REAL-TIME ADAPTIVE SCHEDULING IN
FLEXIBLE MANUFACTURING SYSTEMS

John R. Birge
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, MI 48109

August, 1985

Technical Report 85-26

Real~Time Adaptive Scheduling in Flexible Manufacturing Systems

John R. Birge

Department of Industrial and Operations Engineering
The University of Michigan

Ann Arbor, MI 148109

Abstract: An efficient scheduling method for flexible manufacturing
systems must be able to respond to system disruptions. These
disruptions may involve resource unavailability and demand changes. We
consider an approach to respond to such disruptions in real time. The
goal of the response is to minimize costs. We place particular emphasis
on costs due to lateness.

1. Introduction

Flexible manufacturing systems (FMS) include automated material
handling capabilities and computer<controlled machines that can perform
various tasks. The variety of paths that a part can take through this
network makes the analysis of such systems complex. This complexity is
compounded by the possibilities for machine and other resource failures
that dynamically change the system state. System flexibility, however,
allows for quick response to changes in the system state. In this paper,
we describe a general method for responding to these state changes.

In our analysis, we concentrate on the dynamic scheduling of parts
on machines. We assume that this process is one part of a hierarchical
decision process, as in Kimemia and Gershwin [1983], Hildebrandt and Suri
[1980] and Morton and Smunt [1985]. The higher layers of control have
decided on system layout, aggregate production and an initial schedule
for all parts up to a certain horizon to follow. This pre<schedule is
assumed to consider inventory, set<up and handling costs. The dynamic
scheduler attempts to return from a disruption state to the pre<schedule
in real«time and to minimize costs which emphasize tardiness. We,
therefore, assume that batches of finished parts have definite shipping
dates and that lateness costs are quantifiable (for example, increased
freight and expedition charges).

This viewpoint contrasts with other scheduling analyses, such as
Gershwin, Akella, and Choong [1984] and Hildebrandt and Suri, that use
control techniques to achieve generally high production rates and low in<
process inventories. It is also distinct from planning and loading
analyses as in Stecke [1983] and Wittrock [1984]. We consider each part
as a member of a shipping batch of finished parts or assemblies. This
position is consistent with Morton and Smunt and the methods in Morton,
Rachamadugu, and Vepsalainen [1984]. Our approach is, however, to allow
certain parts of the pre~schedule to remain fixed while others are
changed. This general idea also appears in Chang, Sullivan, and Bagchi
[19841].

The basic model and its justification are given in Section 2 A
method for calculating costs for the scheduling algorithm's use is
presented in Section 3. Section 4 discusses the definition of problem
sets on which to apply the scheduling algorithms. Section 5 describes
some implementation questions, and Section 6 presents conclusions.

2. Match«up Scheduling
The basic model assumes a pre<schedule that would be followed in the

absence of disruptions. In implementing this pre-schedule, a disruption
occurs. The following procedure is then invoked.

Match<Up Real<Time Scheduling Algorithm (MURTSA)

1. Determine the effects of the disruption and define new internal
cost parameters.

2. Determine a portion of the pre<schedule to release.

3. Reschedule the released operations to minimize costs.

Some iteration may occur among the three steps as different schedules are
assessed. Each of the steps is discussed below. Note that "disruption"
can be defined as any change in system state so that MURTSA can be
constantly operating and optimizing over some subset of parts and
resources.

Economic turnpike theory provides a theoretical justification for
MURTSA (see Bean and Birge [1985]). If the pre<schedule is optimal for
an infinite horizon, the schedule has sufficient slack to recover from
disruptions, and disruptions are well<spaced, then it is optimal to
follow the MURTSA objective of returning to the pre<schedule in order to
minimize a variety of costs, including tardiness. The time for this
match<up is not specified, but bounds may be obtained for fixed times to
match up.

These theoretical conditions are not always present in practice but
MURTSA is flexible and allows for a range of responses depending on the
problem definition in Step 2 and the cost definition in Step 1. The next
sections describe these steps and possible implementations.

3. Calculating Internal Costs

The costs for lateness are assumed here to dominate other costs in
determining an optimal return to the pre<schedule. We assume also that
tardiness costs only occur at shipping for finished parts. Since many
parts may be combined into a single assembly for shipping and since the
FMS allows for parts to interact in many ways, the lateness of a single
part or part<batch may affect several shipping quantities. We present a
project network for determining these effects.

For simplicity, we assume that a set of parts is processed together
as a tray or transfer batch. The transfer batch may consist of different
part~types, but it is assigned to a specific shipment or shipments that
have due dates. Tardiness costs are incurred if the shipment is sent
after its due date. These costs may vary according to the amount of
tardiness as alternative methods of shipping become necessary.

The goal of Step 1 of MURTSA is to determine the costs that would be
incurred if an operation of a transfer batch were delayed. This
definition assumes that some portion of the schedule is fixed and that
costs may be incurred on all shipments. The costs are calculated by
determining a vector for every operation that represents its earliest
possible start time and its latest possible start time before a shipment
is delayed. For operation i of transfer batch j, this vector is

1
(eij’ '

K
lj’ o0 0y Qﬂi\j), (1)

where e; . is the earliest time i can start, 21- is the latest time i can
start begore shipment k is delayed, and K shipments may be affected by
ij. (In practice, a pointer indicating the shipment indices of the K
lowest lij values would be stored.)

The vector in (1) is defined by a project network as illustrated in
Figure 1. We assume transfer batches T1, T2, and T3 are used in
shipments S1 and S2. T2 is scheduled before T3 on machine A, and T1 is
scheduled before T2 on machine B T2 is processed on B after processing
on A and some material handling. The solid arcs correspond to processing
on machines A and B and to material handling (MH). Arc lengths are
processing times. The dotted arcs correspond to scheduling precedences.
Early times are calculated by proceeding forward in the network, and late
times are processed by backward recursion. The due dates for S1 and S2
are both assumed to be 5.

T1 T2 T3
0 (0,1,1) (o} (0,010) '»O (21“93)

(2,2,2) o=~

MH | 1

v
(2’3,3) 0 L.‘:‘-‘.‘.l-l-l-l—l-l-l-ﬁ‘-l-hl-l-‘-) 0 (3 3 3)

Nm\
(5,«,5)

(5,5,<) o o

Figure 1. Cost Network.

Note that T2 in Figure 1 is on the critical path for both S1 and Sz
Any delay in processing T2 results in both lateness costs for S1 and S2.
This information would be used to schedule T2 in the event of a
disruption to minimize the tardiness effect.

In using the project network definition after a disruption, the eij
values may pass certain li' values. In this case, some part of the
schedul e must be released in order to allow for tardiness avoidance.
Releasing part of the schedule is equivalent to eliminating dotted arcs
for schedule precedences., After the elimination of these arcs in Step 2
in MURTSA, new values of e. ij and 2 . are calculated. These values are in
turn used in determining a cost structure used by the detailed scheduling
algorithms.

The tardiness cost structure is not necessarily a piecewise linear
function of an operation's completion time. The possibility for machine
failures may increase costs before the deterministic levels are passed.
Expected tardiness costs should then be the objective function. These
functions become nonzero for each operation sometime before the first
operation due date or late time. They rise until they become linear
after all due dates are passed (see Figure 2). Expected tardiness may be
approximated

Tardiness
P

+ t completion time

£1 2
Expected Tardiness

P
= 1 ==~ completion time
g 22

Figure 2. Tardiness and expected tardiness costs.

by other piecewise linear functions, or it may incorporated explicitly
into a scheduling algorithm.

b, Defining Problem Sizes and Characteristics

Step 2 of MURTSA involves the definition of a set of operations and
resources to be rescheduled. This set represents the portion of the pre<
schedule which is released. The object in defining the new problem set
is to allow for a smooth transition back to the pre<schedule turnpike.
The problem should be large enough to allow for sufficient adjustments to
reduce disruption effects, but it cannot be too large for the scheduling
algorithms. Alternatives range from using dispatch rules that schedule
one operation at all machines to a single machine scheduling algorithm to
schedule all operations at a single machine. Some intermediate problem
level between these extremes is sought that combines good solutions
without excessive computational burden,

Possible methods for selecting a problem set of operations are based
on including additional machine pools to the pool where the disruption
occurred. Machine pools are defined here as groups of identical machines
with identical setup requirements for all alternative tools. One method
for finding additional pools to include in the problem set is to use
information from the bill<of<«material. If parts generally flow from one
pool to another, then we may consider the preceeding or succeeding pool
for inclusion with the disrupted pool. An example illustrating the use
of this technique appears in Figure 3 Suppose Machines A and B form a
pool and Machines C and D form a separate pool. Parts 1, 2, 3, and 4
must be processed on the AB pool followed by the CD pool. Part 5 is only
processed on the CD pool. Due dates and processing times are given on
the figure. Note that a two<unit downtime for A can be accommodated by
the AB pool alone. A four<unit downtime for A requires inclusions of the
CD pool.

Current Schedule

1
A
T T T T T I)
y
B 3
' T I | T)
1 2 5
C
r J I T I T 1
4
D 3
T T T T T T T]
Time 0 1 2 3 4 5 6 7 8 9 10
Part Due: 1 3 2
y
5
A DOWN 0 TO 2
A DOWN 2 4
1 T 1 T T 1]
T T 1 | | | l 1

A DOWN O TO 4

A DOWN 2
T T T T T T T 1
B 1 3 4
T T 1] T] |
C 1 5 2
T T T T T 1]
D 3 4
| I T | T T T 1

Figure 3. Succeeding Level Scheduling.

Other choices for pools to include in the problem set can involve
information about the utilizations of the pools, their reliability, the
slack times of operations on the pools, and measures of the criticality
of the pool. Preliminary investigations have indicated that a good
strategy is to choose the pool that would have the most operation
tardiness if no schedule adjustments were made. This measure seems to be
a good indicator of a pool's criticality. The tardiness can also be
found easily using the project network described above.

The other decision in problem set definition concerns the length of
the horizon and the number of operations to include in the rescheduling
effort. This horizon should again be long enough to allow for match<up,
but short enough to allow for adequate computation. One procedure for
finding an initial horizon is to subtract processing times from usable
machine time and to increase the horizon until that difference is
positive for the processing times of all operations released from the
pre~schedule. The usable machine time in this case does not include
downtime or necessary idle time. A match<up is possible in this horizon
if pre~emption is allowed. If pre-emption is not allowed, then some
shifting of scheduled times beyond the horizon may be necessary. In
either case, the cost of the match«up can be assessed and evaluated to
determine whether to increase the horizon.

5. Implementation

The steps of MURTSA should be executed interactively so that
information from the schedule~maker in Step 3 can determine whether
additional problem sets and cost structures need to be defined. The
operation of MURTSA can be continual with every problem set solution
being improved until another disruption occurs. In this mode, the next
scheduled operation always remains fixed in the MURTSA schedule and is

not admitted to the problem set definition. When an operation is
initiated, then the subsequent operation from the current best schedule
found by MURTSA is fixed and MURTSA continues to solve within its current
problem set. This process allows the scheduling algorithm to take
advantage of real~<time information and to use the capacity of the host
processor.

The use of an incumbent solution that can be partially implemented
at any system state change suggests methods which improve from feasible
solutions. These methods may include heuristic orderings using dominance

relationships, simple interchanges to find local optima, branch<and<bound
procedures that find feasible solutions quickly, and simulated annealing
(see, e.g., Kirkpatrick, Gelatt, and Vecchi [1983]). This last approach
may be especially useful in MURTSA because it can investigate numerous
local optima and take advantage of all processing time., It may even be
modified to weight changes in various parts of the pre<schedule to
reflect criticality and to allow for a wider range of solutions.

6. Conclusions

Real~time adaptive scheduling of an FMS requires a flexible approach
that takes advantage of the system's flexibility and considers inherent
uncertainties in system status. A general approach as part of a
hierarchical decision process was presented. The basic algorithm MURTSA;
attempts to guide a schedule back onto a turnpike path that would be
followed under ideal conditions. The implementation of this approach
requires objective and problem definition. Some indications were given
for defining these characteristics and for implementing the overall
procedure.

References

Bean, J.C. and J.R. Birge [1985], "Match<Up Real<Time Scheduling",
Department of Industrial and Operations Engineering, The University
of Michigan, Technical Report 85<22.

Chang, Y<L., R.S. Sullivan, and U. Bagechi [1984], "Experimental
Investigation of Quasi<Realtime Scheduling in Flexible Manufacturing
Systems", in: Proceedings of the First ORSA/TIMS Special Interest
Conference on Flexible Manufacturing Systems, pp. 307<312

Gershwin, S.B., R Akella,-and Y. Choong [1984], "Short Term Production
Scheduling of an Automated Manufacturing Facility", Laboratory for
Information and Decision Sciences, Massachusetts Institute of
Technology, Report LIDS<FR<«1356.

Hildebrandt, R.R. and R. Suri [1980], "Methodology and Multi<Level
Algorithm Structure for Scheduling and Real<Time Control of Flexible
Manufacturing Systems", Proceedings of the 3rd International
Symposium on Large Engineering Systems, pp. 239<244,

Kimemia, J. and S.B. Gershwin [1983]," An Algorithm for the Computer
Control of a Flexible Manufacturing System", IIE Transactions 15,
pp. 353<362.

Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi [1983], "Optimization by
Simulated Annealing", Science 220, pp. 671<680.

Morton, T.E., R.M. Rachamadugu, and A. Vepsalainen [1984], "Accurate
Myopic Heuristics for Tardiness Scheduling", GSIA Working Paper 36«
83«84, Carnegie~Mellan University.

Morton, T.E. and T.L. Smunt [1984], "A Planning and Scheduling System for
Flexible Manufacturing", in: Proceedings of the First ORSA/TIMS
Special Interest Conference on Flexible Manufacturing Systems, pp.
313«326.

Stecke, K. [1983], "Nonlinear Integer Production Planning Problems",
Management Science 29, pp. 273<288.

Wittrock, R [1984], "Scheduling Algorithms for Flexible Flow Lines", IBM
Research Report RC 10899, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY.

