes. First, nodes are
not resolved unless a new (binding) cut from the next stage is generated. Second, the problems
can be solved in the same order each time or can start from the last basis obtained for each node.
If neither of these options are employed, OSL uses the previously optimal basis, which is a solution
to an adjacent node, or, in the case of the first node in each stage, the solution to the last node
in that stage. Finally, the last stage can be bunched by completely checking primal feasibility
of a paradigm problem’s optimal basis for each unsolved problem. Several paradigm selection
rules were tried, including finding the problem with the fewest number of primal infeasiblities, and
finding the problem closest to the mean of all unsolved problems. The effort to rank problems
generally exceeded the benefit of better paradigm selection. The decision rule used here finds the
first unsolved problem.

When an optimal solution exists, ND-UM declares optimality when Iéj — 64]/16% +0.1] < ¢ for
all nodes j in stage t with € set to 1076,

4 Parallel Implementation

The parallel version of ND-UM is identical to the serial version, with additional coding for commu-
nications between processors. Communications tasks are performed using Parallel Virtual Machine
version 3.1 (PVM, [13]), which allows for arbitrary connectjons between heterogeneous computers.

Instead of running a single computation task, the parallel implementation has two parts commu-
nicating between each other. The “Master” subprogram is responsible for the root of the problem
tree and at least one path from the root to the last stage. The master starts all computations and
initiates an arbitrary number of “slaves” to solve other subtrees. Once initiated, the slaves read in
their data from disk and wait for the master to start the calculations.

All of the processors read input data from the same files used for the serial implementation. To
minimize communication coding and minimize communications delays, each slave task reads in its
own copy of the input data. An extra input file read by the master specifies all other configuration
information, including nodes to split and processors to use.

The calculations are parallelized by splitting the original problem tree “horizontally,” i.e. by
cutting out an entire subtree along some path between two adjacent nodes in any two stages t and
t+1,(0 <t <T-2) The node at stage t + 1 acts as a root node for the slave processor and
is called a split node (denoted Sy,...,S,). Each split node is in a split stage, and has a parent
a(Si,t +1). The portion of the tree from the root up to the parent of a split node is solved by the
master task. The remaining subtree rooted at the split node is solved by a slave task.

8



The parallel algorithm proceeds from stage t to stage t +1 when the master solves the parent of
a split node S;, and passes it to each child, including S;. Each child may be assigned either to the
master or to a slave. If the child is a split node, the primal solution is passed via PVM. Otherwise, it
is placed in ND-UM’s internal data structures. Slave i then starts solving the multistage program
rooted at S;, while the master continues solving any children not assigned to slaves. Thus, the
master and slave run independently after passing the communication phase.

After a slave finds a dual solution or a dual direction (in the case of infeasibility) to its root
(split node), the solution is sent back to the master. The slave then waits for the master to send
either a continuation signal (a new primal solution to the parent) or a termination signal. The
termination signal is sent when the master determines that the entire problem is either solved or
infeasible.

The master can either wait for a return signal from each slave only when it comes back to the
split stage, or it can periodically check for a signal between moves to a new node or to a new stage
(i.e. between steps in Figure 1). When the return signal is an optimal dual solution, the master
uses this information to generate an optimality cut and proceeds normally.

When the return signal is a dual direction, if the master is currently solving the split stage, a
feasibility cut is placed in the parent. If the master is not solving the split stage, and has been set
to check for signals between tree moves, any resulting calculations are of no use. They implicitly
assume an infeasible solution to an ancestor. In this case, the master immediately jumps back to
the split stage and starts there with the feasibility cut derived from the slave.

Once the feasiblity cut has been placed in a parent node, the node must be resolved to get a new
primal solution. Since the slaves may still be working using a previous (infeasible) solution, they
can be interrupted to start at the split node NLDS(S;,t + 1). Checking for interrupts requires a
call to a PVM routine each time the algorithm changes stages or nodes. Since these checks might
take a great deal of time, we tried the algorithm with interruptions and without interruptions. We
generally found that checking for interruptions was worth the effort.

A variety of ways may be found to split a problem tree for parallelized calculations. A reasonable
principle here is to assign as large a subtree as possible to each slave, thereby decreasing the size
of the tree left for the master task. The obvious result then is spreading equal portions of the
original problem tree among processors available for calculations (assuming the processors have
similar speeds and abilities). To maximize the load on the slave, the tree should be cut as close
to the tree root node as possible, i.e. between stages 1 and 2. In this case, each slave processor is
responsible for the longest subtree possible.

Our parallel implementation allows an arbitrary number of processors to be used. Generally, the
problem tree can be split in any place. The only constraints are that each processor, including the
master, must have only one root (making the subproblems identical to one multistage program)
and at least one path leading to the last stage of the tree. A slave task can not be started from
another slave task, i.e. subtrees assigned to processors cannot intersect and are“parallel.” Also, the
minimal number of stages for each slave task is two (although this requirement can be removed
casily). All the problems solved by the parallel code were decomposed using the above observations
and rules. Each tree was split between NLDS(1,1) and its children, and the slave processes were
split evenly among the available workstations.

While the serial implementation of the algorithm always keeps the same sequencing protocol
while solving a problem, some variations are possible in the parallel implementations. Within a
slave, the fastest sequencing protocol is generally FFFB (as shown in [11] and confirmed in Section
5). In stages where the problem is split among processors, a different protocol is possible. To
minimize communications between the master and slaves, we tried a hybrid protocol. In the hybrid

protocol, each slave uses FFFB and the master uses FFFB for all stages after a split stage. For the
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split stage itself (i.e. between stages 1 and 2), the master uses a forward first protocol.

Using a forward first protocol forces each slave to solve its subtree to full optimality, thereby
increasing the chances that a better cut will be formed. If a better cut can be formed, fewer restarts
(entrances to step 1 in Figure 1 with t = 1) may be necessary and overall solution (and, for our
concern, communication) time may decrease.

A disadvantage to the hybrid protocol is that the master must wait until all slaves report back
with optimal solutions to their subtrees. If the slaves are not well balanced, i.e. they do not solve
their subtrees in roughly the same times, every processor except the slowest may be idle for a
significant time. (We term.these coordination delays.) We would expect the hybrid protocol to be
sensitive to load balancing and that the portion of the tree assigned to the master should be larger
or harder than the subtrees, which should be evenly balanced.

The hybrid protocol will also be appropriate for a heterogeneous network of processors. If one
machine is much faster than the others, more of the tree can be assigned to the master (running on
the fast machine) and fewer nodes can be assigned to slaves. A theoretical analysis is impossible
without knowing in advance how the algorithm will proceed. Empirical tests are, however, possible
and are reported in Section 5.

While the parallel code implements an algorithm identical to the one in the seria' code, a
parallelized solution path does not necessarily repeat the path that would be obtained from the serial
implementation. For instance, we can think of a situation when several slave tasks report feasibility
cuts to the same node. In the serial implementation, the sequence of actions in the analogous
situation resolves this node until getting feasibility for the first descendant, then possibly getting
a feasibility cut from the next descendant, resolving the node, etc. In the parallel implementation
all these feasibility cuts can be received at once (or in different orders) if they come from different
slave tasks. Other examples of different behavior can be found. Evidence of these differences may
be found in Section 5, where one problem experienced superlinear speedup.

5 Computational Results

The implementation described in the previous section was tested on a suite of large stochastic
programs from the literature. The nd program was tested against MSLiP and solution of the
deterministic equivalent using OSL. We chose MSLiP because it is a very similar impleinentation
to ours but has the additional feature of Gassmann’s “trickling” form of bunching. We used
comparisons with it to see the effect of this trickling. OSL is used because of its wide availability.
We first review in some detail the problems in the test suite and then discuss our serial aud parallel
computational experience.

5.1 Problem Descriptions

The suite of seven problems, described completely in [15], includes five of six problems used in
(Gassman [11]), a capacity expansion problem, and a network planning problem. Every problem
except STOCHFOR and SCEFXM is scalable to an arbitrary number of stages and scenarios.
(SCFXM is scalable to an arbitrary number of scenarios only.) The problems were gererated in a

standard format proposed by [6] and in a format required by nd using software described in [16].
The problem types and their references are shown in Table 1.
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Problem Description

SCAGRT7 A multiperiod dairy farm expansion model. [14]

SC205 A dynamic multisector development planning model. [14]
SCSD8 A model to find the minimal design of a multistage truss. [14]
SCFXM1 A real production scheduling problem of unknown origin. [14]
STOCHFOR | A forestry management problem. [10]

PLTEXP A linear relaxation of a discrete capacity expansion problem [28].
STORM A two period freight scheduling problem. [18]

Table 1. Problem descriptions.

Table 2 lists the number of stages, total scenarios, and number of scenarios in the final period
for each problem. SCAGR7, SCSD8, SC205, and PLTEXP are scalable to any size. Instantiations
for these problems were formed by assuming a certain number of scenarios (n) per stage (up to H).
(The problem names in Table 2 are of the form Pn SH.) STORM was scaled only within 2 stages,
STOCHFOR was taken directly from [11], and SCFXM was enlarged slightly from the versions
used in [11]. The sizes (rows by columns) of the deterministic equivalent problems are also shown.

SCAGR7 SC205
Problem | H Ny  Deterministic Equivalent | Problem | H Ny  Deterministic Equivalent
P48S2 4 8 ( 2.80E+02 , 3.00E+02 ) | P4S2 4 8 ( 3.20E+02 , 3.20E+02 )
P4S4 4 64 ( 1.60E+03 , 1.70E4-03 ) P4S4 4 64 ( 1.90E+03 , 1.90E+403 )
P4S8 4 512 (1.10E+04,1.20E+04 )| P4S8 4 512 (1.30E+04, 1.30E+04 )
P4S16 | 4 4096 (8.30E+04,870E+04) | P4S16 | 4 4096 ( 9.60E+04 , 9.60E+04 )
P4S32 | 4 32768 ( 6.40E+05,6.80E+05) | P4S32 | 4 32768 ( 7.40E+05 , 7.40E+05 )
P5S2 5 16 ( 5.90E+02 , 6.20E+02 ) | P5S2 5 16 ( 6.70E+02 , 6.70E+02 )
P554 5 256 (6.50E+03,680E+03) | P5S4 5 256 (7.50E+03, 7.50E+03 )
P5S8 | 5 4096 (8.90E+04,9.40E404 )| P5S8 |5 4096 ( 1.00E+05, 1.00E+405)
P5S16 5 65536 ( 1.30E+06 , 1.40E+06 ) P5S16 5 65536 ( 1.50E+06, 1.50E+06 )
P6S2 6 32 ( 1.20E+03 , 1.30E+03 ) P6S2 6 32 ( 1.40E+03 , 1.40E403 )
P6S4 6 1024 (2.60E404,2.70E+04 ) | P6S4 6 1024 ( 3.00E404, 3.00E+04 )
P6S8 6 32768 ( 7.10E+05, 7.50E+05 ) P6S8 6 32768 ( 8.20E+05 , 8.20E+05 )
P7S2 7 64 ( 2.40E+403 , 2.50E+03 ) P7S2 7 64 ( 2.80E+03 , 2.80E+03 )
P754 7 4096 ( 1.00E+05, 1.10E405 ) P754 7 4096 ( 1.20E+05 , 1.20E+05 )
Table 2a. Problem Descriptions
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SCSD8 SCFXM1

Problem | H Ny  Deterministic Equivalent | Problem | H Ny  Deterministic Equivalent
P4S2 4 8 ( 1.50E+02, 1.10E+03 ) sl 3 4 ( 5.20E+02 , 8.20E+02 )
P4S4 4 64  ( 8.50E+02, 6.00E+03 ) s2 3 8  (7.80E+02, 1.30E+03)
P4S8 4 512 (5.90E+03, 4.10E4+04 ) s3 3 32 (240E+03, 4.30E+03)
P4S16 | 4 4096 ( 4.40E+04, 3.10E+05 ) s4 3 128 (4.50E+03, 8.40E+03)
P4S32 | 4 32768 ( 3.40E+05, 2.40E+06 ) s5 3 512 (4.70E+04 , 9.00E+04 )
P5S2 5 16  ( 3.10E+02, 2.20E+03 ) STOCHFOR
P5S4 5 256 ( 3.40E+03, 2.40E+04 ) sl 7 8  (6.60E+02, 6.20E+02 )
P5S8 5 4096 ( 4.70E+04, 3.30E+05 ) s2 7 64 (220E403, 2.00E+03 )
P5S16 | 5 65536 ( 7.00E+05, 4.90E+06 ) s3 7 144 ( 4.80E+03, 4.50E+03 )
P6S2 6 32 (6.30E+02, 4.40E+03) s4 7 288 (9.50E+03, 8.90E+403 )
P6S4 6 1024 ( 1.40E+04, 9.60E+04 ) s5 7 384 (1.30E4+04,1.20E+04 )

PLTEXP s6 7 512 (1.70E404 , 1.60E+04 )

P2S4 2 4 ( 4.80E+02 , 9.70E+02 ) STORM
P2S8 |2 8  (8.90E+02,1.80E+03) | sl 7 1 (585, 1380 )
P2S16 | 2 16 ( 1.70E+03 , 3.50E+03 ) s2 2 10 (1647, 12711)
P3S6 3 36  (4.40E+03, 9.00E+03 ) s3 2 50 (6367, 63071)
P3S16 3 144 ( 1.60E404 , 3.30E+04 ) s4 2 100 (1.20E+04, 1.30E+05 )
P4516 | 4 4096 ( 4.50E+05, 9.20E+05 ) s5 2 1000 ( 1.20E405 , 1.30E406 )

Table 2b. Problem Descriptions

5.2 Serial Results

To ensure that the ND-UM implementation was competitive with other serial algorithms, a series
of single processor tests were undertaken. Each problem in the test set was run on an IBM RS/6000
model 320H using three programs. MSLiP was run using both single cuts/no bunching and multi-
cuts/bunching. OSL’s primal simplex algorithm was used directly on the deterministic equivalent
problems. ND-UM was used using single cuts. With one exception, each program was compiled
using default optimizations and run with default parameters. MSLiP was modified to have the
same stopping criterion as ND-UM. Its data structures were enlarged to solve larger problems. One
key difference between MSLiP and ND-UM is that MSLiP always uses its trickling form of bunching
in the last stage. '

Figure 2 shows serial running times for SCAGR?7, which generally has few distinct optimal bases
for each stage. Due to the nature of the problem, sharing bases between nodes was turned off. The
bunching routine was less efficient than the default and was turned off. Comparing the vertical
positions of the curves, we see that ND-UM is generally faster than MSLiP-SC. Since the methods
are quite similar, the differences in solution speed are mainly due to the efficiency of the linear
programming solver. Profiling tests performed on ND-UM support this contention. Figure 1 also
shows that ND-UM’s dynamic memory allocation allows substantially larger problems to be solved
than the other codes. MSLiP and OSL, are FORTRAN-based, and cannot manage memory as
effectively.

Figures 3 and 4 present the serial solution times for the other problems in the test set. STORM
is a large problem with many random RHSs, almost all of which have unique optimal bases. The
nested decomposition algorithm cannot benefit from basis sharing or bunching and, when a direct
OSL solution is available, the two methods are roughly equivalent in solution time.

SCFXM1 is a “fat” 3-stage problem with many scenarios in each stage, while STOCHFOR is a
“thin” 7-stage problem with a few scenarios in each stage. Comparing results for the two indicates
ND-UM is better suited to the “fatter” problems than “thinner,” again since most time is spent
solving nodes.
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Solution times for STOCHFOR indicate that multicuts slightly improves performance and that
the effects of bunching the last stage can be substantial. Results for the PLTEXP problem, which
is both fat and long, support this observation. However, the four-stage problem suggests that large
instances of the problem require a very efficient bunching algorithm. It appears that MSLiP’s
routine has substantial advantages in this circumstance.

The results hold for SCSD and SC205, shown in Figure 4, are consistent with the other test
problems. We could only get MSLiP to solve four-stage SCSD problems, so full comparisons for
that problem cannot be made. SC205 is a mainly a problem to find a feasible solution. It has very
few optimality cuts. The performance of ND-UM suggests that there is no computational difference
between problems predominantly solved with feasibility cuts and those solved with optimality cuts.

Figure 5 shows the effects of sequencing protocol for a few representative problems. As con-
jectured by Wittrock [32], and confirmed by Gassman [11], the Fast-Forward-Fast-Back protocol
is the fastest on these problems for serial solution. Since forward first is considerably slower than
the others, the necessity of obtaining quick solutions close to optimal for early stages is evident for
serial algorithms.

Taken together, Figures 2 though 5 confirm that the ND-UM implementation is indeed com-
parable with MSLiP and has some advantage with larger subproblems. Both decomposition im-
plementations (as expected) are considerably better than solving the deterministic equivalent for
medium and large problems. For smaller problems, solving the deterministic equivalent with OSL
is. generally faster.

5.3 Parallel Results

To investigate the efficacy of a parallel implementation of the nested decomposition algorithm, a
subset of problems discussed in the previous section were run on a network of RS/6000 model 320H
workstations, connected by a local ethernet. To make the subtrees assigned to nodes as large as
possible, problems were split in the second stage and evenly distributed across up to 8 processors.
Nodes within each tree did not share bases. Bunching was not included. (The potential effects
of these options are currently under study.) Each instance was run several times to minimize the
effects of network traffic, and the best solution times were recorded.

Parallel solution times for larger instances of 6 of the 7 test problems are shown in Table 3,
and are plotted on Figures 2, 3, and 4. Since a primary goal is to indicate preferred sequencing
protocols in multistage implementations, we only tested problems with three or more stages. The
two-stage problem, STORM, was not tested.

Table 3 also shows speedups and efficiencies for the test problems. The speedups shown are the
ratios between the serial wall clock times and parallel wall clock times. The efficiency measure is
defined as the speedup divided by the number of processors used. (An efficiency of 1.0 indicates
linear speedup.)

13



Wall Clock Time Speedup Efficiency

Problem Serial | P | Hybrid FFFB | Hybrid FFFB | Hybrid FFFB
SCAGRT7 P4S4 6 4 14 12 0.43 0.50 0.11 0.13
P4S16 | 207 | 8 99 51 2.09 4.06 0.26 0.51

P5S16 | 7361 | 8 | 1711 1218 4.30 6.04 0.54 0.76

P6S8 | NA | 8 927 280 NA NA NA NA

SC205 P5S8 47 8 24 21 1.96 2.24 0.24 0.28
SCFXM1 s3 33 2 45 28 0.73 1.18 0.37 0.59
s4 4 |2 62 33 0.71 1.33 0.35 0.67

s5 63 | 2 64 62 0.98 1.02 0.49 0.51

STOCHFOR s4 190 | 4 220 82 0.86 2.32 0.22 0.58
s5 288 | 4 302 88 0.95 3.27 0.24 0.82

s6 3713 | 4 459 105 0.81 3.55 0.20 0.89

SCSD P4S8 90 |8 74 36 1.22 2.50 0.15 0.31
P4S16 | 536 | 8 343 125 1.56 4.29 0.20 0.54

P4S32 | 3146 | 8 2756 1221 1.14 2.58 0.14 0.32

P558 | 835 | 8 560 201 149 4.15 0.19 0.52

P5S16 | NA | 8 | 9139 6957 NA NA NA NA

PLTEXP P3S6 35 | 6 9 7 3.89 5.00 0.65 0.83
P3S16 | 225 | 8 22 18 10.23  12.50 1.28 1.56

Table 3. Parallel Solution Times: Even process balancing

The results in Table 3 indicate that parallelization generally works well, but success is relatively
problem and sequencing protocol dependent. In some cases, the parallel algorithm takes a much
faster solution path than the serial code, and can give near-linear or even superlinear performance.
For PLTEXP, we found that the parallel implementation forces subproblem solutions to be near
each other, analagous to bunching. Close solutions in later stages seem to speed convergence by
making closer cuts in early stages.

Conversely, there are two cases where the parallelization loses effectiveness. Problems (such as
SCSD P4S32) with many children per parent benefit from bunching or more global basis sharing
than is possible on multiple processors. Also, problems (such as SC205 and SCFXM) with many
feasibility cuts do not parallelize well because a single bottleneck scenario determines the feasibility
cut. The empirical result of poor speedup is to be expected, since most of the work lies in creating
feasibility cuts in the earliest stages of the problem. Comparatively little work can be distributed
to independent subtasks.

Several other observations can be made from Table 3. First, the parallel implementation is not
as effective for small and mid-sized problems as it is for the larger problems. This seems natural,
since the time overhead imposed by communication and coordination delays outweighs the benefits
of parallelization for smaller problems. For large problems that do not have substantial number of
children per parent, significant speedups are obtained with the FFFB sequencing protocol.

Another advantage of the parallel implementation is to allow much larger problems to be solved.
This is a natural consequence of splitting the tree among multiple processors (and hence multiple
memories). The largest problems studied for this study were SCAGR P6S8, SCSD P4S32 and
P5S16. The latter problem’s deterministic equivalent has approximately 5 million columns and
700,000 rows. It was solved (with relative tolerances in each subproblem of 10®) in just over 2.5
hours. The only limitation to solving larger problems is availability of processors and memory in
each processor.

The results indicate that the FFFB sequencing protocol is superior to the hybrid sequencing
protocol for every problem. Waiting for a high-quality dual solution to improve optimality cuts
requires waiting for each slave task to solve its subproblem completely. (The sole exception is
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when a slave is interrupted with a new primal solution resulting from an infeasibility elsewhere
in the problem. Since most problems obtain feasibility quickly, these interruptions do not occur
frequently.)

Figures 6 and 7 show these results in more detail. The bars in each figure represent the ranges
of node process utilizations, which were measured by the ratio of wall clock time spent processing
over total wall clock time. The diamonds are the utilization percentages for the host. Ideally, each
process will have a high utilization. The slaves will be equally utilized (i.e. have a “short” bar),
and the master and slaves will have roughly equal utilizations (i.e. the diamonds and bars will be

_close to one another.)

Coordination delays can occur either among slaves or between the slaves as a group and the
master. Comparing the load balances between the FFFB and hybrid balancing profiles shows that
the biggest delays result from the latter. For every problem except SCFXM, the hybrid protocol
generally loads too much work on the slaves and not enough on the master. A major reason for
this is that the master is able to share bases among adjacent nodes. The slaves are unable to do
so, and require more work to obtain the same solutions. The slaves evidently are able to solve their
subtrees in roughly the same times, since the ranges of processor utilizations are generally tighter
for the hybrid algorithm. These observations suggest that the hybrid protocol may give the best
load balancings provided the work is distributed more evenly between master and slaves.

We investigated the effects of uneven load balancings on SCSD, the problem with the poorest
mismatch in terms of master-slave utililizations. Table 4 shows the solution times when more nodes
are added to the master and fewer nodes are assigned to slaves. Reassigning nodes to the host makes
better use of the available processors, but still gives longer solution times, since the theoretically
best possible speedup decreases substantially. As can be seen in the last two columns of Table 4
and in the lower numbered columns on the left of Figure 8, processor utilization increases, and the
fraction of best obtainable speedup increases, but the problems still take longer than with FFFB.
Also, P4532 (2 nodes per processor) shows that further efficiency gains are difficult to obtain after
some point.

Nodes Theoretical Percentage of

SCSD per | Wall Clock Time Speedup Best speedup | Best Possible
Problem | Serial | Slave | Hybrid FFFB | Hybrid FFFB | Hybrid FFB | Hybrid FFFB
P4S16 536 2 343 125 1.56 4.29 8 8 20% 54%
536 1 532 478 1.01 1.12 2 2 50% 56%

P4S32 | 3146 4 2972 1187 1.06 2.65 8 8 13% 33%
3146 3 2551 2566 | 1.23 1.23 291 291 | 42% 42%

- 3146 2 4771 4314 0.66 0.73 | 1.78 1.78 37% 41%

Table 4. Parallel results with uneven node partitionings

As discussed in Section 3, the hybrid protocol on a serial machine will minimize the number of
restarts needed to solve the entire tree. (The number of restarts is half the number of messages
passed between master and slave.) When the solution path varies due to communications delays,
this effect cannot be guaranteed. We measured the number of restarts for each problem and found
that the differences in restarts between the two protocols can be substantial.

Figure 9 plots the number restarts for each problem. The two problems with the most dramatic
differences are SCSD and STOCHFOR. The plots for SCSD suggest that adding more scenarios
per period does not substantially change the number of restarts, but adding a stage adds many
more restarts to a problem solved with the FFFB protocol. All of the STOCHFOR problems have
the same number of stages and differ mainly in the number of nodes in the last few stages. In light
of the benefits of bunching for this problem, the decrease in the number of restarts suggests that
adding scenarios past a certain level of detail does not substantially change the time necessary to

15



solve the problem. Problems with very few optimal bases (such as SCAGRT) or very many optimal
bases (such as PLTEXP) appear to be insensitive to the choice of protocol.

The last study was undertaken to investigate the effects of different numbers of machines on
parallel performance. Two problems were split evenly across subsets of the eight IBM RS/6000
workstations. Our results, shown in Table 5, show that efficiencies are higher for smaller numbers
of processors.

Problem Serial Time | Machines | Parallel Time | Speedup | Efficiency

SCAGRT - P5S16 7361 4 2005 3.67 92%
7361 5 1824 4.04 81%

7361 8 1260 5.84 73%

SCSD - P4S16 536 2 420 1.28 64%
536 3 307 1.75 58%

536 4 216 2.48 62%

536 8 132 4.06 51%

Table 5. Different Numbers of Processors

As might be expected, less communication delay and better coordination occurs with fewer
processors. Also, the master and slaves spend less time idle. The far right portion of Figure 8
confirms that load imbalances are reduced for smaller sets of processors. These figures suggest that
the efficiency of the nested decomposition algorithm is robust for loads down to a single node in
the second stage per processor, as long as the work is evenly balanced.

6 Conclusion

This study has shown that the nested decomposition algorithm for solving multistage stochastic
linear programs can effectively be parallelized without substantial modification. The parallel im-
plementation takes advantage of the independence of subtrees within the solution tree to distribute
the solution work among different slave tasks. Each slave task requires only a minimum of com-
munication with a master task to solve the entire problem. As a result, the nested decomposition
is well-suited to networks with comparatively slow communication times.

Several design choices are possible when implementing the nested decomposition algorithm. We
focussed on the sequencing protocol for moving between stages, which in previous papers [11] has
been shown to be a major determinant in solution speed. A fast-forward, fastback and a hybrid
protocol were implemented and compared on several practical problems.

Computational tests suggest that the FFFB protocol is fastest both for serial and farallel en-
vironments. The hybrid protocol appears better suited for parallel environments with excessively
slow communications or with one machine which dominates the others in computational power.
If the FFFB protocol is used, good speedups are possible when the problems do not have many
children per parent or require many feasibility cuts. In some cases, near linear or even superlin-
ear speedups were observed. The parallel implementation also enables the solution cf extremely
large-scale problems ranging up to almost 5 million variables and 1.5 million constraints.
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Figure 2. Comparison of solution times on SCAGR7.
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Figure 7. Load balancing profiles with Hybrid.
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