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Abstract: Consistent stochastic orders of processing times and objective functions yield optimal
policies in many stochastic scheduling problems. When these orders fail to hold, however, finding
optimal values may be difficult. In this paper, we show how to bound these values in general

situations including problems with unreliable machines and tardiness-based objectives.

1. Introduction.

Most practical scheduling problems involve some uncertainty about the lengths of time to process
jobs and the availability of machines and other resources. Recent results (see, e.g., Chang and Yao
[1993] and Righter [1994]) using stochastic order relationships have characterized optimal policies
when these orders are consistent. While these results may be quite useful in certain situations, the
conditions for optimality are most likely rare in practice. We show how the results may be extended

to broad classes of problems by constructing bounds on optimal values.

While our basic approach may apply in multiple machine problems, to keep the analysis simple,

we consider a single-machine and fixed set of N jobs. Costs are assumed to be the expectation of

* Based in part on work supported by the National Science Foundation under Grant DDM-
9215921.



functions of job completion times, including tardiness objectives. The processing times may include

breakdown processes.

Our results represent extensions of results in weighted flow time models as well as previous
models with due dates. In the weighted flow time case, the application of Gittins indices (Gittins
[1979], Glazebrook and Gittins [1981], Glazebrook [1976]) has led to characterizations of optimal
strategies in many contexts. Special cases with machine breakdowns also appear in Glazebrook
[1984], Birge et al. [1990], and Birge and Glazebrook [1988]. Birge et al [1990] also gives limited
results for linear tardiness penalties. Weighted fixed cost penalties for each tardy job are considered

in Glazebrook [1983).

Optimal policy results for general functions of completion times appear in Righter [1994]. We
use the optimality results in Chang and Yao [1993] extensively below. Shaked and Shantikumar

[1994] give general properties of stochastic orderings that lead to many of the optimality results.

In Section 2, we describe our model and previous results. Section 3 gives bounds for deviations
when jobs have order specific costs. Section 4 provides corresponding results when costs are job
specific. Section 5 gives bounds in the case of nonagreeable costs while Section 6 discusses optimality

conditions for nonpreemptive policies in the presence of breakdowns. Section 7 presents conclusions.

2. Model and Background.

We suppose a set J = {1,2,..., N} of jobs is to be processed on a single machine. Each job
J has a random processing requirement X;. The processing requirements are independent of each
other. Att =0,1,..., the state of the system consists of the set of completed jobs and the cumulative
processing time z; for all unfinished jobs in J. Decisions are made at ¢t on which job to process
during the interval [t,t + 1]. A policy 7 is any nonanticipative rule dependerit on the history of the
process that determines which jobs to process at ¢ until all jobs in J are completed. We assume the

cost of a policy is the expectation of a function of the completion times,

V(r) = Ex[f(c1,...,cn)l, (1)

where ¢; denotes the completion time of job 7 and E, denotes the expectation under policy 7. The
objective is to minimize V(7). The objective in (1) is job specific as in the case where each job may
correspond to a different product. When each job is substitutable, the cost may be order specific,

only depending on the order of finish, with objective f written as f(c(1),...,c(c(v))-

2



A common objective in (1) is weighted flow time f(c1,...,en) = Zf\il w;c;. In this case, assum-
ing no breakdowns, if job j has received z; units of processing, then Gittins [1979] and Glazebrook
[1984] show that an optimal policy processes the uncompleted job with highest Gittins index ¥;(x)
where

r t—2
w; Y pilw+t—1) [H(l - pj(z +3))

t=1 s=0

vi(z) = sup — T (2)
: S Hu—pjms»}
t=0 Ls=0

and p;(t) = P(X; =t+1]| X; >t), t =0,1,..., is the completion rate function. It is not
hard to see that if p; is nondecreasing, then the supremum in (2) is attained at r = +o00 and so
¥;(z) = wjp;(z), where p;(z) = E[T—;lm When all jobs have nondecreasing completion rates,
then ordering jobs by the weighted expected remaining processing time is optimal.

An optimal nonpreemptive policy is also given in Glazebrook [1983] for an objective that includes
a reward for completion before a due date, d; for each 4, and no reward beyond the due date. In
this model, if weights are decreasing, w; > ... > wy, due dates are increasing d; < ... < dy
and processing times are stochastically increasing, P[X; < z] < P[X; < z]... < P[Xy < 7]
for all z, with the order unchanged when conditioning on past processing, then processing in the
order 1,2,..., N until each job is completed is an optimal policy. For a breakdown model with
deterministic processing times and with linear tardiness penalties, Birge et al. [1990] show this

order is again optimal.

Chang and Yao [1993] provide results for more general objectives with various conditions.
Righter and Shantikumar [1992] also provide generalizations in other ways. The variety of proof

techniques and other extensions appear in Righter [1994].

We use these results in the following. Before summarizing them, we define some notation. We
assume that the order, 1,2,..., N, is consistent with shortest expected processing time (SEPT).
Following this policy to the completion of each job has cost, fsgpr. Following the order, N, N —
1,...,1, until each job is completed is longest expected processing time (LEPT) order with cost,
frepr. Following the wu order to the completion of each job is weighted shortest expected processing

time (WSEPT) with cost, fwsgpr.

We denote the ordinary stochastic order for two positive random variables, X and Y, by X <y
Y, meaning that P{X >t} < P{Y >t} for all t € [0,00). We also use that X is less than Y in

hazard rate order, X <p, Y, to mean that }; i,{: is decreasing in ¢ for all t. When X and Y have
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(here discrete) densities, gx and gy, respectively such that gx(t)/gy(t) is decreasing over the union
of their support, then X is less than Y in likelihood ratio order, X <;. Y. We note that likelihood

ratio order implies hazard ratio order which, in turn, implies stochastic order.

It is often useful to have the orders consistent regardless of the amount of processing that has
been completed. Here, X has increasing likelihood ratio (ILR) if [X —t|X > ¢] <; [X —s|X > ] for
all 0 < s < t, which implies that X has an increasing hazard rate (IHR). If likelihood ratios of two
ILR random variables, X and Y, are ordered so that gx (s + 8)gy (t) < gx(s)gy (t + 6) for all 6 > 0
and any s and ¢, then X is less than Y in ¢ncreasing likelihood ratio order, X <ir Y. Similarly, if
%%—:i—g% is decreasing in ¢ for all s and ¢ with IHR X and Y, then X is less than Y in increasing

hazard rate order, X <inr Y.

The results also generally make use of restrictions on the objective functions that are consistent

with processing time orders. We say that the costs are aggreeable if f(ci,..., ¢i,...,¢jy...

flery o sCjyennstCiy.n.

(flei,...,en) = Zf;l fi(ci)), that f; — f; is increasing for 7 < j.

acN) Z

,cN) whenever ¢; > c¢;. In particular, this implies, when f is separable

From these relationships, we have the following results in Table 1 where we use A = ST, (I)LR

or (I)HR to indicate X; <4 X4 for all ¢ under ordering A. A function f is supermodular if

f(z+eiei+eje;) > f(z+eie;)+ f(x+eje;) for any €;,€; > 0, where e; is the ith unit vector. We use

CY for Change and Yao [1993], RS for Righter and Shantikumar [1992] and R for Righter [1994].

Proc. Times Preempt? Conditions on f Result Source
LR No Order specific,increasing E[fsgppr] < V(7) < ElfLepT] cY
HR No Order specific,increasing, E[fsgpr| < V(7)< E(frLePT) cY

supermodular
ST No Order specific,increasing, E|[fsgpr] <V(n) < E(frLepT] cY
separable

IHR(DHR) Yes Order specific,increasing, E|fsgpr| < V(n) < E(fLEPT) cY

supermodular
ILR(DLR) Yes Order specific,increasing E[fsgpr] < V(1) < E|fLEPT) RS
LR No Job specific,increasing, E|fsgpr] < V(1) < E[fLePT] RS(R)
aggreeable
HR No Job specific,increasing, E[fsgpr) < V(r) < E[frepT] RS(R)
supermodular,
aggreeable
ST No Job specific, increasing, E[fSEpT] <V(m) < E[fLEPT] RS
separable,
aggreeable
IHR(DHR) Yes Job specific,increasing, E|fsppr] < V(7) < E[ftepr] R(comment)
supermodular,
aggreeable
ILR(DLR) Yes Job specific,increasing, E[fsppr] < V(r) < E{fLepr] R(comment)
aggreeable

4



Table 1. Order conditions on optimal policies.

As noted, these results generally extend to models with breakdowns (see also Hirayama and
Kijima [1992]) when the breakdown process does not depend on the job in process. It also applies
to arrivals with two classes of jobs (assuming nonidling policies, see Righter [1994] and Chang and
Yao [1993]). Our interest here, however is when the conditions in Table 1 are not satisfied. In this
way, we derive results that extend the weighted flow time bounds on optimal policies in Birge and

Glazebrook [1988]. We begin by considering the order specific objective case.

3. Order Specific Costs.

In general, our approach is to relax the processing time order conditions by constructing an
artificial processing time X, distribution for i + 1 such that X, 11 <p, X;11 and X; <p, X411
If this substitution is consistent with a given order, then we can apply the results in Table 1 and

construct bounds on optimality.

One case in which ordered processing times can be constructed is when each processing time has
an upper and lower geometric rate. Such conditions were also used for breakdown rates and bounds
in weighted completion time problems in Birge and Glazebrook [1988]. For these rates, we assume
for processing time X;, that fi; is the upper geometric rate of X; with fi; = inf{u > 0| X, <g1r X,
where X, is geometric with rate p (i.e., follows a geometric distribution with expectation 1/u) }.
The lower geometric rate I for X; is defined such that B, = sup{p > 0 | X; <sr X, where X, is

geometric with rate p}.

Assuming that each proceésing time has an upper and lower geometric rate, we-can define
two permutations on 1,..., N, 7 and m, that are optimal for the problems with geometric random
variables at upper and lower rates, respectively, replacing the original processing times. Let the
value with upper rates be V and the value with lower rates be V. An immediate consequence is the

following.

Theorem 1. Suppose each processing time X; has upper and lower geometric rates as defined above
and suppose m* is an optimal policy for objective, V (), with order specific costs and f increasing,
\

then, for the policies following permutations T and 7 as defined above,

V(r) < V(") < V(z). (3)

5



Proof: To see this result, note that V(r) < V() and V(r) < V(n) for any 7. From Table 1, the
optimal permutation policies 7 and 7 exist for V and V by using orders consistent with the upper
and lower rates that then satisy ILR order. Note that X 5 Sst X;. With standard coupling results,
we can define X'i =distribution X gz, and X',' < X, almost surely. Then, it follows that substituting X',-
for Xz,, V(7) < V(r*) < V(7*). Similarly, V(*) < V(z) < V(z). The result follows.

We can in fact strengthen the result in (3) to measure the maximum deviation possible from

an optimal nonpreemptive policy to an optimal policy allowing preemption.

Theorem 2. Suppose each processing time X; has upper and lower geometric rates as defined above
and suppose T is an optimal policy for objective, V (), with order specific, separable, and increasing

costs , and 7 is an optimal policy for V as defined above, then

V(#)=V(r") _ €
< , 4
V(n*) T 1l-c¢ )
where € = min|[1, Z;V:I % .
&
Proof.  From Theorem 1, assuming the 7 order is 1,..., N, we have:

N
V(E)-V(@) SV(@E) - V(") SV - V(@) = Y Elf(X +-+ X)) - (K1 +--+ X)), (5)

Jj=1

We begin with the first term on the left-hand side in (5). Here we have:
E[fui(Xy)] - (X)) = ) fl@f{p, (- )" = (1 - )"}

= Z Z{fl Aly = DIp,0 - p)" = (1 -5}

(6)
=Y {hw) - Aly-DHO-p ) -1 - B
y=1
< (A - Aty - D) - gy = B By )
y=1 'ul ﬁl
where the last inequality follows since (1 — H1)y—1 -1 =-p¥t < (B - ﬁl)(l - Hl)y—z =(1-
b
21 1-p



Now, we consider the second term where

E[f2(X; + Xo)] - E[f2(X1 + X)) = E[fo(X; + X,)] - E[fa(X, + Xo)]

+E[fa(X, + X2)] — E[fo(X1 + X2)).

Conditioning on X; and X, respectively, we can proceed as in (6) to show that

ElA(X, + X3)) - B, + o) <[22

[Elf2(X; + X)),

=2

and

=

E[f2(X; + X2)] - E[f2(X1 + X5)] < [ JE[f2(X; + X2)).

=S

Hence, from (7-9),

E[fo(X; + Xo)] - E[fo(X1 + X2)] < [”2 =

4 JE[f2(X; + X))

fy —
1-

+| p ]E[fz X, + X))

=1

P1— ul} [m—gQ
1=p, 1-p,

<A{]

BE[f2(X; + X))

Repeating the argument for (10) up to job j, we obtain

BIf(Xy + o+ X)) - (K 4+ X)) € {g[’?__an[fj(xl bt X))
Now, we have from (5)
V(E) - V() < {Z[“l _éﬂ}_(ﬁ)
We can then let € = min{1, ZH[ ]} to obtain

V(R) - V(r") < V(7) - V(7) < V(7).

(11)

(13)

Noting that we have V() < (1 — €)~V(7) < (1 — ¢)"'V(r*) from (13), we obtain the result.



4. Bounds with Job Specific Costs.

The results of the previous section assume that costs are order specific. We now wish to extend
the results to job specific cases. For these results, we must define rates to be consistent with an
agreeable objective function order. We assume that the objective function has an agreeable order,
1,...,N. Then, we define ji; = max;>; fi; for i = 1,.... We then have X; which is geometric with
rate fi; in IHR order. We suppose V is the objective for these processing distributions and that 7 is

a corresponding optimal policy. We then obtain the following.

Theorem 3. Suppose each processing time X; has upper and lower geometric rates as defined above
and suppose T is an optimal policy for objective, V (), with job specific and agreeable costs, then,

for the policies following permutations @ and w as defined above,

V(%) < V(') < V(). (14)
Moreover,

Vi) € )
where & = min[1, 7, [2254) = minft, OV [B2R 4 278

=J -J -7
Proof. This follows exactly as in the proof of Theorem 2 where we note that the ji values provide

the necessary ordering. m

Note in (15) that € has two components, the first for the extent of incorrect ordering and the

second for the deviation from geometric times.

5. Bounds for Nonagreeable Costs.

The conditions of the optimal permutations in Theorems 1-3 are fairly restrictive, but they
may also be used to obtain bounds on optimal objective values whenever processing times follow a
consistent stochastic order or have upper and lower bounding geometric (or, in the continuous case,
exponential) distributions. For the following, we first assume an ordering on the processing times

and then define an alternate objective that is agreeable.

To' define the new objective, suppose f is separable and increasing. We define f* by

N

e, ven) =) fH(e), (16)

=1



where f*(c;) = fi(c;) + 6] (c;) and 6 is such that f* is agreeable. For example, we may define 6
by
50 = Y81 0) (1)

and

81 t) = sup{fu(t) = £:(2),0}, (1)

where f(t) = f(t) = f(t —1) (or df /dt in the continuous case with an integral replacing the sum in
(17)). Note that 6;»+ is nonnegative so that &; is increasing for all i and that 67 is identically zero
whenever costs are agreeable.

Similarly, we can define f~ as in (16) with f~(c;) = fi(ci) + 6; (i), &, (t) = 3 6;_(1?) and
6;” (t) = —sup<i{ fi(t) = fx(t),0}. In this case, we again have §; identically zero whenever costs
are agreeable.

As an example, for the case of expected weighted tardiness objectives, f;(t) = w;(t—d;)*, where

d; is a due date for job i. Suppose that the processing times are ILR, we then have

87 (t) = —sup{fi(t) — fu(t),0}
k<i
= —sup{wil>d; k<it<der SUPk<i,t>dpst>ds {Wi — Wk}, 01<q, } - (19)

= —w;le>d; k<it<dy T SUPK<i,t>dpst>d; {Wi — Wk }li>dy k<i

We, therefore, have that §; = —w;(t—di)li>d; k<irt<d, —SUPk<i t>dp;t>di {Wi—Wk } (E—SUPk<i@k) Le>dy k>i-
If we define a new set of weights, w;", i = 1,..., N, recursively by w; = wy, w;y; = min{w; , w41}, i =
1,...,N —1 and a new set of due dates, d;, i =1,...,N, by df =di, di};, = max{d; ,di;1}, i =
1,...,N — 1, then f(¢t) = w;(t —d;)*. Here, if, for example, w; = 3,w = 2,w; = 1, and
d; = 3,dy = 2,d; = 1, then, for f~, we have w; =3,w; =2,w] =1andd] =3,d; =3,d] =3.
On the other hand, if the weights are, w; = 1,ws = 2,w; =3, then w] =w; =w; =3.

Suppose the objective value of any policy 7 with (=) replacing f is V+(=) (7). This provides
bounds on the optimal value of V(7). Combined with the result in Theorem 3, we can then define
V- () as the objective value under policy 7 for using distributions with the upper geometric rates,

i, and ‘the objective f~. We can also define V*(7) as the objective value under policy 7 for using
distributions with the lower geometric rates, y, and the objective f *. We then have a general bound

whenever processing times about upper and lower geometric rates.
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Theorem 4. Suppose each processing time X; has upper and lower geometric rates, f is job specific,
separable and increasing, 7 is an optimal policy for objective, V (), and (=) is an optimal policy

for V(=) with objective f¥(=) as defined above, then

Vo (@t ) < V() < V(D)) <y t(at). (20)

Proof By construction, 7~ is optimal for the objective V*(=). This policy in fact correspond to
SEPT (under the fi order) according to the result in Table 1 and our assumptions. For any policy
m, we have

V(r*) = Er[f(c1,...,en)] < Ex[f(ct,- .-, enN)]

< Ex[f* (e, en)]

(21)
N
= Ew[f(ch ceey CN)] + Eﬂ'[z 5:-(01)]
i=1
For m = nt/~, we have the middle inequality of (20). We also have
N
V(%) > Ep-[f(c1,- v on)] + Ex=[Y_ 67 (ci)]
i=1
i (22)
>V~ (n")
>V (n7)

Since the differences in (20) depend on all the costs, we do not have as readily available compar-
isons as in Theorems 2 and 3. We have an additional bound possible using the increasing property
of the 6 functions. If we apply the same process as in the construction of f* to obtain 6+
from 6% which is agreeable. Then, for any policy 7 under the conditions of Theorem 4, we have

E,,[Zf/:l 6j+(ci)] < E, [Zf;l 5i++(ci(7r))} < ELEPT[Z?; 63‘*’(&-)}. In this case,

N N
V() = V*(r") - Ene[Y 67 (c)] > V*(r%) - BrgprlY 67+ (), (23)
=1 i=1

where, again the last term vanishes when costs are agreeable.
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6. Optimality of Nonpreemptive Policies with Breakdowns.

Other results may also be possible with specific distributions when costs are not agreeable. It
may be advantageous, for example, to identify when nonpreemptive policies are actually optimal
within the class of preemptive policies. We have seen this result for ILR and IHR families. The
next result shows that it is extendable to arbitrary deterministic processing times with increasing
separable convex costs and a breakdown process. In the following; we assume integral processing
times, p;, ¢ = 1,..., N, and suppose that the class of preemptive policies is stationary, meaning that
decisions may depend on the completed processing of each job but cannot depend explicitly on the

time or breakdown process.

Theorem 5. Suppose that X; = p; (deterministic), completion times are affected by a random
breakdown process which is independent of the job order and has finite expected number and down-
times in any fized interval, and f is separable, increasing and convez, then there exists an optimal

policy within the class of stationary preemptive policies which is nonpreemptive.

Proof.  Suppose, without loss of generality, that an optimal preemptive policy 7 completes jobs in
the order, 1,2,..., N. By our stationarity assumption and deterministic processing times, this order

does not depend on the breakdown process. Thus, the completion order remains deterministic.
Suppose job ¢ consists of p; separate unit length jobs labelled, i1,2,...,ip;. We define a new

cost function, f’, on job ij,1 < j < p;, by

F56) =Y _{fult) = filt = 1)}. (24)

k>i

Let V() be the value for the process defined with objective f in (24) and some policy 7. We then

have

N pi

Vi(r) = Ex[>_ > fii(cis)]

i=1 j=1

N
> E,,[Z fi(maxley, ..., ¢;))] (25)

N
> Ex[) fi(ey)]-
j=1

We can show that # is in fact optimal for V’. For the jobs in the process for V', consider the

lexicographic order on {ij}. We have f},(t) — f;(t) = 0 for any k,l. Also, whenever j < k, we have
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1) = fem(t) = Zi-:jl (fi(t)—fi(t—1)), which is increasing by the convexity of f. Therefore, by The-
orem 2.2 in Birge et al. [1990], the lexicographic ordering, 11,12,...,1p;,21,...,2ps,...,N1,..., Npy,
is an optimal policy for V’. This policy in fact corresponds to the nonpreemptive policy # to process

in the order 1,2,...,N. From (25),
N
V(#) = E:[)_ fi(e;)]
j=1

N
= E"[Z fj(max[q, oo ’Cj])]
j=1
(26)
N
> ;) fi(max[ey,...,¢;])]

J=1

N
> Ex[)  file)] = V(7).

j=1
Thus, the nonpreemptive sequence is optimal. B

We can extend the result in Theorem 5 to stochastic processing times if X; = }:?g Y, where
the Y; are independent and identically distributed. In this way, we can replace the time ¢ — 1 with
the time of the last completion before ¢ and apply the approach in Righter [1994] to show that

interchanges cannot improve the objective for V' as in the proof of Theorem 5.

7. Conclusions.

We have presented results that provide bounds on the value of optimal policies in stochastic
scheduling. The bounds measure the extent to which distributions and cost functions vary from
the orderings that produce optimality for simple orders. These bounds may be used in heuristic or

optimum seeking algorithms to eliminate suboptimal strategies or provide e-optimal results.
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