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Abstract

We present a quadratic recourse representation of the two-stage stochas-
tic linear problem. Unlike the usual linear recourse model, it is differentiable
with respect to the first stage decision variables. This offers the possibility
of applying high convergence rate methods to solve the two-stage problem.
We show that the quadratic recourse function approximates the linear re-
course function (and the corresponding solution of the two-stage problem
with quadratic recourse converges to the solution of the two-stage problem
with linear recourse) as a parameter k — oo and another parameter ¢, — 0.
We also give a bound for this approximation.
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1 Introduction

One of the main paradigms of stochastic programming is represented by the two-
stage stochastic linear program formulated as a master problem and a recourse
problem [8, 9]. The master problem is

min f(z) = c'z + 9(z) 4
s.t. Az =b (1)
>0,

where £ € R" is the first-stage decision vector, ¢ € R" is the cost coefficient vector
for z, Az = b and = > 0 are the linear constraints on z, with b € ®™ and A € R™*",

®(z) is the expected value of the linear recourse function, ®(z) = E(¢(z, €)),
where ¢(z, &) is defined by the recourse problem

¢(z,§) = min (q(£))'y
st. Wy
y

T(€)z - h(¢) (2)
0.

VAN

Here £ is a random variable of dimension r with distribution P(-), so by definition,

9(z) = E(9(.)) = [ #(z,)P(de). (9

The vector, y € R°, is the second-stage decision vector, h € R" is the demand or
resource vector, and T' € R™*" is a technology matrix.

The usual origin of the constraint equations in (2) is the desire to satisfy the
condition T'(§)z — h(§) = 0. However, because of the random nature of both T and
h. T(§)x — h(€) does not equal zero in general. Thus Wy is introduced to represent
the “discrepancy” (where W € R™*%) and ¢ € R%, ¢ > 0, is the associated cost
coefficient vector for non-zero y.

To simplify our discussion, we only discuss in detail the fixed recourse problem:
when W does not depend upon £. We also assume that T and q are independent
of £ and h = &, conditions corresponding to uncertain resource levels but known
prices and technologies. Equation (2) then becomes

¢(z,§)= min q'y
st. Wy

y

Tz —¢ (4)
0.

(AVAN||

For convenience, we let £ be a discrete random vector, so that

O(z) = o(z,&)p;, (5)

j=1

where p; > 0 and Z§-=1 pj = 1. Our results can be readily extended to continuous

€.
There are two disadvantages associated with the two-stage stochastic program
with fixed recourse represented by equations (1), (5) and (4). First, generally ® is
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nondifferentiable with respect to z, which prevents the use of algorithms with high
rates of convergence. Secondly, (4) may not be feasible for some z. (A problem with
(4) feasible for all z is called a problem with complete recourse. If (4) is feasible
for all z satisfying the linear constraints of (1), then it is called a problem with
relatively complete recourse.) :

To address these difficulties we consider below a problem with a quadratic re-
course function ¢ (z, &), where k > 0 is a parameter. This quadratic recourse func-
tion is always continuously differentiable, which paves the way for using algorithms
with high rates of convergence to solve the two-stage stochastic program.

Two-stage quadratic recourse models have been proposed before. In particular,
Rockafellar and Wets discuss the extended linear-quadratic problem (ELQP) [18].
ELQP introduces additional coefficient matrices but there are no direct links be-
tween its solutions and the solutions of the two-stage stochastic program with linear
recourse. On the other hand, our quadratic recourse function will have a direct link
with (4) in that it is proposed as an alternative way to model the original linear
recourse problem. We show that the quadratic recourse function ¢ (z, €) converges
to the linear recourse function ¢(z,£), and the solution of the two-stage stochastic
program with quadratic recourse converges to the solution of the two-stage stochas-
tic program with linear recourse respectively, as k — 0o. An error bound is also
given for this convergence.

The remaining part of this paper is as follows. In Section 2 we present the
quadratic recourse function ¢x(z,€), discuss its meanings and point out its differ-
ences from the ELQP model. We discuss its differentiability properties and algo-
rithmic meanings in Section 3. In Section 4 we prove that it converges to the linear
recourse function as k — oo. An error bound is given for this convergence and &
simple example is presented to illustrate the use of this bound. We also show that
the solution of the two-stage stochastic program with recourse ¢x(z, £) converges - o
the solution of the two-stage stochastic program with recourse ¢(z,&). In Sectiim
5 we make some concluding remarks.

2 The Recourse Function

We now consider an alternative to (1), (4) and (5) that has the same second-
stage optimal solution under our nonnegative objective assumptions. We do this
by minimizing the square of the recourse function; i.e., we solve

¢*(z,§) = min (¢'y)?
st. Wy

y

Tr—¢ ‘3)
0,

AV

for ¢ > 0.

We could use this function directly in an optimization procedure, but more
than first-order differentiability is needed for high convergence rate methods. We
therefore approximate the problem represented in (6) by the following parametrized



quadratic recourse function:
¢i(z,6) = min (¢'y)* +k[Wy - Tz +¢|* + e (7)
st. y>0,
~ where ||v]|> = v'v is the 2-norm of the vector v, and k and € are two positive
parameters. We also assume ¢ (z,£) > 0. Thus, there is a clearly defined ¢, that
satisfies equation (7). Correspondingly, (1) and (5) are replaced by

min fi(z) = c'z + Px(x)

S.t. Az =b | (8)

>0,

where 1
®i(z) = E(dx(z,€)) = Zcbk(f,ﬁj)ivj- (9)

We may think of (7) as an alternative representation of the situation expressed by
the equations of (6). Instead of minimizing (g*y)? with the constraint Wy = Tz —¢,
we minimize the weighted sum of (¢'y)? and ||[Wy — Tz + £||%, with k reflecting
the relative importance of satisfying the Tz — £ = Wy constraints compared to
minimizing (¢'y)?. The additional parameter ¢ is added to ensure that ¢ > ¢; > 0.
This will be useful for establishing differentiability properties of ¢x. [We could also
replace k£ by an n x n diagonal matrix K such that each diagonal element of K
“weights” a component of Wy — Tz + €. In this case, (7) would have the form

¢i(z.6) = min (¢'y)*+ (Wy Tz +&)'K(Wy Tz +€) +ex
s.t. y>0.
Again. for simplicity, we restrict our discussion to the form (7), although the results
below can be shown to hold under the conditions ||K|| — oo and ¢; — 0.]

The idea of converting the objective function of (2) by a quadratic form is not

new. For example, the ELQP model considers the dual problem of (4):
¢(z,§) = max (Tz-§)'u
st. WTu<y, | (1,1)

where w is the dual variable vector. ELQP adds a quadratic term fu'Hu to (11),
to obtain

(10)

¢n(z,€) = max (Tz-§&)'u+ su'Hu
s.t. WTu < gq,

where H is an n X n positive definite symmetric monitor matrix.

As aresult of formulations such as (12), superlinearly convergent algorithms have
been developed by Qi and Womersley [16], Chen, Qi and Womersley [5], and Birge,
Chen and Qi [2]. However, the model represented by (12) has no immediate relation
to the original linear recourse model (4), and, in particular, it is hard to interpret
the "meaning” of the matrix H. Moreover, although we may let |H|| — 0 so that
oy — ¢, this results in computational instability in the second-order algorithms
used to solve the two-stage recourse problem with recourse ¢y.

On the other hand, as we show below, when we solve the quadratic version of
the original problem, not only does ¢, — ¢ as k — oo, but the algorithms used to
solve the problem represented by (8), (9) and (7) are stable as kK — oo.

(12)
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3 Differentiability of the Quadratic Recourse Func-
tion

By the theory of linear programming, ¢(z,€), defined by (4), is not in general
differentiable with respect to z. This makes it impossible to apply superlinearly
convergent methods, such as the Newton method, to solve the stochastic program
defined by (1), (4) and (5). Classically, superlinear convergence of a Newton method
for solving a nonlinear optimization problem requires that the objective and the
constraint functions of the nonlinear optimization problem are twice continuously
differentiable. In [14], based upon the superlinear convergence theory for nons-
mooth equations [11, 13, 15], Qi developed superlinearly convergent generalized
Newton methods for solving a nonlinear optimization problem, whose objective
and constraint functions are SC!, (i.e., they are continuously differentiable and
their derivatives are semismooth [12]).

In general, an SC! function is not twice differentiable. A nonlinear optimization
problem with an SC! objective function and linear constraints is called an SC!
problem [12]. It has been shown that the ELQP is an SC! problem (14, 16]. The
superlinearly convergent generalized Newton method proposed in [14] was globalized
by using a line search and the trust region strategy in [12] and [7] respectively. These
methods were applied to the ELQP in [2, 5, 16].

In this section, we will show that the two-stage stochastic program defined by (8),
(9) and (7) is also an SC! problem. This opens the way to apply the superlinearly
and globally convergent generalized Newton method [14, 12, 7, 2] to solve this
problem. Before doing this, we briefly review the definition of semismoothness of a
vector function and related concepts of generalized Jacobians of vector functions.

Suppose that F' : * — R™ is a Lipschitz vector function. By Rademacher’s
theorem, F is differentiable almost everywhere. Let Dp be the set where F is
differentiable. At any point z € R", the B-differential [11, 13] of F' at z is defined
. by
0aF(z) = { lm VF()},

yeDp

which is a nonempty set. The Clarke subdifferential [6] of F at z is
0F(z) = conv dgF(z),
which is a nonempty convex set. If for any h € R",

Veal}glm){Vh} (13)
tlo
exists, then we say that F' is semismooth at z. In this case, F is also directionally
differentiable at = and F'(z; h) equals the limit in (13). The concept of semismooth
functions was introduced for functionals by Mifflin in [10] and extended to vector
functions by Qi and Sun in [15].
The following theorem establishes the SC' property of the stochastic two-stage
problem with quadratic recourse.



Theorem 1 The stochastic ﬁrogram (8), where ®y, is defined by (9) and (7), is an
SC! problem.

Proof. Since ¢? > ¢ > 0, it suffices to prove that ¢? is an SC! function with
respect to z. Define z = Tz — £ and ¢x(2) = ¢%(z,€). Then rewriting (7) gives

Yr(z) = min (¢'y)? + k|[Wy — 2| +

s.t. y 2> 0. (14)

If ¢y, is differentiable with respect to 2, then ¢2 is differentiable with respect to =
and

Ve0i(z,€) = TV 4 (2).
Let 2 = (2240 € R+, W = ("), and u =Wy € R+ Then U = {u =

Wy :y > 0} is a polyhedron in R7*1,
Define g : R — RU {+o0} by

(u)_{u‘u, fuel,
= +00, otherwise.

Then g is a closed proper extended-valued strongly convex function.
We now can write (14) as

Ye(2) = k2tz— meagc{itu —u'u} + & (15)
= kztz—g%(22,0) + ¢, (16)

where ¢* is the conjugate function of g. By Theorem 23.5 of [17], since g is strongly
convex. ¢* is finite and continuously differentiable everywhere and its derivative at
% is the unique maximum point in the maximum operation in (15). Furthermore,
the derivative of g* is Lipschitz. Actually, it is not difficult to see that the unique
maximum of the maximum operation in (15) is piecewise linear with respect to Z.
Hence. the derivative mapping of g* is semismooth [15]. This shows that 1, hence
®y. is an SC! function. Therefore, the stochastic programming problem (8), (9)
and (7) is an SC! optimization problem. O

Now we can apply the generalized Newton (SQP) method proposed in [14, 12, 7]
to solve (8). With an adequate nonsingularity condition, this method is superlin-
early and globally convergent. In the next section, we will show that 9, (z) con-
verges to ¥(z) = ¢*(x,€) as k — oo, and give an error bound. This shows that the
generalized Newton method is also stable for this problem.

It is noted that, although g¢* is convex, ¢ and ® are not convex in general. In
fact. by (15), if W is a nonnegative matrix, then v is the difference of two convex
functions of Z.

If P is continuous, with an argument similar to that in [3] we can show that
®, is twice differentiable. Then superlinear convergence can be established for
quasi-Newton methods solving (8).



4 Approximation to the Linear Recourse Func-
tion

In this section, we show that vy (z) approximates 1(z) monotonically from below
when k£ — o0, and give an error bound for this approximation.

Theorem 2 Suppose that (4) is feasible for z = Tx — €. Then for any 0 < k < K,
we have

VIR, 6) — e < /0% (2,6) — ek < 8(3,€).

Proof. Let y, and yk be solutions to the minimum operations in the definitions of
Yr(z) and ¥k (z) by (14) respectively. Let y* be any feasible solution of (4). Then
we have

Ue(z) — e = (q'w)® + k[Wyk — 2|

< (qd'yx)? + k||Wyk — z||* by optimality of v

< (¢'yk)* + K||Wyk — 2||* since k < K

= Yk(2) —ex

< (¢'y")* + K||Wy* - 2||* by optimality of yx

= (g'y*)? by feasibility of y*

= Y(2). (17)
The conclusion of the theorem follows by taking square roots (and noting that
q'y > 0). O

Corollary 1 In Theorem 2, as k — oo,
Wy — 2]l =0,
where yy s the unique solution of the minimum operation in the definition of Vi (z).
Proof. By step 2 of the proof of Theorem 2,
0 < k[[Wye - 2[* < () = (g'we)” < ¥(2) < oo.

The conclusion follows since ¥(z) is finite. OJ
The next theorem shows that as k — oo, ¢x(z, ) converges to ¢(z,€) and gives
an error bound.

Theorem 3 Suppose that () is feasible for z = Tt—§ and a is the mazimum value

of 2-norms of optimal dual solutions of (4). Then, \/¢2(z,€) — ex monotonically
converges to ¢(z,€) from below and, for k large enough,

O<¢(I7£)_ Qﬁ(l‘vg)_fk

«
< P(z.6) T (18)



Proof. Let y;, and y* be the same as in Theorem 2. Then, y; solves

$2(z,€) — e = min ¢y

s.t. Wy = Wyk (19)
y =2 0
while y* solves
#(z,£) = min g¢'y
st. Wy = z (20)
y 2 0

By Corollary 1, (19) can be regarded as a perturbation of (20) with a small change
of Wy, — z on the right hand side of the constraint of the linear program (20). By
the perturbation theory of linear programming, we have

[V i(z,€) — ek — 6(z, )] < oW — 2.

By the proof of Corollary 1,

t, *

qy

7

VoR(z,€) — e < ¢(z,€).

Combining these three inequalities, we have (18). The last conclusion follows. [J

Wy — 2| <

By Theorem 2,

Corollary 2 Ife — 0, then ¢r(z,€) converges to ¢(z,&).

Proof. The conclusion follows mfrom (18) and Theorem 2. []
Example. To see how these bounds appear in practice, consider the following
simple example (where €, = 0 for illustration).

#(z,§) =min  y +y2 + y3

S.t. Y1+ Y3 = 2
21
Yo+ ys3 = 2y (21)

Yy > 0

Figures 1 and 2 show convergence of ¢, for z = (1,0.5) and z = (1,1). Note that
the convergence is somewhat faster for 2 = (1,1). In this case, the dual solution
to (21) is not unique and has the same maximum norm, o = 1, as for z = (1,0.5).
The convergence behavior for 2 = (1,1) may benefit from a smaller norm for the
average of the norms of dual solutions.

Theorem 3 also gives us the condition for the optimal solutions of (7) to converge
to an optimal solution of (2). We use the following two results from the theory of
epi-convergence ([1]). A sequences of functions, {f"}, epi-converges to f, if the
epi-graphs of f¥, converge as sets to the epi-graph of f.
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Figure 1: Convergence of ¢, to ¢ for z = (1,0.5).
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Figure 2: Convergence of ¢ to ¢ for z = (1,1).




Theorem 4 ([{], Theorem 2.3.) Suppose a sequence of functions, {¢*,v =1,...,},
epi-converges to g, then limsup,_,_(inf ¢”) < inf g, and, if z* € argming”* for some
subsequence, {g*}, of functions from {g**}, and = = limy z¥, then

T € argming, and li}Icn(inf g”) =inf g. (22)

The next result shows that the sequence {¢x} converges to ¢.

Theorem 5 ([1], Proposition 3.12). Suppose a sequence of functions, {g*,v =

., }, pointwise converge everywhere to g, i.e., lim, ¢*(z) = g(z). If the g* are
monotone increasing, or monotone decreasing, and g is lower semi-continuous, then
g" epi-converges to g.

The following theorem follows immediately from these observations.

Theorem 6 ([4/, Theorem 2.7.) Suppose {g,¢",v = 1,...} form a collection of
functions defined on R™ x =, with value in RUoco, for allz, £ — g(z,£) is measurable,
if Pl€lg(z.€)) < oo] =1, then [z g(z,§)P(d€) < oo, and g*(z,&) epi-converges to
g(r.€) for all all € € =, and all g* are absolutely bounded by integrable functions,

then the ezpectation functionals, [= g*(z,&)P(d€) < oo, epi- and pointwise converge
to J=g(z,€6)P(d€) < oc.

Now, we can state our result for convergence of the optimal solutions.

Theorem 7 Suppose that € has finite second moments, let {z*, 7%} be a sequence
of optimal primal-dual solution pairs to (8), where the multipliers ™ are associated
with the linear constraints. Az = b. If {z*,7*} has a limit point, (z*,7*), with

¢, — 0. then (z*.7*) is an optimal primal-dual solution pair of (1). '

Proof. If £ has second moments, then it can be shown easily that ¢ is abso-
lutely integrable (see, for example, ([8])) and that, if P[¢|¢(z,€)) < o] = 1, then
Jzo(r.&)P(d€) < oo. The extensions of these results to ¢, follow, for example,
from Theorem 3.

To invoke Theorem 6, let ¢k (z, €) = Vi (2.€) — e and define g*(z, ) = @x(z, £)+
& ar=b.r>0)(T), where the indicator function, és(z) =0,ifz € S, and +ooif z & S.
Using the bound in Theorem 3 and the result from Theorem 5, we then meet the
conditions for Theorem 6. If we replace fy in (8) with fi, where ¢; is replaced by
ox. then the expectation functionals fi converge. Using Theorem 4, we have that
limit points of minimizers of fj are optimal in (1).

Next. we must relate fi to fi. Note that the optimality conditions for f; yield
Iy and 7 such that

¢+ V(i) — LA = pr > 0, pLiy = 0. (23)
For f.. the optimality conditions are:

c+ VO (zi) — 1A = pp > 0, pizy = 0. (24)
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Note that for any z such that ¢ is finite for all £, we have V¢, continuous and,

thus,
Vei(z) = [Vr(z,§)P(dE)
= [ #2486 (z, ) P(df) (25)
= AkVék(x),

where A, — 1 as k — oo. For any limit point, (Z,7) of (zx, k), we must have,
from (24): ) . :
c+Vd(Z)-7A=p>0,p'1=0, (26)

where &(z) = limg ®x(z). Thus (Z,7) forms an optimal primal-dual pair in (8) with
® replacing P, and (Z,7) must be optimal in (1) by the argument above. [

5 Conclusions

We present a quadratic approximation of the stochastic program with linear re-
course. The approximation uses a linear-quadratic loss function similar to that
used in decision theory. It also allows the use of superlinearly convergent methods
that cannot be directly to the linear recourse problem. We showed that the approx-
imation converges and that solutions of the approximation also converge to those
of the original problem.

Our interest in this form of quadratic approximation extends beyond an advan-
tage for fast computational methods. We believe that the approach may also enable
further approximations using known moments of the relevant random variables.
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