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Introduction

Two-stage stochastic linear programs have a deterministic equivalent
program with convex objective function that can be solved by a variety of
methods. The L-shaped method of Van Slyke and Wets [9] is a cutting plane or
outer linearization technique for solving this program when the random
variables have finite support. It has been extended to multi-stage stochastic
linear and quadratic programs by Birge [1] and Louveaux [7], respectively.
Their analyses showed the L-shaped algorithm to be an effective solution
technique for a variety of examples. The structure of stochastic programs,
however, allows the L-shaped method to be extended to include multiple cuts on
the objective in each major iteration. This paper describes this procedure for
two-stage stochastic linear programs. A multi-stage version has been proposed
by Silverman [8].

In Section 2, we briefly describe the L-shaped algorithm and the problem
structure. In Section 3, we present the multicut algorithm and, in Section 4,
we discuss its efficiency in terms of bounds on the number of major iterations
for general problems. The specific case of simple recourse problems is
discussed in Section 5. Section 6 presents results of numerical experiments

and the appendices provide illustrative examples of claims made in the text.

The L-shaped algorithm
The classical two-stage stochastic linear program with fixed recourse is
the problem of finding

min z = cx + Eg min q(w)-y (1)

s.t. Ax = Db



where ¢ is a known-vector in Rnl, b a known-vector in Ré ,» & a random N-vector
defined on the probability space (R, A,P), and A and W are known matrices of
size mj X 0y and my X Ny, respectively. W is callea the recourse matrix.

For each w, T(w) is my x 1y, qlw) € RFZ and h(w) € Rm . Piecing together
the stochastic components of the problem, we get a vector £(w) = (qw), hlw),
Ty€w), ..., Ty (w)) with N = ny + my + (By x ny) components, where T; (w) is
the itP row osz(w). Transposes have been eliminated for simplicity. EE

represents the mathematical expectation with respect to & .

Problem 1 is equivalent to the so-called deterministic equivalent program

(D.E.P.):
min z = cx + Q(x) (2)
s.t. Ax = b
x>0
where
0(x) = EgQ(x, Ew))
and

Q(x, £w)) = min { q(w)*y | Wy = h(w) - T(w)'x, y> 01}
y

Properties of the D.E.P. have been extensively studied (Wets [10], Garstka and
Wets [4]). Of particular interest for computational aspects is the fact that
Q(x, £) is a convex piecewise linear function of x and that Q(x) is also
piecewise linear convex if £ has finite support.

When T is non-stochastic, the original formulation (2) can be replaced by

min z = cx + Y¥Y(x) (3)
s.t. Ax = b
Tx = x =0
x>0

where Y(x) = ng( X, &(w))



and VX, EW)) = min {q(w) y| Wy = h(w) - X, y > 0}

This formulation stresses the fact that choosing X corresponds to generating
an my-dimensional tender X = Tx to be "bid" against the outcomes h(W) of the
random events.

In this paper, we concentrate on algorithms for solving (2) or (3).
Excluding algorithms for the specific simple recourse problem (see, e.g., Kall
[6], Wets [11]), the basic method for solving (2) is the L-shaped algorithm due
to Van Slyke and Wets [9] which is directly related to Benders' decomposition.
For more details, see the discussion of algorithmic procedures in Wets [11].
The method consists of solving an approximatidn of (2) by using an outer
linearization of . Two types of constraints are sequentially added:

(i) feasibility cuts (5) determining {x | Q(x) < + »} and (ii) optimality cuts
(6) which are linear approximations to Q on its domain of finiteness.
Agssumption: The random variable £ has finite support.
Let k = 1, .;., K index its possible realizations and let Pk index
their probabilities.

L-shaped algorithm

Step 0. Set s =t =V =0,
Step 1. Set V=V +1, Solve the linear program (4) - (6).
min z = cx + 0 (4)

—SQt. Ax=b
Dyx > d, L =1, «e., s (5)
Ex + 6 > e L =1, ..., t (6)
x>0, O€eR.

Let (x”, 6V) be an optimal solution. If no constraint (6) is

present, 6 is set equal to - ® and is ignored in the computation.



Step 2. For k =1, ..., K solve the linear program

. 1 + -
min W =ev + ev
s.t. Wy + vt - IvT = hy - TpexY
y>0 v >0 v >0

where e = (1, ..., 1), until, for some k, the optimal value w1 > 0.

Let 0° be the associated simplex multipliers and define

V
Ds+1 o Tk

and

V
dgyp1 = 07 by

to generate a feasibility cut of type (5). Set s = s+l and return to

Step 1. If, for all Kk, w1

= 0, go to Step 3.
Step 3. For k =1, ..., K solve the linear program
min we = QY (7)
s.t. Wy =h - T x’
y 2 0.

Let ﬂﬁ be the simplex multipliers associated with the optimal

solution of Problem k of type (7). Define

N
AL (8)
k=1
and
N
ete1 = I Pt Ty by (9)
k=1
2v v
Let w™ = e ) - By x.

V . . . .
If © Z_wzv, stop, x" is an optimal solution. Otherwise, set t =t + 1,

and return to Step 1.
Improvements on this algorithm have been given in two directions: (i) the study
of cases in which Step 2 can be modified to solve only one linear program instead

of N and (ii) the study of bunching and sifting procedures to reduce the work in



Step 3 (Garstka and Rutemberg [13]).. We again refer to Wets [11] for a detailed
account of these improvements.
In this paper, we propose to replace the outer-linearization of Q used in
the L-shaped method by an outer-linearization of all functions
Qk(x) =min {quy | Wy =h - Tp*x, y> 0}, (10)
of which Q(x) constiZutes the expectation.

3. The Multicut L-shaped algorithm

The multicut L-shaped algorithm is defined as follows:

Step 0. Set s = V=0 and t, =0 for all k =1, ..., K.

Step 1. Set V= V+ 1, Solve the linear program (11) - (13).

min z = cx + I 6 (11)
k=1
s.t. Ax = b
DQ x> dZ’ 2 =1, «ov, 8 (12)

E x+ek:e ,Q,=1, LRCRCN'Y tk (13)

2 L°
k=1, ..., K.
Y Y . .

Let (x", 8], ..., Og) be an optimal solution of (11). If no
constraint (13) is present for some k, Gﬁ is set equal to - ® and is
ignored in the computation.

Step 2. As before.

Step 3. For k =1, ..., K solve the linear program (7).

\Y
Let T, be the simplex multipliers associated with the optimal

.solution of problem k.

If e\l)( < pk.n\l)( (hk - Tk'x\)) (14)
define
E, .y = pp e T (15)
t+l Pr*k* "k



and

- . \).
e+l T Pk P (16)
and

set t = tk+1.

If (14) does not hold for any k = 1, ..., K, stop, xV is an optimal
solution. Otherwise, return to Step l.

We illustrate the differences and similarities between the multicut
approach and the standard L-shaped algorithm in the example of Appendix A. The
multicut approach is based on the idea that using outer approximations of all
Qk(x) sends more information than a single cut on Q(x) and that, therefore,

fewer iterations are needed.

Efficiency and bounds
The following dominance property can be established. Define Klf\ K, to be

the constraint set of the stochastic program (2), where

Kl {x|Ax=b,x>0}

and

Ky N {x|3 y>0 s.t. Wy =h(g) - TE)x}

EeE
where by assumption & has finite support.

Q(x) is known to be piecewi#e linear, hence there exists a polyhedral
decomposition of Klf\ Ky into a finite collection of closed convex sets C.,
called the cells of the decomposition, such that the intersection of two
distinct cells has an empty interior and such that either the function Q(x) is
identically - @, or on each cell the function 2(x) is affine.

In the following proposition, we define a major iteration to be the

operations performed between returns to Step 1l in both algorithms. Simplex

iterations are the number of simplex algorithm pivots performed on any of the



linear programs considered by the algorithms.

Proposition: Let {xV} be a sequence of points generated by the multicut
algorithm and let {y”} be a sequence generated by the L-shaped algorithm.
Then, if at all major iteratioms, x” and y' belong to the same cells of
the decomposition, the number of major iterations needed by the multicut
algorithm will be less than or equal to the number of major iterations of

the L-shaped algorithm.

Proof: The multicut approach sends more information on the function Q(x) than
the L-shaped algorithm. If the L-shaped algorithm stops for optimality,

the multicut algorithm will do so also. The reverse is not true. a

Unfortunately, whether the iterate points belong to cells that are close
to or far from the optimal point is partly a matter of chance. Therefore, the
L-shaped method can conceivably do better than the multicut approach (the
reverse is obviously also true) in terms of number of major iterations. We
illustrate this by the example in Appendix B. Other examples where the multi-
cut approach would do better than the L-shaped method can easily be
constructed.

Since none of the methods is superior to the other in all circumstances,
the efficiency of the two approaches is measured in terms of worst-case

analysis on the number of major iterationms.

Definition:
Let b(E) represent the maximum number of different slopes of Q(x, &) in
any direction parallel to one of the axes for a given {, i.e. the maximum
number of different cells (of the polyhedral decomposition of Ky M K,
relative to Q(x, £) for a given £) encountered by any ray (parallel to ome

of the axes) originating at a point arbitrarily chosen in KN K,



Define b = gag b(Z) to be the "slope number of the second-stage of (2)."
ex

Theorem:
Let b be the slope number of the second stage of (2). Then, the maximum

number of iterations for the multicut algorithm is

m
1+K* 2. 1) (17)

while the maximum number of iterations for the L-shaped algorithm is

My
[1 +K«(b-1)] (18)

where K is the number of different realizations of & .

Proof: If b is the slope number of the second stage of (2), in the worst-case
b(E) = b for all § ¢ =, then the maximal number of different slopes for
Q(x) in one direction is 1 + K*(b - 1). The worst-case for the total
number of slopes is when the effective number of slopes is equal to b(§)
in all directions for all £(as is the case in a simple recourse problem).
Then, the total number of facets of Q(x) (or cells of the decomposition of
Ky M K,) is equal to [1 + K(b - 1)]m2. The worst-case for the L-shaped
algorithm is to consider all the facets of Q(x), which proves (18).

For the multicut approach, the worst-case is to send at each iteration a
cut for only one among the K realizations of the random event. For each
realization, namely each ek, there are at most bm facets of Qk(x); 80
a total of maximum K'bm2 cuts for all Q. 's are needed to describe Q(x).

The result given in (17) follows from the fact that K cuts are sent at the

first iteration. 8

The maximal number of iterations has an immediate consequence on the size

of the first-stage problems to be solved. While problems of smaller size are

needed in the first iterations of the L-shaped method (m1+1 constraints,



nj+l variables) as compared to the multicut (mj+K constraints, n)+K variables),
the above theorem shows that the size of the problem is of the order of

ms M m2
(b -1) K in the worst-case for the L-shaped approach and K*(b - 1)
for the multicut strategy. One can therefore expect the multicut approach to be
especially efficient for problems where my is large and where many cuts are
needed.

In the next section, the number of facets for the particular case of

simple recourse is given explicitly.

The Simple recourse case

The simple recourse problem is a particular case of the formulation (3)

with non-stochastic matrix T where the function Y(X, &) is separable
my
SV, &) = Iy, &) (19)
i=1

and
V., 8 =min g} vyl +qTyi | vi-yi=h; - x5 vi>0, 9120} (20
where

o (ot -
Eoi = (Qi’ Qi, hi)-

Assume that, for each i, Ei can take on J different values (where for
simplicity of exposition J is assumed to be the same for all i).

Then, using the multicut approach consists of approximating the récourse
function Y(X) by the outer-linearization

L6 (21)
=l jel

Due to the simple recourse property, only two cuts of the type (13) can be

generated for each eij, namely

0:. > ) (22)

ij 2 Pij * 9i; (xq - iy



and

+

where pij denotes the probability of the jth realization of gi‘

Introducing the slack variable u;. in constraint (22),

1]

Pij * q;j (Xi - hij) +ugg= eij (24)
and substituting eij from (24) into (21) — (23), the simple recourse problem
(19), (20) is equivalent to

. my J _ myg J
min cx + ifl jzl Pij qij(xi _hij) + ii jzluij (25)
s.t. Ax = b
Tx - X =0
uij 2 Pyj qij(hij - %) i=1, ceeymg, j=1, 00y J
ug; 20 i=1, verymy, =1, ey d
where 45 = q;j + qu'
From (25), we can derive the following algorithm.
Multicut algorithm for simple recourse problem.
Step 0. Set v=1t =0
Step 1. Set V=V + 1, Solve the linear program
. my J _ t
min z = cx + izl jzl Pij * 9i; ° T, - X + QEIuQ (26)
s.t. Ax =D
uz z_ez - Ez X L =1, ..., t
ul.z 0 =1, .., t

Let (x”, u") be an optimal solution. If t = 0, then u is ignored in

the computation.

10



Step 2. For each i =1, ..., my, and j =1, ..., J, if the constraint

(h,. = T. « x¥) (27)

0 > p.: ij i

2Pij 44
is violated, define
Eee1 T Pij " 945 7 %
and
etel T Pij * 945 Dy

and set t = t+l,

The initial problem (27) involves m; Constraints and nj Variables. For
this problem, the worst-case situation is when at each iteration, only one
constraint (27) is violated in Step 2. Then, the maximal number of iterations
is J‘m2+1. To compare with the maximal number of iterations an L-shaped type
algorithm would require to solve the same problem, note that for each i, the
function ¥;(;) = Eu&(Xi, Ei) contains J+1 facets and since Y¥(X) is separable
in i, it contains at most (J+1)m facets. This is precisely the worst-case

upper bound on the number of iterations for an L-shaped type algorithm as in

the Theorem of Section 4.

Numerical experimentation and conclusions

The L-shaped algorithm and the multicut method have been coded in FORTRAN
in the codes NDREG and NDSEP respectively. NDREG is a two-stage version of the
multi-stage code developed by Birge in [1] and described in [2]. NDSEP uses
the same subroutines for linear program solutions, constraint generation and
constraint elimination as NDREG. The subroutines to control where cuts are
placed and to determine optimality have been modified in NDSEP to reflect the
differences between the standard L-shaped method and the multicut approach.

The set of test problems and their size characteristics appear in Table I.
The first four problems are small energy examples with varying objectives and

constraints and the last example is a stochastic two-stage version of one of Ho

11



and Loute's [5] staircase problems. These examples were chosen because of
their applicability and the facet structure of their recourse functioms.

The problems were solved using the FORTRAN-G compiler at The University of
Michigan on an Amdahl 5860. The number of major iterations, simplex iterations
and CPU seconds are given for each problem in Table II. Both NDREG and NDSEP
used the bunching approach (Wets [11]) for solving second-period problems.

They also both included the deletion of slack cuts which resulted in savings of
up to twenty percent in CPU times.

The results in Table II illustrate the effectiveness of the multicut
approach and some of its shortcomings. In each example, the number of major
iterations is reduced. This is due to the passing of more information on each
major iteration as noted above. A difficulty arises, however, because of the
increased size of (11) - (13) over (4) - (6). Although (4) - (6) in the worst-
case may have many more constraints than (11) - (13), program (11) - (13) is
initially larger and, hénce, requires more time to solve. This leads to the
increased time in solving NRG4 by NDSEP. NDSEP, in fact, spends 2.8 more CPUs
solving (11) - (13) than NDREG spends solving (4) - (6) on NRG4. This problem is
an especially bad case because the original problem is so small that the addition
of 27 extra constraints increases its size nine-fold and has a significant slowing
effect.

These examples suggest that the multicut approach can lead to significant
reductions in the number of major iterations. As indicated above, the worst-
case advantage of the multicut approach in limiting major iterations is
enhanced as m, increases in size,and the experiments show that the multicut
approach is most effective when the number of realizations K is not
significantly larger than the number of first period constraints n. When K is

large relative to n, it may be advantageous to use a hybrid approach in which

12



subsets of the realizations are grouped together to form a reduced number of
combination cuts. The worth of this and other strategies is, however, problem
dependent and should be demonstrated through experimentation in different and

varied application areas.

13



Table 1. Problem parameters

Problem - Period 1 (A) Period 2 (W) Realizations
n m o* ny m) o* K

NRG1 7 3 1.000 20 8 .375 3

NRG2 7 3 1.000 20 8 .375 3

NRG3 7 3 1.000 20 8 375 9

NRG4 7 3 1.000 20 8 .375 27

SCAGR7.S2 36 16 191 79 39 .092 8

: |

*fraction of elements (excluding slack variable elements) which are nonzero

Table 2. Experimental results

Problem NDREG NDSEP
Ma jor Simplex CPUs Ma jor Simplex CPUs
Iterations Iterations Iterations Iterations
NRG1 10 117 34 6 64 .23
NRG2 13 163 .49 9 92 .35
NRG3 14 196 1.26 8 121 1.11
NRG4 14 207 3.19 7 166 5.66
SCAGR7 .52 10 138 1.66 7 108 1.40
i

14



Appendix A
Assume that Q(x, &) = |§ - x  if xS g
x - & x>
and that & can take on the values 1, 2, and 4, each with probability 1/3.

Assume also c*x = 0 and 0 < x < 10.

Figure 1 represents the functions Q;(x), Q,(x), Q3(x), and Q(x). Since
the first-stage objective cx is zero, Q(x) is also the function z(x) to be
minimized. Assume the starting point is x1 = 0. The sequence of iterations
for the L-shaped method would be:

Iteration 1:
xl is not optimal; send the cut
62>7/3 - x.
Iteration 2:
x- =10, ez = -23/3 is not optimal; send the cut
6> x - 7/3.

Iteration 3:

© = 7/3, 63 = 0 is not optimal; send the cut
9> x+1
e _g. .
Iteration 4:
x4 =1,5- 64 = 2.5/3 1is not optimal; send the cut
s
Z ; .
Iteration 5:
x5 = 2, 95 = 1, which is the optimal solution.

15



Starting from xl = 0, the multicut approach would yield the following

sequences:
1 4-x 2-x 1-x
Iteration 1: X" is not optimal; send the cuts 8 > ——-, 6y > ——— and 65 > —— .
' 3 3 3
Iteration 2: x> = 10, 82 = -2, 02 = -8/3, 62 = _3 is not optimal;
x-4 x-2 x-1
send the cuts 8; > ——=, 0y > ——=, 03 > ——o,
3 3 3

322,06} =2/3,6) =0, 63 = 1/3 is the optimal solution.

Iteration 3: X
Therefore, by sending separate cuts on Ql(x), Qz(x), and Q3(x), the full

description of 2(x) is obtained in two iteratioms.
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Appendix B
Let ny = 1, K = 2 be the realizations of with equal probability 1/2.
For the first value of &, Q(x, £) has two pieces, such that
Qx) = -x -1 if x ¢ -1
0 if x » -1.

While for the second value of &, Q(x, &) has four pieces such that

Q(x) = , -1.5 x if x <0
0 if 0 <x <2
| 2/7(x-2) if 2 <x <9

x -7 if x> 9,

Assume also that x is bounded by -20 <« x <20 and ¢ = 0. Starting from any

initial point x! -1, one obtains the following sequence of iterate points and

cuts for the L-shaped method.

-2, el is omitted; new cut 0

Iteration 1: x -0.5 - 1.25 x.

| v

N

[}
v
(e}

Iteration 2: x +20, 62 = -25.5; new cut © 5 x - 3.5.

12/7, g3 = -37/14; new cut § > 0.

Iteration 3: x
Tteration 4: x* ¢ [-2/5, 71, 94 =0,

If x* is chosen to be any value in [0,2] then the algorithm terminates
at Iteration 4.

The multicut approach would generate the following sequence.

1

Iteration 1: x -2, e} and 6% omitted; new cuts 61 > - 0.5 x - 0.5.

N
il

Iteration 2: x 20, 9% = -10.5, GE = -15; new cuts 6; > 0. 6, > 0.5 x - 3.5.

Iteration 3: x3

2.8, 63 = 0, 63 = -2.1; new cut 0, > 2/7 (x - 2).
1 2 22

Iteration 4: x 0.552, 6% = 0, Gé

1}

=0.414; new cut 6, > 0.

Iteration 5: xJ = 0, 6% = eg = 0, STOP.

17
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Figure 1. Recourse Functions
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