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Abstract: In this paper, a new fuzzy neural network based on new concepts about natural neural networks
is presented. A simulation forecasting model is then established by using fuzzy neural network and
discrete system concepts. Several key steps to enhance forecasting performance of the simulation
forecasting model are discussed. They are how to choose and consider proper factors and concerned time-
lag effects, how to smooth original data spanning several years and how to handle outputs from the fuzzy
neural network. Numerical results show the present simulation model has high forecasting performance
for daily forecasting and one-week lead forecasting,
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I. INTRODUCTION

Short-term load forecasting is to predict load demand of a power system hour by hour for one day or
one week. It plays a very important role in economical and reliable power system operation. Accurate load
forecasting results in high power quality, large monetary savings and labor savings. Due to its great
importance, many researchers have been attracted to develop high performance forecasting methods.

Various load forecasting methods with different advantages and defects have been published. Roughly
classified, they can be cited as stochastic models [1,2,3], expert systems [4,5,6] and neural networks
[7,8,9,10]. Stochastic models are good for normal days and have obvious defects in modeling special days
such as holidays, weekends, and seasonal changes because of their theoretical limitations. Abnormal and
real data may be taken as bad data and removed from the model.

To some extent, expert system methods have overcome some of these disadvantages with better
forecasting performances than stochastic models. Extracting knowledge from experienced operation
experts is, however, a lengthy process. In practice, the forecasting performance of the expert system
mainly depends on the knowledge expressed from experts. ,

Recently, neural networks have been employed in load forecasting, Encouraging results have been
achieved because of their rich nonlinearity and large capacity to simulate complex systems. However,
most of this research is still theoretical. Few have practical applications[10]. The key reason is that most
of these neural network based models use the back-propagation (BP) model as their core algorithm. Back-
propagation is a good model for system simulation but has a time-consuming training process and local
minima problem. These characteristics limit its capacity to learn from large-scale trained samples.

In short-term load forecasting, there is generally significant hour-by-hour historical recorded data
spanning several years. Hence, training is quite difficult and sometimes unacceptable. It also makes model
maintenance troublesome.

In this paper, a new neural network, which is called a fuzzy neural network, is applied to construct a
simulation forecasting model for short-time load forecasting. The fuzzy neural network is based on some
new concepts about natural neural networks [11]. The method employs fuzzy set theory and parallel
neural network structure. In constructing a practically applicable simulation model, this paper introduces
several methods for choosing input and output variables, data smoothing and decision rules for handling
outputs of the fuzzy neural network.

One feature of this method is its flexibility and capacity in training large amounts of historical data.
Hence, the construction of the simulation model becomes straightforward. There is no lengthy training
process and no local minimum problem. The fuzzy neural network shows good performance in
constructing the forecasting model according to numerical results for an existing power system.



II. FUZZY NEURAL NETWORK

The fuzzy neural network arises from the need to overcome the lengthy learning process and poor
convergence of traditional neural networks (typically BP neural networks) and urgent needs to extract fine
knowledge from a large amount of original data. The process is like sifting gold from sand. Its basic ideas
come from a fuzzy membership function, a fuzzy decision [12,13,14] and the distributed and parallel
structure of neural networks[15]. Association is realized by not only integrating the capacity of the
network but also fuzzy generalization of the knowledge element. This is the result of combining the neural
network and fuzzy logic. ‘

There have been several efforts to realize this combination [16,17,18,20] with good performance.
However most of these so-called neural networks still apply the BP neural network as a core program and
use fuzzy set techniques to train input and output data. Thus the training speed and convergence problems
have not yet been overcome. Recently, a few researchers have tried to make the connection weights fuzzy
[19]. Though the concentration is still on adjusting connection weights, learning speed has been greatly
enhanced and convergence guaranteed.

Considering new concepts for designing neural networks, we do not try to store knowledge in physical
links (analogously biological links are supposed to transmit power and nutrients for control-end signals,
while many signals are launched and transmitted wirelessly). We make neurons unto fuzzy input/output
information processing units. Each unit possesses the ability to send and receive signals wirelessly. By
connecting these fuzzy neurons properly in a distributed and parallel way, we can construct a high
performance fuzzy neural network. These design thoughts have significant requirements for state-of-the-
art hardware implementation. As motivation in the biology analogy, we believe that the human brain and
neurons are complex and fine enough to realize this function.

A. Fuzzy Sets and Fuzzy Decision

For simplicity, the max-membership decision rule is applied for decision making. Other decision rules
can also be used for certain problems.

Suppose the domain X, X €R, A, B are fuzzy subsets of X.

LLa(x): membership function for fuzzy subset é .

Ly(x): membership function for fuzzy subsets B .

We suppose the following max-membership fuzzy decision laws:
If pa(x) > pp(x), then we judge x belongs to A .

If Ua(X) < Wa(X), then we judge x belongs to l}_ .

If HA(X) = Up(x), then we judge x belongs to é andl} at the same time.

B. Fuzzy Neural Network
1. Fuzzy Neuron
We suppose the following standard form for fuzzy neurons (illustrated in Fig. 1).

y=f(X,K,T) (1

X: input vector of a neuron

K: knowledge element (input part of a sample)
T: threshold for a neuron

y: output of a neuron
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Fig. 1 An Illustration For A Fuzzy Neuron

In FNN, we have five types of neurons, input neurons (IN), knowledge neurons (KN), category
neurons (CN), output neurons (ON) and a threshold neuron (TN). They are all derived from the standard
form of a fuzzy neuron.

1) input neuron
An input neuron is placed in the input layer in FNN. It has only one input. No knowledge is stored in
an input neuron. It has no threshold T. We suppose it as

y =X (2)
So that output equals input for an input neuron. We use the notation x as an element of vector X while
y is the output for an input neuron.

2) knowledge neuron

A knowledge neuron is placed in the front part of the knowledge layer. Its role is just to store
knowledge. A knowledge element is generalized and extended around this point through a fuzzy
membership function.

We suppose it has the form

(Y-K)?

y=e 3)

We make element K fuzzy by adding a fuzzy membership function (3). This function can be taken as
a membership function for knowledge element K. The parameter ¢ represents the degree of fuzziness.
Generally, we take it as 1.0. We can adjust it according to the needs of real-world problems.

3) category neuron

A category neuron is placed in the knowledge layer. Its role is to produce the degree of membership for
one knowledge category. This membership value for the knowledge category is equal to that of the point
with the largest membership function value (possibility) in one knowledge category. So we suppose it has
the form

y = max(xi) €

Note: n is the number of inputs to a category neuron. It shows that there are n knowledge elements
under this knowledge category.



4) output neuron
An output neuron is placed in the output layer. Its role is to produce a definite output 1 or 0 according
to its own threshold t, where t is sent from a threshold neuron in the output layer.

In this case,

fx.1) I, if x >t
=1xt)= . ©)
y 0, if x <t :

Each output neuron in the output layer corresponds to one output category. If the output representing a
category is 1, then it says the current input vector belongs to this category, otherwise not.

5) threshold neuron

There is only one threshold neuron in the output layer. A threshold is to produce a dynamic and
changeable threshold for each output neuron. Its function is the same as that of a category neuron in the
knowledge layer. It has the form

y = max(x:), (©)

where n is the input number of a threshold neuron.

2. Fuzzy Neural Network Structure

Consider the XOR problem in Table 1 as an example. Fig. 2 is the basic and original FNN network
structure before learning the XOR problem. Fig. 3 is the final FNN network structure after 8 samples
have been learned. From these two figures, it can be found that FNN has three layers. They are the input
layer, the knowledge layer and the output layer

Table 1 XOR problem

NO Input Output
1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
51 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1

The input layer receives the input vector and transnuts 1t to the knowledge layer. The knowledge layer
stores a knowledge and processes it .(Note: knowledge 1s fuzzified and extended here.) The output layer
treats (defuzzifies) the output values from the knowledge layer.

In the input layer, there are three input neurons (IN) corresponding to three factors of the input
vector.

The knowledge layer of FNN, which 1s a supposed place to store knowledge in a fuzzy way in the
imaginary brain, is self-organized and self-improved. With the learning process going on, the knowledge
layer has more and more knowledge elements until the training process stops. In the front part of the
knowledge layer, there are eight knowledge neurons (KN) corresponding to 8 stored samples. The
number in a neuron represents the number for a knowledge element. Here, all eight samples of the XOR
problem are studied and stored.



The output layer is to treat (defuzzify) the output values from the knowledge layer by the max-
membership decision rule. From Fig. 3, we can find two outputs (yl1 and y2) and two output neurons
(ON). This is because there are two output states (0 and 1) for the XOR problem. It can be also said that
there are two categories from the eight samples. Thus there should be two category neurons (CN) in the
knowledge layer. Note there is a threshold neuron (TN) in the output layer. It helps to produce final
outputs from the output layer.
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INPUT
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Fig. 2 Basic Network Structure for XOR
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Fig. 3 Final Network Structure for XOR
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III. LEARNING ALGORITHMS FOR FNN

A learning algorithm for a neural network is a process through which the neural network can realize
all the input-output mappings of samples with acceptable learning error. Different neural networks have
different learning algorithms. As most of the current neural networks assume that knowledge is stored in
rich combinations of connection weights, the study process is just the process to adjust connection
weights. Hence, training a neural network often becomes quite hard.

The FNN of this paper moves a different way on the basis of some new concepts of the human brain.
The idea is to store knowledge in a knowledge layer that is supposed in a so-called imaginary brain. The
study process is to select and store most typical knowledge elements from samples in a fuzzy way without
work on connections.

The FNN can be trained from a zero-knowledge network or a network with learned knowledge. We
suppose it develops from an original, basic and zero knowledge network. That is, we assume no
knowledge elements (or knowledge neurons) in the knowledge layer. We take the XOR problem for
example to express this explicitly. We have the original and basic network shown in Fig 2. Fig. 3 is a final
structure of FNN when eight samples have been trained.

Two kinds of study algorithms exist in practical applications. They are called the standard study
algorithm and the instant study algorithm, respectively. The standard study algorithm is for the normal
learning process that has the capability to choose knowledge as typical as possible and hence to make
memory size as small as possible. The instant study algorithm is a one-cycle algorithm. In this case, all
the samples are turned into knowledge elements and then the formed knowledge elements placed into
FNN directly. Instant study algorithm can be a basis for designing fuzzy neural network databases.

A. Standard Study Algorithm

For simplicity, the study algorithm has two stages, the learning stage and the test stage, respectively.
In the learning stage, samples are chosen one by one. Typical samples are added to the knowledge layer
under the relevant categories in the form of (3). In the test stage, the trained FNN is checked to confirm
that it can cover all samples with acceptable learning error.

First, we input a sample vector and check if the network can produce the desired output for this
sample. If yes, we do not adjust the network. Otherwise, we think the trained network cannot cover this
sample . This sample is added as a new knowledge element under a related category in the knowledge
layer. The new knowledge element is then fuzzified and extended around this point by adding a
knowledge neuron with a chosen fuzzy membership function. In this way, the selected function for the
knowledge neuron can guarantee that the new knowledge point has the greatest possibility (1.0) among
the related categories and also the largest value among all the outputs of output neurons when the vector
of this knowledge is input. This process guarantees the trained network can cover the sample. Then we
can say this sample has been trained. ‘

The complete study algorithm has the following steps and loops.

step 0 - Input the operation mode to decide to train or test.

step I Read in the input number and output number.

Read in the number of total samples.
Define the input vector and output vector.
Define the sample array.

Define a buffer to store all the samples.
Let the learning count = 0.

step2 Let the learning count increase by 1.

step 3 Training Stage Circulation begins.

The circulation ends when all samples have been studied. Then, go to step 4.
step 3.1 Input one sample.
step 3.2 If the desired output for the sample is a new category, there are no knowledge elements under
this category. Set a new category and put a new knowledge element under this category.
Gotostep 3.1.
If the desired output for the sample is not a new category, there is at least one knowledge
element under this category. Go to step 3.3.

step 3.3 Compute the final output of FNN with equations
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If the real output is the same as we expect, pass the sample to the stack for later test
or training,
If not, add a new knowledge element in the form of (3) under the concerned category.
step4 Test Stage Circulation begins.
The circulation ends when all the samples have been tested and the total learning error is
computed.
Go to step 5.
step 5  If the total learning error is greater than 0.0, go to step 2. Otherwise, go to step 6.
step 6  Stop and output training or test results as the knowledge base.

B. Instant Study Algorithm

The instant study algorithm is simple. All samples are turned into standard knowledge elements and
read as knowledge bases into FNN directly. This is the training process. As each sample has its own
concerned knowledge element in FNN, it is definite that the trained FNN can cover all the samples with
a learning error of 0.0!

IV. SIMULATION FORECASTING MODEL BASED ON FNN

Generally speaking, we take the forecasting problems as an open-ring system with its own state
variables X(t+1), X(t), X(t-1), . . . X(t-p) and control variables U(t), U(t-1), . . . ,U(t-p), where p is the
time-lag number. This is to say the discrete system model for STLF should have the following
form(illustrated in Fig. 4).

Xl+1:F(/Y;,Xl—],...,/YI—p,U!,lJl—l,...,Ul—p) (7)

Xt

X(t-p) ——>| Discrete Simulation
u(t) ——* Model For STLF

Utp —

— X(t+1)

Fig. 4 Supposed Discrete Simulation Model for STLF

In essence , a discrete simulation model for STLF is a nonlinear, multi-period lag model. It is because
of the complexity of STLF that we cannot construct a precise mathematical model, such as differential
equation model, to simulate the practical problems. Hence, we try to use FNN ( a comprehensive, parallel
network rather than one group of differential equations) to realize the complicated nonlinear mapping of
the discrete model.

The basic forecasting procedures to apply FNN for STLF are as follows:

(1) Define the input and output variables as state variables , control variables and output variables at
time t+1, t, t-1, . . ., t-p. where p is the number of periods of time lag. In the proposed fuzzy neural
network, there are 1000 outputs which represent 1000 possible output categories in the unit range [0,1]
from 0.001, 0.02, . . ., t0 0.998, 0.999, 1.000.

(2) Set up a series of input/output samples from historical data.

(3) By training the model with formed samples, we can obtain an approximate discrete simulation
model from limited (not unlimited) but rich historical data.



(4) Use the established simulation model to conduct load forecasting hour by hour.

What is mentioned above is just a principal procedure. It cannot produce satisfactory forecasting
performance. Additionally the forecasting performance for a forecasting model depends on many other
considerations such as

o how to select proper input variables,

o how to consider time-lag effects of input variables,

o how to smooth original data over different years,

e how to handle the outputs from FNN to produce the best forecasting value.

In Section V, we elucidate how to consider these factors.

V.KEY PROCEDURES TO ENHANCE FORECASTING PERFORMANCES
A. How To Select Proper Input Variables And

How To Consider Time-Lag Effects Of Input Variables

Four types of factors affect load demand at time t+1. They are past load, past weather , day type, and
time. The four kinds of factors can be further divided more exactly as follows.

load: load at time t, t-1, t-2, . . . t-p.

weather: weather type, temperature , humidity, wind speed, wind direction,

sky cover (rain or not), snow(or not) at time t, t-1, t-2, . . . ,t-p.
day-type: weekdays-weekends, holidays at time t, t-1, t-2, . . . t-p
time: season, month, week, date, hour,

where p is the number for time-lag effect.

There are tradeoffs between computational efficiency and forecasting accuracy. Not all variables need
be considered. To have better forecasting performance, we always hope to consider more variables and
more time lag. The computation task, hence, becomes heavier. The problem is to find balance. Our
suggested way 1s to apply a combination of the following three methods to find proper variables.

(1) correlation analysis,

(2) testing forecasting computation,

(3) checks with experienced operation experts.

In the forecasting computation for two large neighboring electric utilities, the inputs include

e month code,

o week code,

¢ hour code,

e Holiday code with 3 hour time lag,

e temperatures at five sites (three large cities and two metropolitan airports) with time lag of 5,
o relative humidity at the two airports,

¢ load with 27-hour time lag.

Actual computation tests show the above selected inputs variables are sufficient for good results.

B. How To Smooth Original Data From Different Years

We consider large amounts of historical original data spanning over three or four years. During this
period, the number of consumers and the load of previous customers changes smoothly, sometimes
rapidly. The load change depends on the prosperity of the economy, consumer structure, and macro
weather changes. A problem is to smooth these data or convert the old data into a present value.

Two methods of smoothing the changes [10] are used. The first and simple one is to compute an
average flat growth rate over the previous years. The historical load data is turned into the present values
by multiplying by the concerned whole growth rate. A more reasonable method is to compute load



growth rates for different temperatures and hours. For the temperature of 55° to 85°, the occurrence of
load for every two degree within this range is considered for each year. Then the average of each year is
calculated. The ratios are calculated based on these averages using the equation:

ratio(r) = £00d e ()
Load.l (D) | (®)

where T denotes temperature. The procedure is applied to all 24 hours. This method takes into account the
variation in load in different seasons. This method was implemented in [10] and was said to give
consistent growth ratios for all the hours and to yield better results than other methods.

In this research, the above two methods have been tried. The results are not, however, very
satisfactory. From careful investigation of the forecasting process, we found the above two methods to be
based on the assumption that load changes by an average annual growth rate. Actually, this assumption is
not exact enough. Suppose loads of different months and seasons have very different growth rates
compared to the yearly load growth rates. Using yearly load growth rates to replace load growth rates of
different months often results in forecasting accuracy fluctuations of about 2%.

In this paper, we smooth the data month by month (not year by year). We compute an average load for
one month. Original loads of the month are then divided by double their concerned monthly average load.
This process is repeated for different months of different years. Forecasting computations show this data
smoothing method is better and more stable than the previous methods. The further advantage is that the
latest samples can be turned into knowledge in a timely manner without the need to smooth the old
knowledge again due to a new average year growth rate.

C. How To Handle The Outputs From FNN To Produce Better Forecasting Results

In this paper, FNN is employed as the core algorithm for the STLF model. To have a satisfactory
forecasting performance, we establish 1000 categories in the output layer. The 1000 outputs represent
possible forecasting values from 0.001, 0.002, . . . to 0.998, 0.999. Each output is accompanied by a
membership value indicating the possibility of this output.

In view of the FNN decision rule, we should choose the output with the largest membership as the
forecasted value. Basically, this decision rule can promise 80% correctness and average forecasting error
of about 2.5%. However, there are also some forecasted values that are not very good and sometimes quite
poor. With many computational tests and deep analysis of the forecasting process of FNN, we found there
1s always a satisfactory forecasted value among the best three forecasted scenarios with the largest three
memberships. Hence the problem is how to select a final forecasted value from the best three outputs. In
some cases, we may need a scenario forecast (all three scenario forecasts for stochastic unit commitment
models [21] ). . o

A so-called dual membership decision rule is suggested for this purpose. The rule uses input variables
grouped into four parts. They correspond to time. holiday type, weather, and load, respectively. The
membership for all the input variables is computed as a whole membership. The load membership is only
for the load variables ( see Fig. 5). The dual membership decision rule uses the two memberships to
produce better forecasting performance.

The basic dual membership decision rule can be expressed as two steps:

step 1. select the best three outputs with the largest three whole memberships.
step 2. select a final output with the largest load membership among the best three outputs as the
forecast value.
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Fig. 5 Dual Membership

The dual membership decision rule finally makes the average daily forecasting error as low as below
2%.

VI. NUMERICAL RESULTS

Based on the forecasted method discussed above, a simulation forecasting model has been constructed
in an object-oriented program design using C++. The computations are presently conducted on a Sun
Workstation. The following numerical results are one part of the computational tests. From these
results, it appears that the proposed forecasting method is correct and feasible.

A. One Day, One Week Forecasting, And 10 Day Forecasting

Unit commitment problems typically require daily forecasting, Purchases, sales and hydropower
decisions often require one week forecasts and even 10 day forecasts (or longer). In this model, three types
of forecasting can be output within tens of minutes

Table 2 is a summary to show daily forecasting examples of April 11 through April 17. Table 3 is a

summary with computational tests for April 1-20, 1994. From Table 3, we find

o average daily forecasting error is 1.87%.

e average one week forecasting error is 2.21%,

o average 10 day forecasting error is 2 34%,

o average peakload forecasting error is 1 62%

The forecasting errors are acceptable for most practical applications.
Fig. 6-1 through Fig. 6-7 are a group of charts showing forecasting results for one week of April 11

through 17 on the MEPCC. The first 24 hour result 1s for daily forecasting. The first 148 hour result is for
seven day forecasting. The whole 240 hour result 1s for ten day forecasting.
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Table 2 Daily Forecasting of April 11 through April 17,1994,

Hour

Mon

Tue

Wed

Thu

Fri

Sat

Sun

-0.01

2.73

-0.7

2.69

-0.13

-0

0.35

-0.22

3.85

3.87

2.89

-0.18

-2.5

2.72

-1.31

3.34

3.53

3.53

0.65

-2.5

3.12

0.09

2.67

1.88

3.07

-0.14

-1.1

2.51

2.36

3.57

0.51

2.85

-0.15

-1.5

3.25

-0.13

2.74

1.07

1.57

-1.9

-1.7

3.52

-0.82

3.85

2.04

2.97

-0.4

0.31

3.03

DN [WIN|—

-2.88

1.86

-0.2

0.51

-2.49

-0.1

0.71

(o]

-2.36

0.66

-2.95

-1.65

-2.74

1.7

1.44

-
o

2.7

1.29

-1.91

-2.67

-3.03

3N

0.79

-
-

-3.76

2.18

-1.08

-2.35

-0.95

4.01

0.38

-
N

-5.08

0.87

-1.51

-2.67

-0.58

5.43

-0.27

—_
w

-3.99

0.67

-1.79

-2.43

0.41

7.51

-0.14

—_
i-N

-1.05

0.8

-0.8

-1.43

0.64

6.92

0.58

—_
(&)

0.11

0.43

-2.11

-1.26

0.66

3.32

1.6

—_
»

0.35

0.15

-0.66

-1.01

-0.46

1.38

1.51

—_
~

1.32

0.3

1

-0.41

-0.26

4.43

1.63

—_
oo

2.98

0.64

0.58

-0.84

0.62

5.25

1.69

—_
(o]

423

0.1

0.72

-0.11

3.85

2.69

2.23

N
o

474

-1.28

0.18

-1.21

4.66

-1.1

-1.86

N
—_

5.56

1.04

1.99

0.49

5.56

0.5

-0.6

N
N

26

0.63

1.38

1.05

3.75

1.65

0.89

N
w

-0.01

0.17

1.01

0.35

0.83

1.08

0.03

24

0.93

1.74

2.41

0.85

2.55

-0.1

-0.13

Aver

2.07

1.56

1.49

1.7

1.57

25

1.46

week average(%)

1.76

Table 3 Summary of Forecasting Results of Apﬁl 1 through April 20, 1994

Fcst Type | Mon Tue Wed Thu Fri Sat Sun |Average
daily aver | 2.15 | 1.76 1.53 1.95 153 | 273 | 1.46 1.87
error (%)
peakload | 1.68 1.91 1.28 1.67 136 | 263 | 0.83 1.62
error (%)
7dayfest| 233 | 222 2.19 2.08 2.02 21 2.55 2.21
error (%)
10 day fest| 2.16 | 2.07 21 2.59 26 259 | 233 234
error (%)
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Forecasting Curve, April 11-20, 1994
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Fig. 6-1 Forecasting Curve for April 11, April 11-17, April 11-20

Forecasting Curve, April 12-21, 1994

unit load )
O O
r o .
| . ; \

o
S
. .

<

Sy
AV i o '{A v

0.2
0L e e
"I %R 828 E 8B g
hour

real load

forecasted load

——— membership | |

|
|

Fig. 6-2 Forecasting Curve for April 12, April 12-18, April 12-21
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Forecasting Curve, April 13-22, 1994
1
s w\/W“MW\MW\W
T 061 ~u ~ . , _ real load
2 \ A ~eo forecasted load |
€ 04 S .
E ——— membership ]
02+
0 —_—
"X 5 RBEBYE G g
i hour !
Fig. 6-3 Forecasting Curve for April 13, April 13-19, April 13-22
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Fig. 6-4 Forecasting Curve for April 14, April 14-20, April 14-23
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Forecasting Curve, April 15-24, 1994
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Forecasting Curve, April 16-25, 1994 i
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Fig. 6-6 Forecasting Curve for April 16, April 16-22, April 16-25
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Forecasting Curve, April 17-26,1994
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Fig. 6-5 Forecasting Curve for April 15, April 15-21, April 15-24

B. Holiday Forecasting

The simulation forecasting model can also predict loads in holidays with low forecasting error. For
example, April 3 is an Easter holiday. The average forecasting error for this day is 1.67%. See Table 4
and Fig. 7.

Table 4 A Holiday Forecasting Example , April 3, 94

hour real load | fcst load error(%)

1 0.359 0.3692 -2.83
2 0.346 0.3523 -1.82
3 0.341 0.34 0.28
4 0.338 0.3335 1.34
5 0.336 0.3327 0.99
6 0.346 0.3388 2.08
7 0.351 0.3476 0.98
8 0.358 0.3635 -1.52
9 0.379 0.3826 -0.95
10 0.402 0.4002 0.44
1 0.414 0.4081 1.42
12 0.416 0.4123 0.9

13 0.413 0.4105 0.62
14 0.4 0.4011 -0.28
15 0.386 0.386 0.01

16 0.373 0.3723 0.19
17 0.363 0.361 0.56
18 0.36 0.3559 1.13
19 0.363 0.3542 2.43
20 0.375 0.3706 1.17
21 0.43 0.4031 6.25
22 0.444 0.4282 3.55
23 0.431 0.4175 3.12
24 0.408 0.387 5.15
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Holiday Forecasting
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Fig. 7 A Holiday Forecasting Example (Easter Day)

C. Scenario Forecasting :

Scenario forecasting allows multiple forecasts for the stochastic operation model [23]. Thanks to the
fuzzy neural network, we can produce forecast scenarios easily. Taking the best three forecast scenarios
with the largest memberships as the three possible forecast scenarios approximately, we can have a upper
scenario, a middle scenario, and a lower scenario as shown in Fig. 8. The detailed results can be found
in Table 2. As the memberships of three scenarios are very close, we can have each individual scenario

. 1
possibility as approximately 3.

upper load
middle load

lower load

unit load

real load

1
24
47
70
e¢]
16

139
162

185

208

231

hour

Fig. 8 Three Forecasting Scenarios for April 1-10
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VII.CONCLUSIONS

Short-term load forecasting is one of the most difficult problems in power system planning. Though
much research has been done in this field, only few find practical applications. Reasons include high
forecasting error or difficulties in model construction and maintenance. In this paper, a fuzzy neural
network has been applied to solve the problem. With FNN’s capacity in simulating nonlinearity and its
high flexibility in model maintenance, a new simulation forecasting model of short-term load forecasting
has been created. After more investigating in data smoothing, variable selecting and output handling, the
simulation forecasting model shows many advantages. They are acceptable forecasting accuracy
(especially for peakload), fast training speed (compared to other ANN models), 100% training
convergence, and flexibility to add and remove knowledge from the knowledge base that is vital for
knowledge maintenance and renewal. An most important characteristic is FNN’s capacity to handle large
amounts of original data.
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