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ABSTRACT

In most scheduling problems discussed in the literature it is assumed
that the machine (i.e. key resource) is continuously available. Plainly, this
is often unrealistic. Here we suggest assessing the effects of machine
breakdowns by evaluating the strategy which is optimal when the machine is
always available as a strategy for the breakdowns case. The results extend

earlier ones of the authors and co-workers.
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1. Introduction

Let J = {1,2,...,N} be a set of jobs to be processed on a single machine
which is subject to breakdown. For k = 1,2,... the kth breakdown of the

machine is associated with two random variables Uk and Dk’

in the positive integers. Uk is the kth uptime for the machine, i.e. the
length of the period between the (k - l)St and the kth breakdown. Dk is the

both taking values

kth machine downtime, i.e. the length of the kth breakdown. All of these
random variables are independent of each other, and further the uptimes and
downtimes are (separately) identically distributed. This process of
breakdowns constitutes an alternating renewal process (see Ross (1970)). We
further assume that the uptimes have finite first and second moments, H and
Ho» that the downtimes have finite first moment Hp and that the machine is up
from time O until Ul'

The processing requirement of job j is a random variable Xj, taking
values in the positive integers, 1 ¢ j { N. The Xj's are independent of each
other and of the uptimes and downtimes. For each non-negative integer point
in time t at which the machine is functioning, one of the jobs in J which has
not yet been completed must be chosen for processing during [t,t + 1).
Processing stops when all of the jobs have been finished. A policy w is any
rule for deciding how to process the jobs in J. Under w, job j is completed
at time Fijr). The objective is to choose a policy which minimizes expected
weight , time

N
C(w) = E{lew i j(w)} (1)
where the wj's are given positive constants.

For a machine which is continuously available (i.e. downtimes are zero),

any optimal policy is known to be determined by a collection of Gittins’

indices (see Gittins (1979) and Glazebrook (1984)). If job j has received x



units of processing and has still to complete, its Gittins index is defined to

be
r t-2 ]
w., 2 p.(x+t=1)[ T {1-p (x+s)}]
Je=1 ! s=0 Y
TJ-(X) = sup -1 t-1 —~ ’ x=0,1,2,... (2)
P2l 3 [ {1-p,(x+5))]
I t=0 s=0 ]
where

p(t) =p(xj =t + 1|xj >t), t=0,1,2,...

is the completion rate function for job j. Hence in the absence of

breakdowns, an optimal policy always allocates the machine to any uncompleted
job with maximal Gittins index. Glazebrook (1987) pointed out that this
remains optimal for a problem with breakdowns when the uptimes are
geometrically distributed.

Our objective is to-evaluate the simple "no breakdowns™ optimal policy
determined by the Gittins' indices in (2) as a policy for our general problem
with breakdowns. For convenience denote by WT a policy which, whenever the
machine is up, processes the uncompleted job with the largest Gittins index.
Denote by w* an optimal policy. We shall seek to evaluate wT by putting upper
bounds on the quantities

c(r,) - c(r) (3)

or

(c(r) - cHHCEYY (4)
Following on from the last remark in the previous paragraph, a natural
approach is to bound the quantities in (3) or (4) by a quantity which measures
the extent to which the uptimes fail to be geometric. This work is reported
in Section 2 and extends results due to Glazebrook (1987). A more general
result in Section 3 extends previous work by Birge, Frenk, Mittenthal and
Rinnooy Kan (1987) which was restricted to the case of deterministic

processing times.



2. Bounds based on stochastic orderings

We shall need some preliminary remarks and definitions relating to the
renewal process NU(t) determined by the up-times, i.e.
A .
NU(t) = sup{k 2 0 : U1 + U2 + ...+ Uk <t} .
The renewal function mU(t) is defined as usual to be E(NU(t)). We shall use

the notation Nv(t), Nw(t), mv(t), mw(t) to represent renewal processes and
functions defined with respect to i.i.d. random variables {Vl,Vz,...) and
(Wl,Wz,...} respectively. Throughout, all random variables are assumed to be

positive integer-valued with finite mean. We make use of the following ideas

from reliability theory (see Barlow and Proschan (1975)).

DEFINITION 1. Positive integer-valued random variable V is new better than

used in expectation (N.B.U.E.) if
E(V) XE(V-v|V2v+1), v=0,12,....

DEFINITION 2. Positive integer-valued random variable V is new worse than

used in expectation (N.¥.U.E.) if

E(V) CE(V-v|V2v+1), v=0,1,2,....

The following result follows fairly simply from Theorem 3.14 in Chapter 6 of

Barlow and Proschan (1975). In Lemma 1 "¢ ST" denotes stochastic ordering.

LEMMA 1. Sﬁppose that there exists a N.B.U.E. random variable V1 and a
N.¥W.U.E. random variable Wl such that V1 < ST U1 < ST Wl then
t/E(V)) 2 my(t) 2 my(e) 2 my(e) 2 (W), € 2 0.
Geometric random variables are both N.B.U.E. and N.W.U.E. and hence
Lemma 1 relates to the situation where the uptimes are stochastically bounded
above and below by such variates. The following definitions relate to the

"closest” such bounding variables obtainable.



DEFINITION 3. The upper geometric rate 7n of uptime U1 is defined as

n=inf{n > 0; V
n

1 < ST U1 where V1 is geometric with probability n} .

DEFINITION 4. The lower geometric rate n of uptime U1 is defined as

n = sup{n > O; U1 < ST Wl where Wl is geometric with probability n} .
-0
It is not difficult to show algebraically that if n(+) is the completion rate

function of uptime U1 then

- J 1/ J -1
sup n(j) 2 n =sup[l - (I {1 -n(k)}) "] 2 sup{ 2 n(k)*j "}
J J k=1 j k=1 5)

S ingr o 1. J Vi, . .
2 inf{ 2 n(k)*j "} 2 inf[1 - (O {1 - n(k)})" "] = n 2 infn(j).
J k=1 j k=1 - J

We are now in a position to use the above bounds on the uptimes and the
related bounds on renewal functions to give the evaluation of the "no
breakdowns” optimal strategy-wT we seek. Let w be a strategy for our
stochastic scheduling problem with breakdowns, which is stationary with regard
to the values of past downtimes. Optimal w* plainly has this property. Under
T job j is completed at time Fj(w). Denote by Fg(r) the implied completion
time of j under policy w when there are no breakdowns (i.e. U1 is infinite).
The assumptions concerning independence and finiteness of moments imply via a

simple conditioning argument that

C(w) = E{ngijJ(r)}

N (6)
0 0
- E[th“’j"’ o FGCrg)|

Theorem 1 embodies an evaluation of 17 in terms of a measure of the extent to

which the uptimes fail to be geometric.



THEOREM 1
N

* = 0
(@) €Cr,) = €™ ¢ (- hgfl 2 wFen)]
(8) (C(r.) - CPIHCDY ™ < (@ - muph{1 + )™

SUOERE

Proof

From Lemma 1, Definition 3 and (6) it follows that

N 0 0
Cry) = BL 2 wy(Fj(r) ¢ mylF(r )]
- N 0

Similarly we have that

* N 0,
Cr)2(1+ TD)E[JEIWJ.FJ(1r )]

2 (1+ gyn>scjglepg<w,>] :
the latter inequality following from the optimality of wv for the
no-breakdowns case. Inequalities (a) and (b) now follow simply.

Note that since (n - 1) and {ﬁ(n)-l) - 1 are both natural measures of the
extent to which uptimes fail to be geometric then in Theorem 1 we have
achieved our stated objective - namely the evaluation of WT in terms of such
measures. It follows fairly simply from Lemma 1 that we can do rather better
than Theorem 1 in the case of N.B.U.E. and N.W.U.E. uptime distributions.
This is of considerable practical importance since all of the standard
discrete distributions have monotonic completion rate functions and hence are
either N.B.U.E. or N.W.U.E. Theorem 2 has a proof which is a simple

elaboration of that of Theorem 1 and hence it will not be given.



THEOREM 2

(i) If uptime U1 is N.B.U.E. then

N
»* -1 0
(@) CCr) = C0™) € (7 = Mgl 2 wjFi(m))

(8) {C(r) - CEIHE DN < (] - mupHt + map) ™!
< (Tl)—l - 1.

(ii) If uptime U1 is N.W.U.E. then

c(r) - c(x) < (7 - uhy E[g Fo(r )]
(¢) Clw.) - C(w) < (m -y duy j=1w~” .

(@) {€(r,) - CrIHEE N ™ <G - W] dph(L + wy )™

Sml-l-

3. Bounds based on Lorden’s inequality
The bounds described here extend Theorem 2.5 in Birge, Frenk, Mittenthal

and Rinnooy Kan (1987) to the case with random processing times. They
originate from Lorden's inequality for the renewal function which, under the

conditions assumed here, states that

t t M2 .
A S ()

N
»* -2
Clr)) - C(r) < uohppy (351'j) .

Proof

From the right-hand side of (7), together with (6), it follows that

N
0 0
C(WT) = E[jile(Fj('7) + mU(FJ(WT)}uD)]
N 0 Fo(w ) Ho
{ E[lewj(Fj(rv) + uD{ m + ;? - 1}1)]

-1.__ N 0 -9 N



Similarly, from the left-hand side of (7), we have that

N N
C(r) 2 (1 + upp  DEL 5 w FO(r)] - b( 2 w)
P el
T N
2 (1 + ppp, )E[jzleFj(vv)] - uD(jzle-) ,

the latter inequality following from the optimality of HY for the

no-breakdowns case. The result now follows.
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