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ABSTRACT

We show that Van der Heyden's variable dimension algorithm and Dantzig
and Cottle's principal pivoting method require "1 pivot steps to solve
a class of linear complementarity problems of order n., Murty and Fathi have
previously shown that the computational effort required to solve a linear
complementarity problem of order n by Lemke's complementary pivot algorithm
or by Murty's Bard-type algorithm is not bounded above by a polynomial in n.
Our study shows that the variable dimension algorithm and the principal

pivoting method have similar worst case computational requirements.
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1. Introduction

The linear complementarity problem (LCP) of order n, LCP(q, M), is -to

find w € Rp and z € R such that

w-Mz=gq, @)
vz =0, 2)
w >0, 3)
z 2 0, (4)

where M is a square matrix of order n, and q is a vector in RP. Murty [7]
and Fathi [3] have shown that Lemke's complementary pivot method [5] and
Murty's Bard-type method [5] require a number of pivot steps that is not
bounded above by a polynomial in n fof a certain class of LCPs., Geometri-
cally, Murty showed that the algorithms follow a path across all 2"
complementary cones in RF.

In this paper, we consider Van der Heyden's variable dimension algorithm
(VDA) [8] and Dantzig and Cottle's principal pivoting method (PPM) [3].
We construct a class of matrices similar to Murty's and show that VDA and
PPM require 21 pivot steps for these problems. The nth order problem in
this class will be denoted LCP(q(n), ﬁ(n)) where the elements of ﬁ(n) are

m,. such that

ij
1 if i = j
mij = 2 if §j>1i (5)
0 otherwise,

o3
q = T =27, (6)



We note that ﬁ(n) is the transpose of the matrix used by Murty in [7].

2. A Geometrical Interpretation of the VDA.

A matrix M is called a Q-matrix if LCP(q, M) has a solution for all
q € Rp. M is a completely Q or §-matrix if M is a Q-matrix and so are all
of its proper principal submatrices. We will consider the VDA algorithm
applied to this latter class of matrices. Some properties of completely
Q-matrices can be found in Cottle [2].

Under nondegeneracy, Van der Heyden [8] showed that VDA solves a
sequence of subproblems that is guaranteed to terminate with a solution

to the original problem LCP(q, M). The algorithm follows.

VDA,

Step 0: Initialize (w, z) = (q, 0).

Step 1: If w > 0 the current basic complementary solution is feasible.
Stop. Otherwise set k equal to the index of the first nega-

tive component of w, increase Zy and go to Step 2.

Step 2: Keep on increasing or decreasing the variable specified by
the previous step, until one of the basic variables in the
subproblem of order k becomes nonbasic. Denote this
variable by sj(sj = Wj or zj, j < k) then perform one

of the following operations:

(a) If j <k, increase the complement of sj; go to Step 2.

(b) If j =k and 8 = W» we have solved the subproblem

of order k; go to Step 1.

(¢) If j = k and S T 7o We have found another solution

of a subproblem of size smaller than k; go to Step 3.



Step 3: Set k equal to the index of the last positive component of

z, decrease W and go to Step 2.

Remarks.
1. k is the subproblem size. The algorithm considers only sub-
problems of order k obtained by disregarding the last (n-k)
rows and (n-k) coitmms of the matrix M and the last (n-k)

components of q.

2. Note that when M has positive principal minors, (a P-matrix),
Step 2c and Step 3 will never be performed because each sub-
problem has a unique solution. For this subproblem, VDA then

follows the same steps as PPM,

3. When solving a subproblem of order k where M is a P-matrix,
Ve and 2, will both be basic variables until the last step,
when v leaves the basis. (This is a consequence of

Remark 2.)

4., When solving a subproblem of order k, (k > 2) the algorithm
maintains complementarity and nonnegativity of (wl, WZ""’Wk—l)

and(Zl, 22,00 L] ,zk—l).

We now give a geometric interpretation of the VDA when applied
to solve an LCP(q, M) where M is a P-matrix, a9y 20 fori=1,..., n-1, and
q < 0., (Notice that any subproblem has this general form.) By Remark 4,
the VDA maintains feasibility of the problem of order (n-1l) when attempting
to solve the order n problem. Also, z, will enter the basis at the first

step and will never become nonbasic, and v will be basic in all tableaus

encountered except the last, Hence, the only pivot step in row n that the



algorithm performs is the last one. Let us consider the parametric LCP

of order (n-1) obtained from the given LCP(q, M), by disregarding row n

and the column corresponding to Wos by transferring the column correspond-

ing to z, to the right hand side, and by treating z as a parameter,

Let ¢~ = (ql, q2,...,qn_1) and M:i be the ith column of M whose last component
is disregarded, then the point q“+ zn'M:n traces a line in RP—I as z takes

on all values. We observe that,before the last pivot to solve the problem,
the number of intermediate pivot steps required by the algorithm is bounded
above by the number of complementary cones of order (n-1) that the half

line L” = {x: x =q¢ "+ 2z M ; z >0} intersects.
n .n’ “n =

Thus, finding the worst case behavior of this algorithm is equivalent

to finding the maximum number of complementary cones of order (n-1) that

the half line L” cuts across.

Claim: Each intermediate step of the VDA corresponds to a move from one

facet of a complementary cone of order (n-1) to another along the

half line L”.

To see this, suppose at some stage of the algorithm (yl, y2""’yj—1’
Yj+l""’yn—l’ I wn) is the present basig vector; where Y4 € {wi, Zi} for
i=1,ec.,n-1, z = E, and v < 0, Since the algorithm does not perform

a pivot on row n during the intermediate steps, we look only at the vector

(yl’ YZ’---’ y _1’ Yj+1"'°, yn_l’ zn)b

The entering variable at this stage is yj. By increasing the value of
yj, the algorithm travels through the interior of the complementary cone,

Pos(A”l, A'z,..., A’j_l, AJT, A‘j+1,..., A'n_l), along the half line L where

A.j € {I.j’ - M.j} and (A.l""’ A.j—l’ A.j’ A.j+l"'°’ A.n—l) is the comple-

mentary set of vectors corresponding to the complementary vector of



variables (yl, Yoseees yj-l’ yj, yj+1""’yn-l)' The value of yj is
increased until the half line intersects another facet of the same comple-
mentary cone, where the value of the dropping variable, Yy becomes zero.
The value of z becomes ﬁn. Thérefore, the intermediate pivot steps can
be interpreted as a walk along the half line L” across different comple-

mentary cones of the form, Pos(A’l, A'Z,..., A, A This

- »

j? Tt A.n—i)'
sequence of intermediate complementary cones is identical to the sequence
of solutions for the parametric LCP above where the initial value of z is
zero and where M is a P-matrix., We can notice also that the VDA can be

interpreted for a P-matrix as a walk in n-dimensions along the half line

0}, Across different complementary cones of

v

= 1xt x=q+ M
L= {x:x q zn .’ zn

g

oy = M.i] i=1,..., n-1,

the form, Pos{A.l, A,2”"’ A.n} where A;i e {1

n-1’

and A =-1 . A is always equal to -1 a until the last-step'when
.n .0 n

L]

w leaves the basis.
n



3. Computational complexity of the VDA,

Let us consider the LCP(q, M) of order n in the following canonical

tableau form after the (n-1) order subproblem has been solved,

Wi Wy eees W o 2y (W Z)  Zy  eeees Z_, W g (2. q
0 2 | 2% +2
2 | 2"+ 4
M+
I 0 ﬁ 1 . (7,
n__l X n-—l - (n- ) /}
0 2
0 2 | 2™ 4ot
0 0 1 0 0 |-1 -t

Here, the basic vector is (Wl, Woseses W oy 215 Wn)'
If we apply the variable dimension algorithm to the above LCP, the VDA
maintains feasibility of the (n-1) order subproblem (Remark 4) and the values

of W and z are determined by the sequence of solutions of the subproblem

followed by the algorithm.



We will show that this sequence of complementary bases include all of

the (n-1) order complementary bases. Our procedure will be to prove that

z and w are strictly increasing and that the size of the increases is

bounded, forcing the algorithm to follow a maximum number of steps. We

first need the following lemma in showing monotonicity.

Lemma 1; Let A = (aij) be a 2-square matrix having the properties:

(i) a1 <0

(ii) ay <0

(iii) The matrix

(iv) has positive principal minors,

has positive principal minors,

then A must have the properties:

v) a,,>0,

12

(vi) a,, > 0.

22
Proof: From Cottle [1]. .

Let the matrix of the LCP in (7) be M.

/ 1/a

T894 11

(a) ayy = 3y 3y )/ayy ay/

ayy/ay; (g, ay -y 8,

1/a

21 - ay/ay

It is a P-matrix. Thus, by

Remark 2, when the VDA is applied to this problem, z, will enter the basis

at the first step and it will never leave.

Also, the schema is almost

complementary during the entire solution process, and v and z, will be

)

1

41




basic variables until the last step when W leaves the basis and a solution
is obtained. The following lemma establishes that z and v strictly

increase during the application of VDA to (7).

Lemma 2: Under nondegeneracy z and v in (7) will strictly increase

during the application of the VDA,

Proof: The VDA first increases Z . Without loss of generality, we can
assume that the current basic variables at any step of the algorithm are
(wl’ Wysees s W1 wn) and the nonbasic variables are (zl, Zosesss 2 13 zn).
If z, is blocked by ﬁs then we have two cases:

(a) If s = n, then the result is trival.

(b) 1If s + n, thenﬁgn < 0, and we exchange ﬁs and z o Before the

pivot step we have the following 2 x 2 matrix corresponding

z z
to the variables, Zg and z . s n . This
m m
ss sn
m m
ns nn

is a P-matrix since M is P.

After the pivot step, the matrix corresponding to QS and ES (which

becomes the new driving variable) is

- .
1 m
— -_ss
m m
sn sn
(9)
o - - - - -
nn (m m -m m )/ m
= ns sn ss nn sn
sn
L -




Now, since, L > 0, ESn < 0, and M is P, then Lemma 1 applies to (9), and

we obtain

ss and ns mSn ss mnn
( _ > 0. (10)

|
g1

m
sn sn

After the pivot step, v and zZ are the basic pair in the almost comple-
mentary schema. (10) implies that both members of the basic pair will
increase with increases in the new entering variable.

We will show that the driving variables continue to have positive
coefficients in the sth and nth rows of M until W is chosen as a blocking
variable. We assume that this is true after k pivot steps. We showed
above that this assumption was true for k = 1., Let En be the driving
variable in the next step and let W + w_ be the blocking variable.

h| n
The matrix corresponding to wj, z (= ws), Vo zj and z is:

W 5 z (ws) W z ~ z
1 0 0 - Hﬁj - @Jn |
0 1 0 }- nﬁj - mSn (11)
L 0 0 1 - mnj - mnn g .

Since w, is blocking, m, < 0, and m >0andm >0 by assumption.
j jn sn nn
After pivoting, we obtain the matrix corresponding to ﬁj and z, (the
J

new driving variable) as



10

v, z,
J J
1 m,,
- 1]
m, m,
jn jn
m m,_m,- m_m,,
sn jn_ s8] sn__)J
i m,
Jjn Jjn
I-I-lnn I-;ljn anj ” ahn _JJ
- - (12)
Jn in

Again, we continue to apply Lemma 1 and z and W increase as Ej increases,
proving the result. .
We can also notice that z and W will increase by the same amount
n

during the process of solving problem (7) since v o=z - 2, The

first increase is 2n—1 + 1 since z, is blocked by w In the following,

1°
we show that the increase of z, and Vs after the first pivot step is at
most one. To do so, we proceed as Murty did in [7] by showing that the
line q + ﬁ.n z crosses all complementary cones in the (n-1) order principal
subproblem,

We treat z as a parameter in the (n-1) order principal subproblem
obtained from (7) by disregarding the last row and the column corresponding

to W We then transfer the last column to the right hand side and obtain

the following parametric LCP of order (n-1).
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wl WZ cCe v e wn~2 Zn_l zl 22 veeoce Zn-z wn_l q
M2 -2y
24 - 2y
M+ 2%l gy

n-1 . .
We can note that for y < 2 + l,(wl, Woseeos W _os zn—l) is a feasible

set of complementary basic variables for the above parametric LCP,

Lemma 3: Starting from y = 2n-1 + 1, the feasible complementary basic

vector for (13) changes at every unit increase of v.

Proof: We note that when the VDA is applied to (13) every step is a
principal pivot step from one unique solution to the next as Y increases.

The lemma will be provéd by induction on the size of the subproblem under
consideration in the VDA algorithm for fixed problem size n. The (n-k)

order parametric LCP subproblem will be the problem obtained from (13) by de-

leting the last k rows and the columns.corresponding to the variables

Wn_k, Wn_k+l,..., Wn_l, Zn_k, Zn_k+1,..., Zn_l-

Induction Hypothesis.

Let us suppose that Y increases by one at each step when attempting
to solve the (n~2) order parametric LCP subproblem using the VDA and that
2n—2_1 steps are required., The induction hypothesis can easily be verified

for the subproblem of order 2 where n > 3.
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q Range of y for which q is
2
not negative.

n
1 0 -1 =2 ™42 -2y 1
Yy <2 +1
0 1 0 -1 2" 44 -2y
n
-1 0 1 2 2y - 2% - 2 _ _
Py <™l
0 1 0 -1 M s -2y
-1 2 1 0 |-2y+2"+6
Y n-2 n-1

2 +2<y <2 + 3

1 -2 -1 0 2y =2 -6

0 -1 0 1 2y - 2" - 4

Therefore, the induction hypothesis is true for the subproblem of order 2.

n-1 _

We note that, in the LCP of order (n-1), 4,1 = 2"+ 2 2y

n-1 + n—2'

remains nonnegative for all y < 2 2
After having solved the (n-2) order parametric LCP, the value of Yy is:

N I R Lt |

accdrding to the induction hypothesis. Therefore, by the structure of ﬁ,
the VDA will never choose to pivot on row (n-1) before having completely
solved the (n-2) parametric LCP. After having solved the (n-2) parametric
LCP, we obtain the unique complementary feasible basic solution given by
(wl, Woseoss W g5 zn—2) > 0 and (zl, Zyseses Z 35 W _2) = (0, At this
stage, the canonical tableau corresponding to the (n-1l) order parametric

LCP is:
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w2 o0 e 00 w -2 zn_z zn-l zl zz e o 000 Zn_3 wn_z Wn—l q
0 2 | 242 4+ 2yt
0 2 | P+ 2y-gLpt
L2 x n=2 M(n-2)
0 2 o™ - 22 4 gy
1 a1 |22+l

The right hand side and the column corresponding to Vo1

multiplying on the left by the inverse of the basis. The above basis is

are obtained by

feasible for the values of:

2n-l + 2n-2 -1 <y < 2n—l + 2n-2.

So the next step of the algorithm will be a pivot step on the (n-1)th row
and the column corresponding to wﬁ—l' After that pivot step, we obtain

the following tableau:
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Wy o eeess W g0 2 o0 |20 g | B Zy eeeer Z g W o W q
n - -
2 0 |2%2 —2¢y-2""L"?
2 0 | 2 —2(-2" 2
In—2 X n-2 - M(n-2)
2
2 0
2 0 | 2" 2 (r-2"" LY
n n-1
0 | -1 0 0 1 |2y -2" =2

Note that 9.1 > 0 for y > 2n—l + 2n—2 and by Lemma 2, y will strictly
increase, Therefore, we will never perform a pivot step on the last row,

hence we can disregard that row and the columns corresponding to w

n-1
and 2 1 We are left with a parametric LCP of order n-2. Treat
n-1 n-2 . . .
Y - 2 + 2 = A in the right hand side as a parameter. We then have

an (n-2) order parametric LCP with parameter A, By the induction hypothesis,
the increases of A are of magnitude one starting with the value Zn-l + 1, and
it will take 2n-2 - 1 steps to solve the (n-2) parametric LCP with parameter

A. At termination, the value of ) will be:

N e T
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We then have

=<

i
Y
+
N
v
Y
+
N

I
}-—l

This completes the proof of the lemma, M
The number of steps required to solve the parametric LCP of order
(n-1) is the sum of:
(a) 2n—2 - 1 steps to solve the (n-2) problem with parameter Y.
(b) One step to obtain the new parametric LCP of order n-2.
n-2

(c) 2 - 1 steps to solve the (n-2) parametric LCP with

parametric A.

Hence, the solution of the parametric LCP required Zn_l - 1 steps.

Now let us return to the original LCP(E(n), M(n)).

Theorem: The variable dimension algorithm applied to LCP(E(n), ﬁ(n))

requires | steps to find a feasible complementary basic solution.

Proof: We will prove the theorem by induction on the size,(n-k), of the sub-

problem considered by the algorithm for fixed problem size n.

Induction Hypothesis: Let us suppose that 2n—1 - 1 steps are required to
solve the (n-1) order subproblem, The hypothesis is easily verified for

the subproblem of order two.
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Wl Wz Zl Zz q
1 0 -1 -2 2y,
0 1 0 -1 2%y
-1 0 +1 +2 ™ _
0 1 0 -1 2"y
-1/2 0 1/2 1 2" -1
-1/2 1 1/2 0 2+ 3
0 -1 0 1 Ly
1 -2 -1 0 " g

Since the unique solution of the (n-1) problem requires
(wl, WoseeesW o Zn—l) > 0 and all other variables to be zero, then when
the nth problem is first considered, the problem has the canonical tableau
form of (7).

Since the increases of Y are of magnitude one, then the increases of
z in problem (7) will also be one because the VDA maintains feasibility
of the (n-1) subproblem, Also we have mentioned that W will increase
at the same rate as z s therefore, the algorithm will never pivot on the
nth row until z = 2" — 1 and wo o= - 1, otherwise, the feasibility of the

(n-1) problem would be violated.
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So the solution of the LCP (7) will require 2n-l - 1 steps to solve
the (n-1) parametric LCP, Since the problem is nondegenerate, we will
never visit the same almost complementary solution having (Wn’ zn) as the
basic pair twice. Thus after 2n—l-1 steps, we will have visited all
possible almost complementary basic vectors having (wh, zn) as the basic
pair. Therefore, when z = Zn-l the last pivot step will be performed
on the nth row, Hence, the number of steps required to solve the problem
(7) is 2n_1, and, by the induction hypothesis, the (n-1) subproblem re-

quires Zn-l-l steps, making the total requirement 2" steps. Il

4, Dantzig-Cottle's Principal Pivoting Method.

PPM applies to an LCP(q, M) when M is a P-matrix or is positive
semi-definite., There are two versions of the method, symmetric and asym-
metric, We will describe the latter only for the P-matrix case. The
methods follows major cycles, during each of which it reduces the number
of negative components of q by at least one., When a component of q
becomes positive, it will never become negative again during the process
of solving the LCP(q, M). It is this monotonic reduction of the number

of negative components of q that makes the method finite.

Principal Pivoting Method [3].

2
In the following w , 22’ MQ and qg represent the basic vector, the
nonbasic vector, the matrix of nonbasic coefficients in the canonical

tableau and the constant column at the %th iteration, respectively.
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0. Begin with the system w2 = Mzz + qg.

il

Step 0. Set &

2

Step 1. 1If q 0 stop, (WQ, zz) = (qg, 0) is the solution.

v

Otherwise, choose some qi < 0, and let Wi be the

distinguished variable.

Step 2. Determine the blocking variable by letting O be the
largest value of the driving variable z: such that one
of the basic variable goes to zero.

(a) 1If zi is blocked by wi then pivot on mis, replace %
by 2 + 1 and go to Step 1.

(b) If zi is blocked by wi, i + s, then pivot on mis,

replace % by 2 + 1 and go to Step 2 with z§+1 = zi,

>

the complement of the leaving variable, as the new

driving variable.

Corollary: PPM requires 2n-1 steps to solve the LCP (7).

Proof: When the matrix of an LCP(q, M) is a P-matrix and the vector q has
only the last component negative then, under nondegeneracy, PPM and VDA
are the same method as noted in Remark (2). Therefore, since the VDA

requires Zn—l steps to solve problem (7), then PPM will also require Zn-l

steps. .

5., Conclusion
We have presented a class of LCPs for which Van der Heyden's VDA
algorithm and Dantzig and Cottle's PPM method require a number of steps

not bounded above by a polynomial in the problem size. Combining these
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results with Murty's and Fathi's, we can conclude that almost all the
direct methods for solving the linear complementary problem can require
such exponential growth in computational effort. These results are
intended only to show worst case behavior and do not address the average

time behavior of the algorithms for general problems.
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