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Abstract

A frequent goal in scheduling projects and production operations is determining the costs
associated with the project duration or production lead time. This paper considers costs that
increase proportionally to time in excess of a deadline. New bounds on the expected value of
these tardiness costs are given. The bounds provide robust measurements without requiring

extensive assumptions about activity distributions.
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Project management requires information on future activity durations. This information helps
determine when the project will be completed under a given scheduling policy. The random nature
of most future activity durations, however, makes a complete description of project completion time
difficult. Even calculating the expected project completion time, or any other function of project
completion time, is difficult. Thus, many approximations and bounds on functions of completion

time have been proposed.
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Tight bounds on completion time generally require complete information about the joint dis-
tribution of the project activities. In most applications, however, little data is available on the
probability distributions of the individual random activity durations and the interactions among
activity durations. In this paper, we assume limited information on individual activity durations
to develop bounds on the expected tardiness of a project.

The tardiness of a project rises linearly after a deadline is passed but it is zero before the
deadline. Thus, tardiness is a piecewise linear function of completion time and is, therefore, more
difficult to calculate than the expected completion time.

Much of the literature in stochastic project scheduling is devoted to estimating the expected
completion time for a project. The traditional approach to this problem is PERT, Program Eval-
uation and Review Technique, developed by Malcolm, Roseboom, Clark, and Fazar [1959] among
others. When the activities in a project are independent and the critical path determined by sub-
stituting expected activity durations for the actual durations is longer than any realized path, the
PERT procedure may yield the true mean and variance of project completion time. In general,
the PERT estimate of expected completion time is a lower bound on the true expected project
completion time.

The PERT lower bound is attractive because it requires relati\}ely little information about
the activity duration distributions and makes no assumptions about the relationships among the
activities. At the expense of requiring more information about the activity durations, Fulkerson
[1962], Clingen [1964], Elmaghraby [1967], and Robillard and Trahan [1976], among others, derived
tighter lower bounds on project completion time. Each assumed full activity distributions and that
durations on all pairs of arcs terminating at different nodes were independently distributed. Under
similar assumptions, Kleindorfer [1971], Shogan [1977] and Dodin [1985] all found upper bounds
on the expected project completion time.

The upper bounds discussed above and the refinements of the PERT lower bound all require
complete information about the activity duration distributions. They also assume that at least
some of the activities are independent. From a practical standpoint, bounds which require only
partial information about the activity durations and allow general dependence among the activities
are desired.

Assuming only the means and variances of the activity duration distributions are known, De-

vroye [1979] obtained upper bounds on the first two moments of the project completion time. He



assumed independence among the activities, however. Kamburowski [1985] also made limited as-
sumptions to derive an upper bound on the expected project completion time. He assumed the
mean of each activity duration and that the distributions of the activity durations were indepen-
dent and “new-better-than-used” in expectation (NBUE, see, for example, Barlow and Proschan
[1975)).

Several researchers have derived bounds without making independence assumptions. Anklesaria
and Drezner [1986], for example, derive bounds on the probability of completing a project by
time T. They assume the mean and variance of each arc and the correlation coefficient between -
every pair of arcs. Meilijson and Nddas [1979] present an upper bound on the expected project
completion time which does not require correlation information, but they assume the complete.
marginal distributions. Riishendorf{1982] uses their method to find a closed form upper bound
for the expected completion time in a series network. Weiss[1986] considers their work in a more
general framework and applies the method to several other types of network problems.

The above literature establishes bounds on the project completion time distribution and its
moments. These bounds are useful for some scheduling objectives, but tardiness is often the key
factor in the scheduling objective. Tardiness costs could be contractual, for expedition or overtime,
or reflections of loss of market share. Our goal here is to provide ranges for expected tardiness costs
that can be used in making informed scheduling decisions.

Generally, bounds on expected project tardiness do not follow directly from the completion time
bounds. An exception is the Meilijson and Nddas bound, which because of its form, is also an upper
bound on the expected tardiness of a project. Their bound is equivalent to an upper bound on the
expected project tardiness developed by Klein Haneveld [1986] using a moment problem approach.
Klein Haneveld allows general dependence among the activities and extends his approach to the
case where only limited information on the marginal distributions is available. A more thorough
discussion of his work is included in a later section.

This paper is organized as follows. Our notation is summarized in Section 1. In Section
2, a moment problem formulation for determining the expected tardines of a project is described.
Relevant theory on the solution of moment problems is presented in Section 3. In Section 4, bounds
on the expected tardiness of a given project are discussed, asssuming various levels of information
about the activity durations. Each of these bounds is the solution of a moment problem. Section

5 extends our approach to bounding the expected total tardiness of a project with multiple due



date. Some computational results are presented in Section 6 that demonstrate the usefulness of

additional information about the random activity durations.

1. Notation

In the network representing a project, each arc represents a project activity and each node indi-
cates the completion of all activities leading into that node. We follow Klein Haneveld’s notation.
Let i =1,...,n represent the arcs in the project network. Denote the length of arc i by the random
variable &; and let ¢ = (¢1,...,&n). Let a; be the minimum length of arc ¢ and let b; be the maxi-
mum length. We assume the minimum length of each arc is nonnegative and finite. The maximum
length may be infinite. Let Z be the range of £. Here, = = (ay,b1) X (a2, b2) X ... X (@n,bs). Denote
the mean length of arc i by &; and denote the joint mean by & = (£,,...,£,).

We are interested in the tardiness of a project. Let Bj, j = 1,...,p be the index set of activities
on path j from the initial node to the final node of the project network. The project completion

time is:

Similarly, lower and upper bounds on the project completion time are given by:

R(a) = _r_nax Z a; R()= max Z b;.
= 163, =1, ’ptGB,

Let T be the project due date. Then, the project tardiness is (R(§) — T)*.

Table 1 summarizes the notation used in this work.

2. Moment Problem

Assuming the first N moments of each arc, or activity, duration distribution are known, the
problem of determining an upper bound on some function of the random arc durations, ¢(§), can

be written mathematically as follows. Find:

sup  E(¢(¢))
st. [&dP(¢) = E@) i=1,...,n



& = length of arc (duration of activity)
n = number of activities
& = mean length of arc i
a; = minimum length of arc ¢
b; = maximum length of arc i
B;j = index set of arcs on path j from the initial node to node n
R(§) = project completion time
R(a) = lower bound on project completion time
R(b) = upper bound on project completion time
C; = upper bound on jth moment of project completion time
T = project due date
#(é) = objective function
= = rangeof {
E(z) = expectation of random variable x
Var(z) = variance of random variable x
Pr(A) = probability of event A
14y = indicator function of event A

Table 1: Summary of Notation

[e'aP@ =BEY)  i=1.n 2.1)

Gist‘Sbi, i=1,"',n,

where P is a joint distribution of ¢ satisfying the given constraints. Let P be the family of all such
distributions. Then, our goal is to find a P € P maximizing E(¢(£)). If the objective is expected
tardiness, ¢(¢) = (R(¢) - T)*.

The above problem belongs to the class of moment problems (see Krein and Nudelman [1977]).
These problems are of interest in many areas of mathematics and its applications, including statistics
(see, e.g., Dantzig and Wald [1951]). Project scheduling decisions fit into the framework of stochastic
programming. Uses of the moment problem in this context appear in Dupagové [1977], Ermoliev,
Gaivoronski and Nedeva [1985], Prékopa [1988] and Birge and Wets [1987]. The next section reviews

relevant theory on moment problems and presents a procedure for solving them.

3. Solving Moment Problems

This section begins by presenting several theorems which are important in the development of a

general solution procedure for moment problems. Suppose we wish to solve the following moment
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problem with power moment constraints:

sup(inf) [z #(¢) dP(¢)
s.t. Jz€dP(¢) < E(§)

e ape) <), @

—

where, E is the range of £&. The first two theorems treat instances where = is compact. In our
application, Z is compact when the maximum length of each arc is finite. The results use the

theory of weak convergence of probability measures (see Billingsley [1968]).

Thereom 1 Suppose E is compact. Then the set of probability measures that satisfy (1.1), P, is
convez and compact (with respect to the weak topology) on the set of probability measures over the

domain of €.

Proof See Birge and Wets [1986], Theorem 6.9. u

As a result of the above theorem, any probability measure in P can be represented as a convex
combination of the extreme points of P. As the proof in Birge and Wets explains, this indicates that
maxima and minima exist. Any measure in P that extremizes [z ¢(§) dP(£) is called an extremal
measure of P, i.e., the extreme points of P are called extremal measures. The following theorem

characterizes these extremal measures.

Thereom 2 Assuming ¢ is continuous relative to Z, the probability measure that extremizes [z ¢(§) dP(€)
is an extreme point of P. Moreover, the extremal measures of P are precisely those having a finite

number of points with positive probability, (¢1,...,¢L), with L < N +1.
Proof See Birge and Wets [1986], Theorem 6.9. n

As a consequence of the above theorem, the search for an optimal distribution need only involve
distributions with N + 1 or less atoms, i.e., distributions with N + 1 or less points with positive
probability.

When E is not compact, the above theorems no longer pertain. In our application, = is not
compact if the maximum length of any arc is infinite. In order to get a solution to the moment

problem when = is not compact, we must expand P to include nonnegative measures.



In this case, we must consider the recession directions, d, of Z, i.e., directions such that £ +Ad € =
for all £ € = and A > 0. Extreme directions of the cone spanned by the recession directions are
included in the representation of P. Essentially, this is a way to “compactify” = (Birge and Wets
[1987]). Then, any measure in P can be described by a convex combination of extreme points and
nonnegative combination of extreme directions of P.

Note that the measures in P are nonnegative measures, but not necessarily probability measures.
Thus, the function attaining the extreme value may not be a distribution function. However, the
extremal méasures of P still have finite molecular support. Hence, for a moment problem with N
constraints, the optimal extremal measure has at most N + 1 points or directions with positive
measure.

Consider the upper bounding moment problem 2.1 where ¢(¢) = (R(¢) — T)*. The preceding

theorems ensure that any extremal measure P* solving this problem has at most M = nN +1
atoms. Let the atoms be &!,...,¢M, where ff denotes the ith element of £&7. Let p; = P*(¢ =
&) =P = {, ovvrén = €3). To determine P* we need to find ¢!,...,¢éM and py,...,py. If the
maximum arc lengths are all finite, P* is a probability measure and p; +...+py = 1. If not, P* is
a nonnegative measure and the subset of py,...,py corresponding to extreme points sums to one.
All of the p;, j =1,..., M are nonnegative.

In the following, we consider a basic generalized linear programming (see Dantzig [1963]) pro-
cedure to develop bounds, assuming finite arc lengths. The procedure is the same with infinite arc
lengths.

Select some feasible £!,...,6M. Problem 2.1 can now be written:

sup  TX, 6(¢7)p;
st. YMdp = E@) i=1,..,n

THE)p = EE) i=1,...,n
n+...+pMm

|
p—

ijO,j=1,...,M.

Since £1,...,¢M are chosen to make this problem feasible, it must have a solution. The solution,

P1,...,pm and €L,...,éM is optimal if the corresponding dual problem is feasible. The dual



variables, (u1y,...,%1n, ..., UN1,- - -, UNn, Uo), are chosen to find:

inf  wp+ X0 E(6)un +... + T E(€N)uni
st ut T bunt. .+ T @) Nun > 96 Ve

up and uji, j =1,...,N, i =1,...,n unrestricted,

where by complementary slackness,

n n
w3 i+ 4 Y ) uwi = $E) Vi =1, M.

i=1 i=1 7
If a feasible dual solution can be found, the distribution P*(¢ = ¢) = p;, j = 1,...,M is

optimal. Otherwise, there must exist some £ for which
. n n
uo+ Y &un+ ...+ (&) Nuni < 9(8).
i=1 i=1 '
Substitute this ¢ for some atom &’ to obtain a new measure P**, such that

Lo©dr© = [s©dP@.

Repeat the process until an extremal measure is found that is dual feasible.

This generalized linear programming algorithm is guaranteed to converge to within any e-
neighborhood of the optimum in a finite number of iterations (Birge and Wets [1986]). Generalized
linear programming may, however, be too time consuming for project scheduling implementation.
Thus, of particular interest to us are special cases of moment problems for which closed form
solutions are available. The next subsection outlines the particular cases that we will consider.
An alternate moment problem for finding the upper bound on the tardiness of a project is also

described. This moment problem is sometimes easier to solve than the one stated above.

4. Upper Bounds on Expected Tardiness

.In general, a moment problem can be solved to obtain either lower or upper bounds. Since
lower bounds are easily obtained, we concentrate on upper bounds. They represent conservative
estimates on the expected tardiness and can be used in conjuntion with the lower bounds to make

prudent decisions.



A lower bound on the expected project tardiness is obtained by replacing each random arc
length by its expected value and computing the tardiness in the resulting deterministic network.
This bound is a direct application of Jensen’s inequality. Another obvious lower bound results from
using the minimum length on each arc. Arc lengths often do not have obvious maximum lengths,
however, and Jensen’s inequality does not apply. The computation of upper bounds, therefore,
requires a different type of analysis.

We follow the moment problem framework to establish upper bounds given various moments of
the individual arc duration distributions. In general, as more information is available, the bounds
become tighter. In all cases, no particular dependence relationship among the arcs is presumed.
Studying the bounds obtained under different information levels allows us to examine the value
of additional information about the arc durations. Thus, we can begin to understand the tradeoft
between requiring more information about the arc durations and the tightness of our bound.

The particular levels of information treated are:

o finite range known;

e range, finite or infinite, and finite mean known;

e range, finite or infinite, finite mean and second moment known.

In each case, the given arc moment information is incorporated into the moment problem 2.1.
The solﬁtion of this problem yields an upper bound on the expected project tardiness . Thus, we
are interested in solving moment problems with 0,n, and 2n constraints respectively. This is the
approach taken by Klein Haneveld. It obtains an expected tardiness value that is tight in the sense
that some distribution that meets the assumed criteria achieves that bound.

The rest of this section presents bounds, or procedures for finding bounds, on the expected
project tardiness when different numbers of moments of the arc duration distributions are available.

We extend Klein Haneveld’s results to additional cases below.

Finite Range Known

Thereom 3 When only the finite range, [as, bs], of arc & is knoun,

ER(¢)-T)* < E(R(b) -T)".



Proof When only the finite range, [ai, b;], of arc &; is known, the optimal value of the following

moment problem provides an upper bound on the expected project tardiness:

sup E(R()-T)*
s.t. ay < & < b

an < 5;; < ba.
One feasible distribution is Pr(¢; = b;) = 1. Under this distribution,
B(R(E) - T)* = (R() - T)*.
Since this is the absolute maximum value of E(R(¢) — T)™, it is an upper bound. ®
Range and Mean Known

When the range and mean of each arc ; are known, the optimal value of the following moment

problem provides an upper bound on the expected project tardiness:

sup  E(R(§) -T)*
st J&dP(§)

&

[&dP() = &
aiSfiSbi, Vi»i=1y'°"nr

where b;, the maximum length of each arc, may be infinite. Klein Haneveld assumed finite arc
lengths in deriving his results. We present his basic analysis below and then derive more extensive

results.

Using duality theory, Klein Haneveld solves:

sup  Eg(R(¢)-T)%,
6€8(F},..,Fn)

where F; denotes the distribution function of the duration of the ith arc and © is the family
of joint distributions compatible with this marginal arc distribution information. After several

simplifications, the dual problem reduces to the following simple recourse stochastic program:

min ((R(z) -T)* + iE(& - Zi)+> . (4.1)

ZER™ -

10



Each z; can also be restricted to [a;, b;] without increasing the optimal value.
Klein Haneveld extends his approach to the case when only partial information on the arc

duration distributions is available. Mathematically, the procedure is to find:

n
sup min ((R(Z) -T)" + ;1 Er (% - z.-)*) ) (42)
where ®; is the class of distribution functions F; compatible with the partial information. Klein
Haneveld’s main requirement for solving the problem is that the same F; € ®; be the worst-case
distribution for all z; € R". Let F}* be the distribution which maximizes Er,(& — z)* for all

2; € ™. The supremum and minimum above can now be interchanged and the new problem is to
find:

min ((R(z) -T)* + i Ep (& - z,-)+) .

Z2ER" i=1

This is just the reduced moment problem (4.1). Note that if the F; are known completely, then this
minimization represents the worst case over all joint distributions with given marginals. This result
appears in Meilijson and Nédas [1979]. Weiss [1986] shows how to obtain a worst case distribution
with known marginals that has the same expectation as (4.2).

To use Klein Haneveld’s procedure when the mean and range of each arc are known, we must
first determine the worst-case distribution of each arc. When b; is finite, the worst case distribution

is known as the Edmundson-Madansky (Madansky [1960]) inequality and has the form,

b'——i i — a4
Pr(§ = a;) = b:—i-’ Pr(§ =bi) = r—

I

Note that this distribution is independent of z;.
Klein Haneveld does not consider instances where b; is infinite. The following theorem estab-
lishes the worst-case measure for £ when b; is infinite. In this case, as described in Section 3, we

must include the recession directions of Z in our search for an optimal measure.

Thereom 4 When b; is infinite, the nonnegative measure, P*, solving

sup  [(& — z)TdP(€)
st.  [&dP(E) =

|

i
a;i <& < b

11



has measure 1 on extreme point a; and measure 5_.- — a; on recession direction 1. Thus, the optimal

objective value is (a; — )t +¢; — ai.

Proof Ben-Tal and Hochman [1972] show that the optimal objective value is (a; — z;)* + &; — a;.
The corresponding optimal nonnegative measure is calculated using the procedure outlined in Birge
and Wets [1987]. Here, the range of &;, S, equals [a, 00). We require ext Z;, a collection of points
containing the extreme points of Z; and ext-rc Z;, a collection of points spanning the recession cone
of Z;. Let ext E; = a; and ext-rc Z; = 1. Let f(&) = (& — zi)T. Denote by rc f(z) the recession

function of function f in the direction z. By definition,

(& +t2) - (&)
t

o f(a) = i

By Theorem 2.1 in Birge and Wets,
SUD/; (& — 2:)TdP(¢) =

sup [ f@vde)+ [ re fr) ula),

v,u Jext =

where v is a probability measure on (ext Z;,.A), and u is a nonnegative measure on (ext-rc Z;, B)

such that

/ ev(de) + / ru(dr) = £;.

ext 5 ext-rc =;

A and B are Borel sets. Now, ext Z; = a;, hence v(a;) = 1. Then, since ext-rc Z; = 1, we have
a; +1u(1) = &,

and thus, u(1) = & — a;. Therefore, the nonnegative measure P* solving this moment problem has

P*(ext Z;) =1 and P*(rc-ext Z;) = & — a;. It remains to evaluate rc f(1):

re f(].) - t]lglo f(fl + tz - f(él)
|y e o

== 1.‘

Thus, the optimal objective value is (a; — z;)* + 1(& — a:). »

Since the optimal measure is independent of z; V i, the supremum and minimum in (4.2) can be

12



interchanged. Thus, we can use Klein Haneveld’s procedure whether the range of the arcs is finite
or infinite.

Let H; denote the index set of arcs with finite maximum length and Hs denote the index set
of arcs with infinite maximum length. Then, an upper bound on the expected tardiness is found
by solving:

min ((R(z) ~T)t+ ) (Pr(& = ai)(ai — )" +Pr(& = bi) (b — z:) )+
i€H,

Z [(ae -z)t +§—ai]) )

i€H;
where PI’(E.' = a;) = (b; - Z,)/(b, - a,') and Pr(ﬁ,- = b,‘) = (E, - a,-)/(b; - (1,,’).
Since z; can be restricted to [as, b;] without affecting the optimal value, the (a; — 2;)* portions

of the objective can be set to zero. Then, the problem we must solve reduces to

2€R" i€Hy i€Ha

min ((R(z) Tt + Y P& =b) i -zt + Y [5‘ - a,-]) . (4.3)

Problem 4.3 is a linear program which is easily solved to yield an upper bound. When the maximum

duration of every arc is infinite, this linear program can be solved by inspection. It reduces to:
n
; T+ .
min ((R(z) T+ L [E a.]> :
Since (R(z) — T)* is nondecreasing in z, the optimal solution in this case is z; = a; for every i.

The optimal objective value is (R(a) - T)* + £, [& — ai).
Range, Mean and Second Moment Known

When the range, mean and second moment of each arc duration distribution are known, an
upper bound on the expected project tardiness is given by the optimal value of the following

problem:

sup E(R()-T)*
s.t. [&1dP(¢)
J&dPE) = E(¢)

|
i
=

[&.dPE) = &
[&dPE) = E@)

13



aisgisbi; Vi>i=1)"')n

The dual problem in (4.2) can again be solved where ®; includes second moment information. As
Klein Haneveld suggests, the problem is simplfied when the supremum and minimum in (4.2) can

be switched. This is possible if the same measure maximize the following problem for all z;:

sup  E(& - z)* _
8.t. fft dP(§) = &
[&dP€) = E@&)

a; S £i < bi. (44)

For any feasible moment problem with two constraints, there is a feasible distribution in (4.4)
with two atoms. Duld [1986] (following Scarf [1958], Dupagovéa [1977], and Jagannathan [1977])
shows that the following two atom distribution is optimal. (A characterization of this property

appears in Birge and Duld [1991].) For this problem,

Let region A = (ai, (E(E?)-2a.-€_i+a2)/( E-a) +a:),
region B; = ((E(€D) - 2046 +af)/(2(8: — a0)) +as, (82 — E(€D) - 2au(s ~ &)/ 25 - &) + )
— B(€D) - 204(b - &)/ (205 — &) + a0, bi)

and region C;

Let X! and X? denote the atoms of the optimal distribution. Then, the optimal solution to (4.4)

is:

(ai, (E(&]) — 2a:&i +ad)/(E; — a3)) + i) if 2 € A;
(2 = /(5 — 0:)? = 2z — 0:) (& — @:) + B(€) — 204(&) + a2,

Zi+ J(Zi -ai)% - 2(z% - a.-)(f.' -a)+ E(f?) - 20;(5;) + a?) if 2; € B;
((bs(&i — as) + a,{; - E(f?))/(b, - E,) + ai, b;) otherwise.

(X", X?) = (45)

The corresponding probabilities are: p; = (X2 - §;)/(X? - X!) and ps = (§; — X)/(X% - X1).
Since this optimal measure depends on z;, we cannot immediately switch the supremum and
minimum in (4.2). In this case, however, note that 2; can be restricted to [ai, 5] and that, if the

first and second moments are finite, then all quantities in (4.2) are finite. Now, finding

mzin Sgp ((R(Z) - T)+ + En:EFi(éi - Z-;)+> ) (46)
i i=1

14



Figure 1: Project Network for Example 1

leads to a finite problem which bounds the value of (4.2) from above. We can thus (4.6) as a looser

upper bound than (4.2). We solve (4.6) when & = &; x- - - x &, that each ®; includes all probability

measures with means, &;, and second moments, §§2) = E(£?).

To solve (4.6) with these range, first and second moment bounds, we first solve for F*(z) that is
optimal in the supremum in (4.6). The outer minimization in (4.6) is then performed by computing
the integral in Efs(z)(& — z)* as a function of z; where F}*(z) is defined in (4.5). This yields a
nonlinear but separable function in the components of z;. In our examples, we solved this problem

using a successive linearization procedure.

5. Comparison of Bounds

In this section, we compare bounds on the expected project tardiness when different amounts of
information about the random activity durations are available. Three sample networks are chosen
for comparison from the literature on unconstrained project scheduling. A fourth sample is from
an actual manufacturing facility.

Example 1

This example is taken from Robillard and Trahan [1977]. Its project network is depicted in
Figure 1. Robillard and Trahan assume each arc duration has a uniform distribution, and also
that the arcs are independent. Table 2 lists the range, mean, and second moment for each arc.
In our bounds, we assume only the range, the mean and the second moment of each arc duration
distribution. For each information level, we look at the case where the maximum range of each arc

is finite, with the value given in Table 2, and the case where the maximum range of each arc is
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arc | minimum | maximum | mean | second moment
1 1.0 1.0 - 1.0 1.0
2 2.0 4.0 3.0 9.333
3 1.0 3.0 2.0 4.333
4 2.0 3.0 2.5 6.333
5 3.0 7.0 5.0 26.333
6 3.0 5.0 4.0 16.333
7 1.0 5.0 3.0 10.333
8 4.0 5.0 4.5 20.333
9 1.0 2.0 1.5 2.333
10 4.0 6.0 5.0 25.333

Table 2: Arc duration data for Example 1

Due Date
Information Available 0.00 15.00 18.33 21.67 25.00
upper bound | range 25.00 10.00 6.67 3.33 0.00
range, mean 20.00 5.00 3.33 1.67 0.00
range, mean, second moment [ 20.00 5.00 2.56 0.89 0.00
range, mean, second - unif 20.00 5.00 294 0.13 0.00
lower bound | range 15.00 0.00 0.00 0.00 0.00
range, mean 20.00 5.00 0.00 0.00 0.00

Table 3:

infinite.

Bounds On Expected Tardiness for Example 1 - bounded case

Tables 3 and 4 tabulate bounds on the expected project tardiness given various due dates.

Table 3 summarizes the bounds when each arc duration has a finite upper bound. The upper

bounds on expected tardiness also appear in Figure 2. Table 4 summarizes the bounds when

each arc duration has an infinite upper bound. In this case and all cases below, “unbounded”

refers only to the upper bound. We assume that the lower bounds are known. The tables include

both upper and lower bounds. The unbounded upper bounds appear in Figure 3. For a given

due date and information level, the upper bound on the expected project tardiness is calculated

using the appropriate method outlined in the previous section. The corresponding lower bound is

obtained by substituting in the mean value, or lower bound, for each arc duration and solving the

Due Date
Information Available 0.00 15.00 18.33 21.67 25.00
upper bound | range, mean 2450 9.50 9.50 9.50 9.50
range, mean, second moment | 20.35 535 298 127 0.73
lower bound | range, mean 20.00 5.00 0.00 0.00 0.00

Table 4: Bounds On Expected Tardiness for Example 1 - unbounded case
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Figure 4: Project Network for Example 2

Due Date
Arc Information Available 0.00 2.00 4.00 6.00
upper bound | range 6.00 4.00 2.00 0.00
range, mean 4.00 2.00 1.00 0.00
range, mean, second moment | 4.00 2.00 0.77 0.00
lower bound | range 0.00 0.00 0.00 0.00
range, mean 3.00 0.00 0.00 0.00

Table 5: Bounds On Expected Tardiness for Example 2 - bounded case

distribution.

Table 5 summarizes bounds on the expected project tardiness when the maximum length of each
arc is finite. Figure 5 shows the upper bounds in this case. Table 6 summarizes bounds obtained
when the maximum length of each arc is infinite. Again, the upper bounds appear in Figure 6.
The due date levels are R(a), R(a) + (1/3)(R(b) — R(a)), R(a) + (2/3)(R(b) — R(a)), and R(b).

Assuming the durations have discrete uniforin distributions and are indebendent, the expected
tardiness of this project is (3.32 —due date)*. We make neither of these assumptions in computing
our bounds.

In all of the situations considered, summarized in Tables 5 and 6, information on the mean
of each arc duration is helpful in obtaining tighter bounds. As in Example 1, bounds obtained
assuming each arc duration is bounded are tighter than the corresponding bounds developed as-
suming each arc duration is unbounded. This again illustrates the importance of knowing upper
bounds on the arc durations.

In Table 6, the upper bounds utilizing second moment information are tighter than those which

do not utilize this information. This is true for all due dates and represents greater improvement
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resulting deterministic problem. The due dates are equal to 0.0, R(a), R(a) + (1/3)(R(b) — R(a)),
R(a) + (2/3)(R(b) — R(a)), and R(b).

In Table 3, the bounds summarized in the row marked “uniform” were derived using Robillard
and Trahan’s estimates of the first two moments of project completion time. Assuming each
activity duration is a discrete uniform random variable and the activity durations are independent,
Robillard and Trahan present 20.562 as an upper bound on the expected completion time of this
project and 422.759 as an upper bound on the second moment of completion time. Using these
bounds (with assumed uniform components), we computed the maximum expected project tardiness
over all completion time distributions with these moments. In general, our bounds assuming only
first and second moments on individual activity durations are comparable to assuming specific arc.
distributions and using them to bound overall completion time moments.

Tables 3 and 4 illustrate that each incremental piece of information about the arc durations is
beneficial. The value of additional information is more pronounced at looser due date levels. Over-
all, the bounds with mean, range, individual arc second moment information, and no assumptions
of independence provide fairly tight bounds on expected tardiness.

In the unbounded case, Table 4 also.confirms the value of information about the variance, or
second moment. When only the mean and range are known, the upper bound on the expected
tardiness is constant for all due dates greater than R(a). Thus, for looser due dates, bounds
obtained using second moment information are much tighter that those obtained using only the
means and ranges.

An upper bound on the duration of each arc also facilitates developing a tighter bound on the
expected project tardiness. To see this, compare each upper bound in Table 3 with the correspond-
ing upper bound in Table 4. Having a finite maximum length for each arc is especially helpful when
only the mean and range of each arc are known. As the maximum length of each arc is increased,
the upper bounds in Table 3 approach those in Table 4.

Example 2

This example is a modification of Example 1 in Fulkerson [1962]. The project network for this
example is depicted in Figure 4. Fulkerson assumes the operations have independent, identically
distributed durations. Each has a discrete uniform distribution, with P(§ = ;) =1/3 and [ =
0, la =1, I3 = 2. Thus, the range of arc i is [0, 2], the mean of arc i is 1 and the second moment

of arc i is 5/3. Here, we assume only the range of £ and at most the first two moments of its
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Due Date
Arc Information Available 0.00 2.00 4.00 6.00

upper bound | range, mean 5.00 5.00 5.00 5.00
range, mean, second moment | 5.00 2.27 1.16 0.73
lower bound | range, mean 3.00 0.00 0.00 0.00

Table 6: Bounds on Expected Tardiness for Example 2 - unbounded Case
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Due Date
Arc Information Available 0.00 2.00 4.00 6.00

upper bound | range, mean, second moment | 5.00 3.34 223 1.66

Table 7: Bounds On Expected Tardiness for Example 2 - increased variance
~ o~ 1y
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100~ 13 A~ 28 ~
T\ TN
14 29
N\, N\
8

Figure 7: Project Network for Example 3

than in the bounded case. If the variance of each arc is increased, the upper bounds employing this
information are naturally looser than the upper bounds developed using the smaller variance, but
still represent significant improvement over ignoring the second moment. This is shown in Table 7,
which tabulates upper bounds on the expected project tardiness when the second moment of each
arc is increased to 3. These results suggest that it is important to have a bound on the variance of
each arc, even if the actual variance is not available.
Example 3

This example is from Klein Haneveld [1986]. According to Klein Haneveld, it is a slight mod-
ification of the Electronic Module Development Project described in Moder and Phillips [1964].
Figure 7 illustrates the project network for this project. Table 8 presents information on the mean,
range, and second moment of each arc. We set the mean of each arc equal to the mode in Klein
Haneveld’s work. The standard deviation was derived assuming a triangular distribution. Thus,
oi = (b — as)/6, Vi.

Tables 9 and 10 record the bounds on the expected project tardiness under several due date

levels. Upper bounds also appear in Figures 8 and 9. The smallest due date equals the completion
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arc | mmnimum | maximum | mean | second moment
1 0.0 16.0 3.0 00.7738
2 14.0 32.0 17.0 298.000
3 14.0 32.0 17.0 298.000
4 2.0 8.0 4.0 17.000
5 1.0 5.0 2.0 4.444
6 1.0 3.0 2.0 4.111
7 0.4 1.0 0.6 0.370
8 0.4 1.0 0.6 0.370
9 2.0 5.0 3.0 9.250
10 2.0 5.0 3.0 9.250
11 3.0 5.0 4.0 16.111
12 3.0 5.0 4.0 16.111
13 3.0 5.0 4.0 16.111
14 3.0 5.0 4.0 16.111
15 2.0 5.0 3.0 9.250
16 3.0 5.0 4.0 16.111
17 8.0 12.0 10.0 100.444
18 1.0 3.0 2.0 4.111
19 6.0 12.0 8.0 65.000
20 1.0 3.0 2.0 4.111
21 6.0 12.0 8.0 65.000
22 1.0 3.0 2.0 4.111
23 6.0 16.0 8.0 66.778
24 1.0 3.0 2.0 4.111
25 4.0 8.0 6.0 36.444
26 1.0 3.0 2.0 4.111
27 0.1 1.0 0.5 0.257
28 2.0 5.0 4.0 16.444
29 1.0 4.0 2.0 4.111

Table 8: Arc duration data for Example 3

Arc Information Due Date

Available 45.10 55.00 65.00 75.00 85.00
upper bound | range, mean 1261 647 293 0.17 0.00

range, mean,

second moment | 6.46 1.78 0.53 0.02 0.00
lower bound | range, mean 0.00 0.00 0.00 0.00 0.00

Table 9: Bounds On Expected Tardiness for Example 3 - bounded case

Arc Information Due Date

Available 45.10 55.00 65.00 75.00 85.00
upper bound | range, mean 38.80 38.80 38.80 38.80 38.80

range, mean,

second moment | 6.77 251 1.72 104 0.73
lower bound | range, mean 0.00 0.00 0.00 0.00 0.00

Table 10: Bounds On Expected Tardiness for Example 3 - unbounded case
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Arc Information Due Date

Available 0 200.00 420.00 510.00 600.00
upper bound | range, mean 627.5 427.5 2475 213.75 180.0
range, mean,

second moment 569.2 369.2 163.9 108.5 83.4
lower bound | range, mean 510.00 310.00 90.00 0.00 0.00

Table 11: Bounds On Expected Tardiness for Example 4 - bounded case

Arc Information Due Date

Available 0 200.00 420.00 510.00 600.00
upper bound | range, mean 690.0 490.0 350.0 350.0 350.0

range, mean,

second moment | 569.6 369.6 164.3 110.4 86.7

Table 12: Bounds On Expected Tardiness for Example 4 - unbounded case

time of the project when each arc duration is replaced by its expected value. The other due
dates are set at intervals of ten. The results are similar to those of the previous two examples.
Again, information on the second moment provides a tighter upper bound on the expected project
tardiness, especially when the due date is loose. Bounding the arc length again makes a significant
difference in expected tardiness.

Example 4

The last example is from a manufacturing facility. Tardiness refers to the completion of an
order which requires manufacturing and assembly of four components. The components also share
common resources (machines and tools) so the full project network is highly interconnected. The
network has 49 arcs and 35 nodes. The total number of paths is 25. Processing times had lower
bounds of 20 minutes, means of 30 minutes and second moments of 1000 minutes® (a standard
deviation of 10 minutes).

Tables 11 and 12 record the bounds on the expected project tardiness under several due date
levels. The upper bounds appear in Figures 10 and 11. The times were chosen to represent an
early value, the value with all processing times set to their means (510), and ninety minutes from
the mean value. Note that second moment information more than halves the expected tardiness

with a due date of 600, even when fixed upper bounds are given.

These four examples demonstrate the value of additional arc information in determining upper
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bounds on the expected project tardiness. In every instance, knowledge of the arc duration means
provided a tighter bound than could be obtained solely using the information on the range of each
arc duration. For our bounds, if the maximum length of each arc is unknown, second moment

information is always valuable.
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