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1. Introduction

Practical scheduling problems require periodic decisions that consider future random
phenomena. Much of the scheduling literature, however, considers problems that are de-
terministic and static (see, e.g., Graves [1981], Rinnooy Kan [1976] and Dempster, et al.
[1982]). Discussions of stochastic scheduling problems with machine disruptions have gen-
erally considered single machines and limited models (Glazebrook [1984], Pinedo and Ross
[1980], Mittenthal [1986]). An approach for dealing with multiple machines was introduced
in Bean and Birge [1986] for single disruptions or disruptions that are well-spaced apart.
In this paper, we provide a justification for this match—up scheduling approach, elaborated
in Bean et al. [1991], through a general stochastic model. This model includes a convex
objective function and decisions at discrete time intervals. It is similar to the continuous
time model in Solel [1987] (see also Dempster and Solel [1987]) but allows us to treat a
wider class of problems. Our main results are optimality conditions that are used to obtain
conditions for optimal cyclic policies and the asymptotic optimality of match-up policies.

We motivate these results through examples from scheduling.

Our results in fact apply to more general stochastic optimization models and extend the
developments discussed in Dempster [1988]. They relate most closely to Flam [1983,1985).
We extend Flam’s results by relaxing his conditions of interior optimal solutions and uni-
form convexity of the objective function. Our work is also related to the deterministic work
of McKenzie [1976], the control results of Kushner [1972] and Arkin and Evstigneev [1979],

and the finite horizon results in Rockafellar and Wets [1983] and Hiriart-Urruty [1982].

In our model, we assume a data process, w := {w; : t = 0,...} in a (canonical)
probability space (2, T, ). We also assume a decision process z := {z¢ : t =0, .. .} such
that z is a measurable function z : w — z(w). The space of the decision processes is the
space of essentially bounded functions, L7, := Loo (2 x N, £ x P(N), s x #; R"), where P is
the power set and # is counting measure. Associated with the data process is a filtration
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F = {Z:}2,, where T, := o(w') is the o—field of the history process w' := {wo, ..., w:}
and the £, satisfy {0,Q} C Lo C--- C L.

A fundamental property of the decision process at time ¢ is that it must only depend
on the data up to time ¢, i.e. x; must be X;—measurable. An alternative characterization
of this nonanticipative property is that x; = IE{x;|X:} as., t = 0,..., where [E{:|Z;}
is conditional expectation with respect to the o-field £;. Using the projection operator

[, :z— mz:=IE{z|5,},t =0,..., on L, this is equivalent to

(I-T)z =0, t=0,.... (1)

We then let A denote the closed linear subspace of nonanticipative processes in L7, and

denote by II := (Ilp, Iy, .. .) the projection operator from L% onto N.

Our general optimization model is to find

infee N IE Y fi(w,i(w), zi41 (w)), (2)

t=0

where “IE” denotes expectation with respect to £. We use the notation x; and f; to denote
respectively z, and f, as functions of w, i.e. as random entities. Expression (2) then

becomes

infxeNlEth(xt,x,.,.l), (3)

t=0

with objective F(x) := IEY qo , fi(X¢, X¢41).

We assume in (3) that the objective components f; are proper convex normal integrands

(see Rockafellar [1976]) with the following additional property:

Assumption 1: For any y = (X, X¢+1), there exists ¥ > 0 (independent of t) such that

for 7 € 0f;(y) C (L%,)*, the Banach dual space of L, and for all w, either
() 7 € 0fi (W),

or



(b) there exists z such that = € f;(z) and

fi(z) + m(w—2z) <fiy(w) — 7|z - y|| as. 4)

for all t > 0. ]

Note that uniform convexity implies the above assumption, which allows nonstrict convexity
involving a von Neumann facet (see Figure 1). We use this more general assumption here
because it allows us to use the common scheduling objectives which involve linear tardiness
and earliness penalties. These objective functions are discussed in more detail in Section

4.

von Neumann facet

' >
Wy z Yy W, (T, Tip s )

Figure 1. Illustration of the convexity of a realization of the objective function f; implied

by Assumption 1, Cases a) and b).

Section 2 presents the main results on optimality conditions by showing that under
the assumptions a price system exists which provides necessary and sufficient conditions
for optimality. Section 3 uses these results to obtain turnpike results concerning the opti-
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mality of cyclic policies and the asymptotic optimality of match—up strategies. Scheduling

examples are discussed in Section 4. Section 5 presents our conclusions.

2. Optimality Conditions

In general, the objective in (3) is infinite. We can avoid this difficulty by defining a
policy x* := {xo, X}, ...} as (weakly) optimal, as in McKenzie [1976], if it is not overtaken

by any other policy, i.e. if there does not exist x’ such that

IimsuplEZ[f,(x:,x:H) = fi(x:,xt41)] < ¢, (5)

T =00 t=0

where € > 0.

We also assume that the objective functions satisfy a condition ensuring that no infinite

terms are present in the sum in (5).

Assumption 2: For any t and § < oo, there exists € < oo such that ||x;|| < é a.s. implies

IE fy(x;, X¢41) > —€ and ||x¢41]| < € as. for x;4, feasible. ]

Given Assumption 2, we can subtract a constant from each f; and not change the
weak optimality of x*. By setting this constant equal to the expected objective value in
each period, we obtain an infimum of 0 in (3). We therefore impose Assumption 2 so that

without loss of generality we can assume a finite infimum in (3).

Our goal is to construct a sequence of prices supporting the objective terms in (3).
These price supports provide the optimality conditions in the following theorem.
Theorem 1. Suppose Assumption 2 holds and that x* is optimal in (8) with finite infimum,
and
(a) (nonanticipative feasibility) For any x € dom F (i.c., such that EY ;o fi(xe, Xe41) <
00), the projection of x onto N, TIx, is such that IEY oo £o(Iyxe, Meq1Xe41) < 00,

(b) (strict feasibility) For some x € N, such that IEY o/ fi(x¢,Xe41) < 00, there ezists
6§ > 0 such that for all ||y —x|| < 8,y € L%, EY o, fi(yt, ye1) < 00.
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(c) (finite horizon continuation approzimation) There ezists x' such that for all Ty in some
sequence {Ty, Ty, ...}, and, for any x € dom F, (ka1x17‘.,+1’x’7‘k+z’ ...) 1s also feasible, and
the transition cost to x' is such that |E[fr, -1 (x1, -1, x1, ) +f1, (X7, X7, 1)l = 0 as k — 0
and [[Elfr, -1(x7, -1, x7,) +f1, (X7, X7, 11)]| 2 [Elf7 -1 (X7 -1, X7,) + 7, (X7, X7, 41)]| for
k=1,...

Then, x* 1is optimal with given initial conditions xo if and only if there ezist
pt € LT(X),t =0,..., such that
(i) p: is nonanticipative, i.e. py = E{p:|Z¢} a.s. fort=0,...,
(11) IEo(fo(x0,X1) —PoXo+P1X1) is a.s. minimized by x; := x] overx; = [E{x; | £}, and,
fort >0, E¢(fi(Xt, Xe41) — PtXe + Per41Xe41) 15 a.5. minimazed by (X;, Xe41) = (X}, X7yy)
over x; = E{x; | L;} and x¢41 = E{X¢41 | Zt41}, and

(111) IE py, (%, —xj,) = 0 as ty — 0o, for allx € dom F.

Proof: The proof follows from the theory of convex normal integrands (Rockafellar [1971])
as in Flam [1983] and [1985].
To prove sufficiency, given (i) — (iii) and denoting E{|Z;} by E7[], for any x € N

with xg := x3, we have

te—1 th—1
E ) [f(x),x541) — fi(xe,xe0)] = B Y Efi(x],x74) — £i(%e, X141)]
t=0 t=0
L ) . (6)
SEY Ei[pe(xi — %1) = Pra1(Xip1 = Xe41)]
t=0

= IEptk (xtk - x;k)'
Note that the last quantity in (6) approaches 0 as ty — oo by (iii) . Hence, x* is weakly

optimal, and optimal in (3) by the finiteness assumption.

Now, to prove necessity of (i)-(iii), suppose x* is optimal in (3) and (a) - (c) hold.

Define
Ti—1 o]
FTh (x) = IE[ Z f‘(xh xf+1) + ka (ka ) xITk+1) + Z ft(x;)x;+l)]
t=0 t=Tx+1



for x" as in (c). Note that the objective in (3) is F*°(x) and that it follows from (c) that
F*(x) < oo implies FT*(x) < coforall k =1, .. ..

Suppose the functional 77 € dFT+(x*T¥) C (L%)*, the Banach dual space of L7,
where FTx(xT*) .= [E[ Z‘;glfg(x‘,x,ﬂ) + fr, (x1,,, X7, 41)], which is the expectation of a
convex normal integrand by assumption. By Rockafellar [1971, Corollary 1B], there exists

a representation of 7Tx as 7Tk = nT" + UT“, where
7™ e OFT (x*)N L} (7)

(ie., there exists p7* such that nT(xTx) = EpT*xT* for all x™ € L) and o¢7* is a
singular functional corresponding to a purely finitely additive measure (see Yosida and

Hewett [1952]) such that

ok (x*T%) = sup{oT* (xT*) | FT*(xT*) < o0}. (8)

We now construct an appropriate 77x. For t = 1,...,Tp — 1, let ¢}_;(x¢) :=
E[f_1(x;_), x:) + fi(xs,x7,,)] and 7, € 0¢;_,(z;). We can again apply Rockafellar’s
result as in (7), so that m = n¢ + oy, for 7y € LT and singular o;. By the definition of

subgradient,
mo(xe — x7) + Elfe-1(xi_ 1, x5) + fi (x5, x541)] S Effeoi(xi_y, %) + fe(xe,x300)],  (9)

for all essentially bounded x;. We also define w;: as a subgradient of IE[fr, -1 (xF, _;, X1, )+
fr, (x1,, X7, ;,)], defined as a function of xr, and evaluated at x7, , involving a trajectory

x' whose existence is guaranteed by (c), so that we also have
W;": (ka - x;';,) + ]E[ka—l(x’}‘;,—l ) x’;‘k) + ka (x;'k ) xIT,,+1)] < ]E[ka—l(x;‘k—lv ka)
+ka(xTux’lTk+1)]’ (10)

for all essentially bounded x7,. We set 77+ := (m,.. .,7r1-,‘_1,7r;:). Combining (9) and

(10), we have 7T € 9FTx(x*T+). Using (c), F(x) = limg—oo FT*(x). Thus,

D m(xe = x{) + lim (v7(xr, = x,)) + F(x*) < F(x), (11)

t=0



for all x € L7,. From (10) and (c), the measure W% must also satisfy
kl_l.r{.lo '7";: (ka - x;‘k)l < lcan;o |IE{[ka_1(X}'k_1,XTk) + ka (xTux:I',,-H)]
(12)
= [fre-1(x7, -1, %7,) + f1, (x7,, X7, 1)} = 0,

for all x € dom F. (To see this, add and subtract fr, _1(x7, _;,x7,) + fr, (X7, -1, XT,)

within the expectation on the right hand side.)

From (11), (12) and, since F(x) = +oo if z ¢ dom F,
Y m(xe—x;) + F(x") < F(x) (13)
t=0

for all x € L7, . Therefore, * = (7, m2,...) € F(x*).

Now, define
6(x) = {0 if x; = [E{x;|Z:} as.

oo otherwise.

Let the projection from L% onto N be II, where
H,(xt) = IE[X; ' Et],t = 0, 1, e

Then, § is the indicator function of the linear subspace N’ = ker(I — II) of L7, .

Solving (3) is then equivalent to finding
infyery (F +6)(x).

Since x* is optimal in (3), 0 € 8(F + 6)(x*). Hence, —7 € 38(x*), i.e. 7 € [R(I —1)]°, the
subspace of (L™ )* of annihilators of the range of the complementary projection (I — IT) of

11 which (in an abuse of notation) we shall denote by A'*. By (8) and (9),

Tk-1 Te-1
T (xT) = Y fou(xi)] +o7r (x7,) 2 D [ov(xe)] + 07 (x1,), (14)
t=1 t=1

for all x € dom FT* 5 dom F. From (12) and (b), |o%:(x»}k - x7,)| = 0. From (14),

then,

[e e}

Y loe(x))] 2 Y [ou(xe)] Vx € dom F. (15)

t=0 t=0



We can now follow the proof technique in Flam [1985] to obtain an equivalent subgra-

dient without singular components.

The (Banach) conjugate of the operator II is denoted by II*.  Define 7 := [I*s. We
will show that ¥ € L7. Since 7 € (M), we have o(x) = n(x) for all x € N*. Hence,
for any x € N+, we can write o(x) as Yo [ p(w,)z(w, t)P(dw) where p € L?. Let

B(-,t) = E{p(-,t) | Z;} for all t, so that § € L}. Then, for all x € L%,

o0

7(x) = o(llx) = Ex ) _ p(-,t)(IIx:)
=Eg Yy Elp(,t)Efz(, ) | T:] | Z]

=Eg ) (- t)a(-t) = Epx.

Hence, ¥ € L}. Let 7* := n+ 7 € L} and note that, since ¥ = ¢ on N+, 7* € (N1)°. It
also follows as in Flam [1985], since [(I — I*)7*]x = #*[(I — II)x] = 0 for all x € L, and
(H‘W)t = IE(W:IZ:), that

7y = E(7] | Z;) a.s. Vi (16)

From (15) and nonanticipative feasibility,

for all x € dom F. We can again apply Rockafellar’s result on convex normal integrands

as in (7) so that n € 0F N L}. It follows that
r=n+TE€OFNL]. (18)

Since 7* now excludes the singular multipliers, by (b), we can decompose 7* into multipliers
for each component f; of the objective (by applying Rockafellar [1971, p. 442] to the finite
sum 0 to T to decompose into a finite sum for almost all w, then decomposing this sum using
Rockafellar [1969, Theorem 23.8], and noting the vanishing T terms as in (11), or, more
directly, by using the results in Ioffe and Levin [1972]). Thus, 7*(x) = IE Y o, Pt (Xt, Xt+1),
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where p} be written with two components as p; = (p}!, -p}%,) € 9fi(x},x},,) a.s., where

[ —_ 1 2
Py(Xt, Xe41) = Py X¢ — Pi11Xt+1, and

Pl (xe = X}) = P13y (Xepr — X5yy) + (x5, x7py) < Fil(xe, Xeq1), (19)

a.s. for all x; = E{x; | £¢} and x¢41 = [E{X¢41 | Zt41}, ¢t = 0,1,.... Since x; minimizes
fioi(x;_y, ) +£i(,x54,) as., 0 € Offi—1(x;_y, x7) + fi(x},%x;,,] as., and we may choose

-p;?+p;! =0 as. By (16), we can define p* such that

p; = E(p;? | T) = E@!| D), t=01,..., (20)

proving (i). For x, = E{x, | &;}, E¢[p;*(x:)] = Ei[p;!]x: = pix;. Also, for x;; =
E{x1 | ep1}, Eelpidi(xe1)] = Ee[Eeqa[pid (ke41)]] = Ee[piyiXeq1]. Now, taking
conditional expectations with respect to I in (19), we obtain IE;[p; (x: —x}) — Py 41 (X141 —
X;p1) + (%}, x741)] < Eeffi(xe, Xe41)), as. for all x; = E{x; | Z;} and x¢41 = E{x¢41 |

Y41}, implying condition (ii). Condition (iii) follows from (c) as in (12). ®

Our results extend the price support results given in Flam [1983,1985]. In Flam [1983],
strict feasibility of the optimal policy is required, while the infinite horizon results in Flam
[1985] require the objective to be completely separable in t. We use the finite continuation
property to obtain these more general results which provide a more realistic framework for
infinite horizon problems. The finite continuation property states that one can pay finite
and absolutely decreasing amounts to reach a fixed finite cost path at given periods that
extend to the horizon. This payment may, for example, represent the cost of joining a cyclic
feasible policy. Examples of nonremovable singular multipliers without similar assumptions
to ours are given in Prescott and Lucas [1972]. Nonanticipative feasibility is related to other
conditions, such as relatively complete recourse as used in Rockafellar and Wets [1976], see

e.g. Dempster [1988] for more details.
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3. Turnpike Results

Our goal in this section is to show that optimal solutions approach a common facet -
the von Neumann facet — from any given starting condition xo. The main implication of
this result is that it is asymptotically optimal to match up with a decision process that is
optimal for a specific initial condition even if that initial condition changes. This result is
further enhanced by our showing that if the data process is cyclic then it is asymptotically
optimal to return to an optimal cyclic policy even if other conditions temporarily obtain.
These results lend justification to the match-up scheduling policy in Bean, et al. [1991] and
extend the deterministic results in Bean and Birge [1986]. Discussion of specific scheduling
policies is however postponed to the next section. In this section, we again use a general

stochastic optimization model that may be applied in a variety of contexts.

Proposition 1. Given Assumptions I and 2 and Conditions (a) - (c) in Theorem 1, let
X" be the set of solutions (xi,x;,,) that are minimal in (ii) of Theorem 1 for p; a set of
optimal supporting prices given the initial condition xo and let X' be an optimal decision
process given the nitial condition xi. Then, for any € > 0 and é > 0, there ezists T < oo,

such that, for allt > T,

Pl infes mg, e K0 Xegy) = (x5, Xi4)l| > €} <6 (21)

Proof: By summing terms in (ii) of Theorem 1 for x* and x’ for each f;, ¢ > 1, we obtain
E:{(pt41 - Pi+1)(xi+1 —Xi41) — (Pt — Py)(x; — %)} <0, (22)

where p* is the price support process corresponding to x*, an optimal solution given X,
and p’ is the sequence of prices supporting x’. Next let v¢(x}) := (p; — p})(x; — X7), so
that (22) becomes

Eveyi(xiy;) SEve(xy) forallt>1, (23)
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for any (x;,x;,,) € X;. By (iii) of Theorem 1, lim;_.o [Ev¢(x;) = 0 for any x;. Note

however that if (21) does not hold, then, for some € > 0,6 >0, for t =Ty, ...

)

Pw tinflag e, e 60 X 41) = (x5, X5 Il > €} 2 6. (24)

From Assumption 2, since (pi,—-pi;;) € O0fi((x; x7,;)), either (p},—piy;) €
3 fi((x4,xt41)) (in which case (x},x},,) € X}) or there exists (z;,2:4+1) € X} such that

£i(2¢,2e41) — PrZe + PryrZee1 < F(X4 Xi41) — PIX + Pry1Xi
(25)

= (24, 2e41) = (X, Xe )| 3sS-

By the definition of X} for given xo, for any (xj,xj,;) we have that
E{f(x{,x7y1) = Pix; + Piy1Xi1} = E{fi(21,2e41) — Pi2e + PiyaZes1}:

Hence, for any T, summing (25) and taking expectations yields

q

T
B[S £ (7, Xt )] — ELY (¢t %)) < (R - P5) (% — x3))

- E((pr - p7)(xT — XT)) (26)

T
=Y AEl(z, ze41) — (x4 Xeq )l
t=0

For t = Tk,,i = 1,..., using the Markov inequality and (24), we have that
E|(zs, 2e41) = (xp, Xeq1)|| 2 €P{infixg xz, yex; 10Xt Xtg1) = (x5, X540l > €}
> €é.
Since IEv(x}) — 0, the right-hand side in (26) therefore approaches —oo, contradicting

the finiteness of F*°(x'). ]

Theorem 2. Under the conditions of Proposition 1, we may conclude that ast — oo,

inf(x; x, ex; (Xt Xig1) = (X7, x040)[| = 0 s (27)

Proof. Proposition 1 states that

inf(x;,x:“)ex:“(x;»x:+l) - (x:,fo)Il -0

12



in probability. Since the f;,t =0,1,2,..., are proper convex normal integrands, the infima
over the X} are actually achieved. Hence, we may use the vector form of Skorohod’s
Theorem (see, e.g., Billingsley [1979], Theorem 29.6, pp. 337-340) to adjust the paths of

the data process so that (27) holds. m

For Theorem 2 to be fully applicable, we would like to have a method for determining
an optimal policy for some initial state so that the policy of matching up to that strategy
can be implemented. This determination is simpler if we can show that cyclic policies are
optimal. In this case, only a single cycle needs to be analyzed to determine the turnpike

optimal policy. An example of such a policy is given in the next section.

In this development, we follow a similar approach to Arkin and Evstigneev [1979].
We first assume that the data process has a left tail, i.e. that wg can be interpreted as
...,w_{,w). An alternative is to assume some type of Markovian property of the data
process (see Arkin and Evstigneev). The data process is assumed to be cyclic with cycle k
if the measure y is invariant with respect to the k-period forward shift operator Ty where
Tiw = w' such that w} := wey, i.e., wy = Tgws = wepr a.s. It follows that we may define
T.Z; =%, fort=0,...,k—1. We also assume that the objective is invariant with respect
to Tk so that foyp(Text, Tkxe41) = fo(Xe, Xe41) a.s., where Tpzy(w) = z4(Tiw). In this

context, x is a cyclic policy if x¢4x = Tex; a.s. .

Corollary 1. Given conditions (a) - (c) of Theorem 1 and a cyclic data process with cycle

k, then there ezists a weakly optimal policy with cycle k for any initial condition xo.

Proof: First consider the problem :

inf IE(I§ fi(xt, Xe41) + fe—1(xk-1, Tk X0)) (28)
t=0
subject to x; nonanticipative in L? for t =0,...,k — 1 and where Tyzo(w) := zo(Tkw).
We can interpret (28) as
inf E(f(xo,...,Xk-1)), (29)

13



over the same decisions. Program (29) is a finite horizon problem as in Flam [1985], hence
there exist supporting prices p;,t = 0,...,k — 1, such that an optimal policy x* almost

surely minimizes over nonanticipative policies in L7 :

Et(fz(xz,xt+1) - P:Xt + P;+1Xt+1)» t=0,...,k-2, (30)

and

Ei_1(fi-1(xk-1, TeX0) — Pr_1Xk—-1 + PoXo). (31)

Define z}(w) := z}(Tiw) and pj(w) := p§(T; 'w). From the cyclic property of the

data process,
E[z}(w) | Z¢] = Efz5(Tew) | Tie o]

= Efz5(w') | Zo] (32)

= zy(w') = z)(Thw) = z3(w) as. .
Similarly, pj is nonanticipative. Continue to define p;, ;, (w) = p; (T, Jw)for0<t<k-1
and L=1,..., and z;, 1, (w) = 2;(Teaw) for 0 <t < k—1and L =1,.... We then have
conditions (i) and (ii) in Theorem 1 for optimality by applying (30), (31), and repetitions

of (32). By summing the terms in (ii) up to 7 = Lk and noting that [Exo = IEx,, we obtain

T
E[Y (f(xf, X14) — £i(x], x541)] 2 0, (33)
t=0
for all 7. Inequality (33) implies that x* is weakly optimal by definition. ]

4. Application Examples

The primary concern of our'arfal}sis is in application to stochastic scheduling problems.
Our first example is a small problem that involves a general type of scheduling objective
and meets our requirements for cyclic optimal policies. We show that these conditions are

met and determine the optimal cyclic policy.

Assume a single machine and that units of a single item produced on the machine.
The state z; of the process is the amount of inventory (positive or negative) of the item

14



at the beginning of each period. One unit is demanded in each period ¢t. One unit may
be produced in regular time in each period. An additional unit may be produced with
overtime if the machine is available. The uncertainty is in the availability of the machine.
We assume that the machine is available with probability 2/3 independent of the time

period.

This model is a small stochastic version of the general deterministic example in Bean
et al. [1991]). The objective includes a penalty (equal 10) for any backordered products,
unit holding costs for any positive inventory, regular time production at cost 2 per unit,
overtime production at cost 4 per unit, and a possible outside vendor purchase at cost p

per unit.

The result is that, without production, the state moves from z; to ;41 = z; — 1 from
t tot + 1. The cost of this transition is z; if z; > 0 or —10z; if z; < 0. The value of z;4,
given z; is the production/purchase decision. Production is only possible if the machine
is available. The cost is 2(z¢41 + 1 —z¢) if ¢ > 2441 > 22 — 1 or 2 + 4(ze41 — 74) if
T; + 1> r;41 > z;. If the machine is not available, then outside purchases are possible at

a cost p(ze41 + 1 — 24).

The objective function is then

-10zt + p(ze41 + 1 —2¢) ifz¢<0and =1 <z4yy—2: <0,
frlwegr, 2, Te41) = ze + p(ze41 + 1 — z4) if z; > 0and -1 < z¢4) — z: <0,
00 otherwise,
(34)

if weyq corresponds to “machine unavailable.” If wiy; corresponds to an available machine,

we have
—10$g+2+4(11+1—l1) if$g<03nd0<$¢+1—$g_<_ 1,
-10z; + 2(I¢+1 +1- tg) fz; <0 and -1 S Ti41 — Tt < 0,
fr(wis1, Te, Te41) =< 2o + 2+ 4(ze41 — 21) ifz; >0and 0< ¢4y — 21 < 1,
£¢+2($¢+1+1—Zg) if Tt ZOand -1 SI¢+1 — Tt _<_0,
00 otherwise.
(35)

Note that the functions in (34) and (35) are convex and satisfy Assumption 1. Finite
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values over the infinite horizon can be obtained as in Section 2 by subtracting constants
in each period corresponding to the expected values of contributions from weakly optimal
schedules. The data process here is Markovian, so we have the conditions for an optimal

stationary strategy.

We seek an optimal solution to (28) for k := 1. The penalty term p is used as the
price of obtaining one unit of the product elsewhere. For finite p, an optimal solution exists
in L. To simplify the analysis, we consider optimal solutions for p — co. Results for
finite p can be easily obtained as perturbations (depending on p) from the results below.
The solution of these problems only requires the determination of additional parameters

corresponding to the levels at which outside products should be purchased.

This problem can be interpreted as an abstract linear program. Suppose wey; = 0 if
the machine is unavailable, and w41 = 1if the machine is available. Problem (28) becomes:
inf E[10x; +x{ + 2y}, +4yZ =)
s. t. x,+ —-X; =X; as,
E[x|Z;] = x; as.,

(36)
Xt41 = Tx; a.s.,

Xt + Ytl+1 + Yz2+1 =x1+41—1 as,
0<xF,0<%7,0€yhy S lu=1,.0< ¥4 S luu= as.
An optimal solution occurs at an extreme point of the feasible region of stationary

distributions for x;. In our case, the solution occurs at a discrete distribution with atoms

spaced units apart. There are two classes of these extreme solutions:-

&1: solutions corresponding to z:4+; = z: + 1 if the machine is available and z; < «

and z¢4+; = z¢ — 1 otherwise.

&,: solutions corresponding to z¢41 = ¢+ 1 if the machine is available and z; < a—1,
z¢41 = z¢ if the machine is available and @ > z; > a — 1, and 741 = z; — 1 otherwise.
Note that a stationary solution cannot have a wider range of regular time production of
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units since we can never achieve any higher z;,; than a. The optimal value of « and the

corresponding optimal strategy remain to be determined.

For &, we consider a := 3. This yields the stationary distribution :

T machine status probability
4 up 5

4 down ﬁ

3 up i

3 down é

2 up é

2 down 1Ls

1 up 1—16-

1 down %

- up (6)(3)
- down (H)(3)H!

The expected objective value is then 6%.

For &,, the stationary distribution for a := 3 is:

Ty machine status probability
3 up 3
1

3 down 3
2 up §
2 down %
1 up %
1 d =

own 31
! w (B
-1 down (2—14)(-%)’+1

Here the expected value is 62—14.
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To show the optimality of xj, consider changes from the values of y;, ;, which we can
consider as nonbasic variables in (36). Note that, since x; is stationary, we must have
Ely{,, + y%,,] = 1. Since [E[y;,,] = 2/3, it cannot be increased. The only possible
changes are then to decrease y{,; and to increase y7,,. We never would reduce y},,
before reducing yZ,, to 0, so consider first an € reduction of y},, for any subset of Q*(3) of
measure 6 > 0 where z;(w) = 3 for all w € Q*(3). Correspondingly, we must increase y7,
on Q*(3). The resulting stationary distribution x} < x} a.s. with P{x} = x} — ¢} = § and

P{x; =x;} =1/3 6. So, the difference in expected inventory cost from x; to x;} is
6(—eP{x; > 0} + 10eP{x; < 0}) = 6¢(3/8).

Thus, both inventory and production costs would increase in this case. The only other
alternative change in the strategy is to keep y;,, = 1,,=1 and to translate the distribution.
In this case, however, any ¢ increase in a yields an expected cost increase of l%e, and, as
before, an € decrease in « yields an expected cost increase of %e. With a finite penalty p
the results are similar. For example, if p = 1000, then the same a value is optimal and the

distribution is truncated at | = 35.

The results of the previous sections then show that it is asymptotically optimal to
match up with this strategy regardless of our initial conditions. A match-up strategy to
accomplish this is simply not to produce if inventory is greater than 3, to produce one unit
for inventory equal 3, to produce in overtime one plus § for inventory of 2 + 6 for 6 > 0,

and to produce two units for inventories of 2 or less.

This first example includes an objective with tardiness or shortage penalties and hold-
ing costs that are common in scheduling models. Here the randomness was confined to the
machine availability. Other scheduling models with varying degrees of uncertainty can also

be incorporated into our general stochastic optimization model.

For example, consider a k-period cyclic model in which each of several commodities

i =1,...,n has a random processing time p(i), a random release date r(¢), a random due
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date d(7), and a penalty weight of w; for every period after the due date in which processing
is not completed. The evolution of the data process is such that p(¢) is known given d(i).

We also assume that r(i) < d(i) < k ass.

Decisions are the amount of processing performed on each item i in each period t. We
may consider the state of each item to be reduced by the processing requirement at each due
date, i.e. the state is changed by the total processing x¢41(¢) — x¢(#) in period t if ¢ is not
a due date (t # d(i)) or by x¢41(¢) + p(i) — x¢(?) if t is a due date (¢ = d(i)). The decisions
are constrained so that no processing can occur if an item is not released (¢t < r(i)) and
processing in each period on each item is at most one (for simplicity). Other restrictions on
feasible processes appear in an indicator function 6(w, X, X¢41) that considers all resource

availabilities.

The only costs in this model are due to tardiness. The penalty w; is charged in each
period for every unit of item i overdue (x¢(i) < 0). The total tardiness cost at time t given

w is then Y"1, w;(—z¢(w,))*. The objective is to minimize the expected total tardiness.

The single period objective contribution is then:

fi(xe,Xe41) 1= Zf:(x;(i), xt+1(7)) + 6(w, Xt, Xe41), (37)
i=1
where

—wixe(i) if =1{i=a(i)}P(9) < Xe1(3) — % (i)
P , < La>e(i)) — Lir=a(iyy P(3), x:(1) < 0 as,,

Bl xen@) =14 0 if ~1{=a@P(i) < Xea1 (1) = x:(3)
< Lar(i) — Lr=aGiyyP(9), %) 2 0 ass,

00 otherwise.

The data process is assumed to determine the availability of the resources (such as
machines, labor and tools) for processing all commodities. We allow the é indicator term
to represent feasibility generally by assuming a value of “0” if x4, is feasibly reached from
x: and “c0” otherwise. For example, suppose that the processing of each commodity i
requires a resource m(i) where m(i) € {1,..., M}, the set of resources, and each resource
can process at most one unit during a time interval if available and cannot process anything
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if unavailable. In this case, and independent component @; of w; can be interpreted as an

M-vector of ones and zeroes corresponding to availability and unavailability. We then have

0 if 30y Lizm()(Xes1(3) = xe(3) + P(8) Le=agiy})
6(w, X4, Xe41) = <&j)forj=1,...,M,

oo otherwise.

Other constraints can also be represented in this way. Our only requirement is that §(w, -, -)

must be convex.

This model is the basic minimum ezpected weighted tardiness multiprocessor scheduling
problem. With the convexity assumption, it meets the criteria for optimality, asymptotic
stability and cyclic optimality given in Theorems 1 and 2 and Corollary 1. In some cases,
an optimal stationary distribution for this model follows a path between disruptions such
that an optimal match point is achieved as quickly as possible (cf. Bean et al. [1991]).
To see this, let x* be an optimal cyclic turnpike schedule in X*, the set of optimal cyclic
turnpike schedules. Assume that some state xj < xg a.s. is the initial state instead of x}.
Let x’ be an optimal trajectory given xf,. We wish to show that a trajectory X that starts
at x; and matches up with x* at the earliest feasible ¢ can be constructed with the same

objective value as x'.

Theorem 3. Suppose x* is optimal from z{ in the above tardiness model, find
infxe N xo=xs as. B Y poo fi(Xe,Xe1) given x§ > xg a.s., with f; defined in (37), and that
there exists a feasible solution X such that Xo = x{, a.s., and X, = X} a.s. for some T < 00,

then there ezists an optimal solution x' given x{ such that x} = x},t > 7 a.s. .

Proof: The existence of the feasible path x that matches up to x* at r is equivalent to the

availability of

D Lj=mi (#o(w,1) = 25w, 1)), (38)

i=1
additional units of capacity on every machine j beyond the processing required on machine
J under policy x* for a.e. w, j =1,..., M, before time 7. This is true because we implicitly
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assume that if z§(w,i) > zg(w,1), then r(w,7) < 0. Given this surplus capacity, consider
x’' optimal given x{, and construct X;,0 <t < 7 such that foralli = 1,...,n and all w:

(1) Z(w,1) := zh(w, 1) if z}(w,1) < 27 (w, 1),

(i) 2z (w,i) := z}(w,1) if z}(w,1) > 7} (w,1).

Note that X := x’ A x*, i.e. a minimum of the two optimal policies in the sense of
coordinatewise order in t, so that X, < xj,t =1,...,7 — 1, X, = x}, and no processing
takes Z;(i) beyond xj (i) for any i. Since no more processing capacity than (38) has been
used on any mahcine j = 1,..., M, x defined by (i) and (ii) can be defined as x; := x} for
t > 7. Note also that for x’ and x* nonanticipative, X is nonanticipative by construction.

Suppose that X is not optimal from the initial point xj. Then, there exists a sequence
6x := {6x := 0,6xy,0x3,...} such that x' = x + 6x a.s. and F(x + éx) < F(x). We will
show that this implies that there exists 6x* such that F/(x* +6x*) < F(x*) in contradiction
to optimality.

First, define F(x') := YI_, Fi(x'(i)), where F; is the contribution of commod-
ity i to the overall objective, and F;(x'(¢)) := IE[gi(w,x(3))], where g;(w,x(i)) =
52 o £ (i), xe41(3)). Now suppose

Fi(x'(i)) < Fi(x(3)) (39)
for some i (i = 1,...,n). Then, there exists Q; C Q, P{Q}} > 0, such that g;(w,z'(w,1)) <
9i(w, Z(w, 1)) for all w € Q;. This in turn implies that there exists 7(w,7) < 7 such that for
all w € Qf,

Tr(wi) (@) 1) = T iy (@, 1) = Tr( i) (@, 9),
and

Z f:(u)x:(wvi)’x;+l(wvi))< Z ff(w’ft(wii)viﬂl(w’i)): (40)

t=7(w,i) t=7(w,i)

since X := x’ Ax* up to period 7. Note that 6z,(, ;)(w,?) = 0 and define the feasible new
policy z*(w, ) + 6z*(w, 1) for w € Q! by setting

o .0 t=0,...,7(w,1),
62 (w, ) '_{6:1:,((..),1') t=1(w,i)+1,... ,
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and setting 0z} (w,i) :=0,t =1,2,... forw € Q\Q;. It follows, for all w € Q;, using (40)

that

f:(w,z,‘(w,i),x;ﬂ(w, 1))

N

9i(w, 2" (w, i) + 0z} (w,1)) =
1

+

1]
o

4 e

(w,i)—l(wv z:(w,.‘)(‘”’ i)’x:(w,i)(“‘)’ i)+ 62:‘(w,i)(w’ )

+ Y filw,zi (@) + 857 (w,1), 74 (@0, 1) + 8274 (@, 1))

t=1(w,i)

< ioff(wyz?(w,i),ziﬂ(w,i))
1=
+ fi(w,.’)-l(‘*’v 7w,y (@, 1), T iy (W, 1) + 627, 1y (w, 7))
+ i)f:(wvz;(wvi)rx;+l(w,i))
t=r(w,i
= gi(w, z*(w,1))
+ fi(w,i)-l(w) T3 (w,i)-1(@, 1), T30 iy (@, 1) + 627, 1y (w, 7))

- f:(w,i)—l(w’z:(w,i)-l(w! i), z;(w,i)(w) 1))

= gi(w, 2" (w, 1)),
(w,1) = 62,(u,i)(w, i) = 0. This implies that

*

since 6xf(w‘,.)

Fi(x*(2) + 6x*(1)) := Efgi(w, x*(3) + 6x*(1)] < Fi(x*(?)) := E[gi(w,x"(2))].

Making this construction for each i for which (39) holds and summing over i = 1,...,n
gives

F(x* +6x*) < F(x"),
the required contradiction. ]

This tardiness model can be extended further by including other constraints in the é
term of the objective. The only requirement is that the overall objective remain convex.

Hence we need only require convex feasible sets.

5. Conclusions

We have presented a general stochastic optimization model with discrete time periods
and infinite horizon. We showed that optimality conditions in terms of supporting prices
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can be derived for the model. This conclusion extends previous results by allowing extreme
value optimal solutions and a more general convexity condition. These generalizations
make the model more applicable to a variety of problems. They allow for characterizations

of turnpike and cyclic optimal solutions that justify match—up strategies.

In particular, we showed how these results apply to scheduling. In these problems, a
cyclic schedule can be developed “off-line” using whatever computing resources are avail-
able and the cyclic policy is implemented whenever conditions evolve as predicted by the
model. When other conditions obtain (for example, a catastrophic failure of a machining
center), it is optimal to match- up with the cyclic schedule sometime in the future. Deter-
mining this match-up strategy can be accomplished “on-line” while the remainder of the
cyclic schedule is maintained. In practice, the match-up point can be set so that matching

up is both computationally feasible and cost effective.
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