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Abstract

Stochastic programs with continuous random variables are usually
approximated by programs with discrete valued random variables approxima-
ting the continuous distribution. Algorithms can be applied to these:
problems and bounds can be found on the value of the solution of the
original problem. In order to obtain a more precise bound on the solution
value, the problem is generally re-~solved with a finer discrete approxima-
tion. In this paper, we present a method for achieving optimality within
any pre~defined error bound that can be applied directly to the L-shaped

and generalized programming algorithms for stochastic linear programs.






1. Introduction

A variety of algorithms can be applied to stochastic linear programs
with recourse and with discretely distributed random variables. When
these variables are allowed continuous distributions, however, the methods
are generally unable to solve the problem efficiently in a direct imple-
mentation. The standard procedure as in Kall [4] is to approximate the
continuous random variables using a discrete distribution and solve the
problem iteratively ;aking finer and finer partitions of the random
variable in the approximation. We give below a method that solves the
continuous problem in a single application of two algorithms.

We consider the problem:

minimize z = cx + Q(x)
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where Q(x) = Eg[Q(x , £)] and

Q(x, &) = min qy
subj. to Wy = § - Tx
y 2 0.

This problem represents the standard stochastic linear program with
recourse in which random variables are restricted to the right-~hand-side

coefficients £ ¢ E.



The difficulty in finding Q(x) is that the solutions of an infinite
number of subproblems (2) may be required in order to calculate the
expectation. Several methods have been suggested for approximating Q(x)
(viz. [1], [2], [3], [5]). These methods may be incorporated into our

modification to solve (1) in a single pass procedure.

We assume that we can obtain successively better approximations of

0
0(x) by upper and lower bounding, We assume there exist sequences

{Q.i(X)} and {Q.llz(x)} such that
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and lim Qk(x) = Q(x)
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for all x such that Ax = b, x > 0, These approximations.may be found by

discretizations of =,

2. The L-Shaped Algorithm

We first consider the L-shaped algorithm of Van Slyke and Wets [7]

The kth master problem in this algorithm is:



(3) Minimize X = cx + 0

(3.1) Subject to: Ax = b
DZX > dQ;R = 1,000,8,
(3.2) Ex + 0> e -8 =1,...,t,
x 20,

where the constraints in (3.2) induce feasibility and constraints (3.3)
form an outer envelope of ((x). We adapt the construction of these

constraints to the successive approximation.

We let (xk, Gk) be optimal in (3). We use xk as an input to solve (2)

for all £ used in the lower approximation of 0(x). If any subproblem (2) is

not feasible then we add a feasiblity constraint,

>
Ds+1 Xz ds+1’

let s = s+ 1, k= k + 1, and resolve (3).

(This process does not require independent solutions of all subproblems

(2) [81.)



We let the lower approximation found be Qt(x). If Gk < Q; (x) < Q(x),
then x is not optimal in (1). We let Ft(&) be the distribution function
used in this lower approximation of Q(x) and let nk(g) be the optimal

dual multipliers for subproblem (2),
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is ad n int 3), t i
41 2 e, isa ded as a constraint to (3.3), t is set to t+ 1,

and k is set to k + 1, (3) is again solved. The constraints in '(3.3)
theq represent an outer linearization ol lower approximation of 0(x).

If Gk E'Qi (xk), then we solve (2) for any additional values of §
necessary to find Qz(xk). Again, if an infeasibility is found, a constraint

is added to (3.2) and we repeat the process. After finding QE(xk), we

check whether Bk > Q;(xk)o If so, (xk, Gk) are an optimal pair, and we



are done, If not, we have optimized cx +WQ£ (x), but are not sure if
xk optimizes ecx + Q(x). In this case, we refine the approximations

k

Qt (xk) and Q;(xk) and update k, until either Gk > Q;(xl) or 6 < Qt(x).

Since lim Qt(x) = lim Qt(x), one of these conditions must be obtained,
k-0 k-0

k
In the former case, (x , Gk) is optimal and in the latter case, another
constraint is added to (3.3).
The algorithm converges because of the convergence of the approxima-

tions. We, of course, have bounds for x* optimal in (1) of

(4) c xk*Qk < ex* + Q{x*) < ex® + Qt(xk),

at every iteration, The algorithm may be terminated whenever the interval

in (4) is sufficiently small.

3. The Generalized Programming Method

A new algorithm for (1) based on generalized linear programming has
been proposed by Nazareth and Wets [6]. For this algorithm, it is more

convenient to write (1) as

(5) minimize z = cx + Y(x)
subject to Ax = b
Tx - x=0



where Y(x) = Eg[WCX, £)] and

YO, &) = min qy
subj., to Wy = § - X
y 2 0.

We assume again that converging approximations YE(X) and Wt(x)
are available,
The generalized linear programming algorithm proceeds by noting
that X can be found as a convex combinations of extreme points in its
domain which we assume is bounded. In our modification of this algorithm,

the restricted master problem of (5) becomes

k
(6) minimize 2 =cx+ A, ¥0L)
R B e |
i=1
subj. to
(6.1) Ax = b,
k
(6.2) Tx - L Ai %y = 0,
=1
k
(hs3) LA, =1,
, i
i=1



Let the optimal solution of (6) be (xk, Xk), and let the optimal dual

k

multipliers be (ﬂk, o, pk ) corresponding to (6.1), (6.2) and (6.3)

respectively., The subproblem associated with (6) is then
u k
) minimize Wk(x) + 0 Y,

k
Let xk be optimal in (7). If Wt(xk) + Gk xk < pk, then x is not

optimal in (5). xk and W(xk) are added to (6), k is updated, and (6)

is solved again.

If Wi(xk) + ok Xk > pk, then xk is optimal relative to WE but

is not necessarily optimal relative to ¥, V¥ t (xk) is then computed. If

Rk + o

ok xk < pk, then the approximations WE and Wt are refined and (7) is
k

L L : : k
resolved if we still have Wz(xk) + Ok xk > pkand WIQ(X.) +ox <p.

) k
Xk > pk, then xk is optimal in (5). If, however, Wt(x ) +

This refinement and re-optimization is repeated
L,k k k k .
until either w;(xk)4-ck Xk < pkor Wk(x ) + 0 ¥ > P . In either case,
we again update (6) and repeat the procedure, These conditions must

be met because of the convergence of the approximations to the true distri-

bution., The optimality condition must also be reached eventually because

of our assumptions,

Bounds may also be obtained in this problem. Clearly, for (x*, x*)

optimal,
' k k k ,u
(8) ex* + Y (x¥) < ex + I N VY.(x) =2z
- i=1 1 171

k

By duality, we also have

@ exrd o vom > -t wo® v oF K

(8) and (9) may then be used to obtain sufficient bounds on z%*,



5. Conclusion

Procedures incorporated into two algorithms for stochastic linear
programming have been presented that solve the stochastic l.p. with
continuous random variables in a single pass. The procedures take
advantage of the outer linearization of the L-shaped method and the
inﬁer linearization of the generalized programming method. They extend
previous results on approximations for stochastic linear programs that

converge monotonically to the true value.



(1]

[2]

(3]

[4]

(5]

(6]

(7]

(8]

Je

C.

P.

P

E.

L.

R,

R

References

Birge and R. Wets, "Approximations and Error Bounds in Stochastic
Programming", Proceedings of the Symposium on Inequalities in
Statistics and Probability 1983, to appear.

Huang, I. Vertinsky and W. Ziemba, "Bounds on the Expectation
of a Convex Function of a Random Variable: With Application
to Stochastic Programming', Operations Research 25, (1977),
pp. 315-325,

Kall, "Approximations to Stochastic Programs with Complete
Fixed Recourse", Numerische Math. 22, (1974), pp. 333-339.

Kall and D. Stoyan, "Solving Stochastic Programming Problems
with Recourse Including Error Bounds", Math., Operationsforsch.
Statist, Ser. Optimization (1982).

Madansky, "Inequalities for Stochastic Linear Programming Problems",
Management Science 6 (1960), pp. 197 - 204,

Nazareth and R. Wets, "Algorithms for Stochastic Programs: The
Case of Nonstochastic Tenders'", IIASA Working Paper, yp-83-5,
Laxenburg, Austria, 1983,

Van Slyke and R. Wets, "L-Shaped Linear Programs with Applications
to Optimal Control and Stochastic Programming', SIAM Journal
Appl. Math. 17 (1969), pp. 638-663,

Wets, '"Stochastic Programming: Solution Techniques and Appoxima-
tion Schemes", in Mathematical Programming: State of the Art
1982, Springer-Verlag, Berlin 1983,




I

3 9015 03994 8552



