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Abstract

We consider the problem of minimizing cable connections between a
central computer and a field of heliostats in the design of solar power
systems, This practical task can be modeled as a p-median problem with
additional constraints in a weighted graph. We compare an exact branch-
and-bound method with two approximate algorithms. For the latter two
methods, estimations of time complexity and accuracy are presented.
Computational results are shown which should be useful in the design of

such large-scale power systems,
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1. Introduction

A terrestrial solar thermal system consisting of a field of helio-
stats used to reflect sunlight to a central tower receiver is considered.
The receiver contains a liquid which is heated to produce steam which in
turn drives a turbine as in a conventional steam generating plant. Pilot
systems have been built in many countries [2, 3, 8, 11] and have been
studied for the optimal design of heliostats and configurations [13, 16].

The heliostats must be under constant control in order to maintain
their reflective accuracy in directing sunlight to the receiver. Besides

this function, such control makes the following operations possible:

initial powering each morning according to given solar radiation

intensity;
following the sun's movement during the day;

switching off of the system whenever solar radiation falls

below a minimum level for a given length of time;

connecting and disconnecting separate groups of heliostats

to regulate the amount of power required; and so on.

In the earliest plants [8], each heliostat was independently
steered. In large systems, this cost becomes prohibitive and some
central computer-based control is necessary [4]. With this system, costs
can be further reduced if micro-processors are used as intermediary
data concentrators instead of having each heliostat directly connected
to the central computer. One possible configuration is that of the
Smith helioelectric farm [17]. In their proposed plant, a central computer
is linked to 600 minicomputers, each of which is connected to 16 micro-

processors, The microprocessors control 32 heliostats each.



It should be emphasized that the minimization of expensive cable
lengths is very important for large power plants. For example, to
connect 21,000 heliostats independently to a central computer from a
1500 meter by 1500 meter field, 9,000 kilometers of cable are required [20].
This amount of cable may be reduced twenty fold by constructing a hier-
archical system including microprocessors and by employing optimization
methods to the design of that system.

In this article, we investigate methods for organizing connections
in a two level control system for a field of heliostats to minimize the

lengths of additional cable.

Practical task.

We are givenn+l points, (xi, yi), i=1, 2,s..,0 + 1, where,
for i =1, 2,...,n, the point is the site of a heliostat or microprocessor,
and, for i = n + 1, the point is the site of the central computer., We
must allocate microprocessors according to the following conditions:

(a) Every heliostat must be connected with a microprocessor and

every microprocessor must be connected with r heliostats;

(b) Every microprocessor must be connected with the central

computer;

(c) The lengths of connecting cables must be minimized.

In our discussion, we propose three alternative approaches:

1)  An exact method which reduces the task to a p-median problem
for a weighted graph and solves this using the simplex method

ard branch-and-bound [5, p. 112],



2) An approximate algorithm based on local optimization [17].
3) An approximate algorithm based on constructing the minimum
spanning tree using the algorithm in {1, p. 172] and sequentially

allocating p-medians to the vertices of this tree.

When n is large, the first algorithm may be inefficient, and using
the approximate algorithms may be desirable. We present worst case

estimations of the time complexity and accuracy for Algorithms 2 and 3.

We also present computational results on a series of randomly generated problems,
These results indicate that Algorithm 3 has the least average time require-

ment and that its resulting solution may achieve a sufficiently accurate

result. The cost of additional optimization upon this solution should be

weighed in specific applications.

2, Model Description and Solution Methods
Let V be the set of given points, Vi with coordinates, (xi, yi),
where i =1, 2,...,n0 + 1. The Euclidean distance pij between any pair

of points, Vs vj, is given by
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We consider the complete graph G(V,E), defined on the given vertex set,
V, where every edge in E has associated with it a nonnegative distance.
Let p be the number of medians (excluding the central point) which
must be placed on the given set of vertices V. Then,
n - n 2
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The original practical problem may be reduced to finding the

subset V: C V such that

O(V;) = min{O(Vp)}, where
(3)
O(Vp) = ¥ d (Vp, vj), and
¥y eV/vV
J P
d(v , v,) = min {d(v., v.,)}.
L AL v

This problem is known as the p-median problem. We, however, have the
additional requirement (a) above that each median (microprocessor) must

be connected with exactly r vertices (heliostats).

 This problem can also be formulated as a binary integer linear

program. We define the decision variables as

1 if vertex vj is assigned to vertex Vs

0 otherwise (4)

Letting dij = d(v(i), v(j)), the problem is :
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min I pX di' X, . (5)
=1 i=1 M
n+l
subject to X x,, =1, j=1,i0e,n'+1 (5.1)
, ij
i=1
n
I x,,<r,i=1,iee,n+1 (5.2)
. ij -
j=1
n
.Z i1 © P> xn+l, ntl 1 (.3)
i=1
Xij < X, i=1eeey,n+1;j=1,e0e,n+1 (5.4)
X;4 € {0, 1}, i=1,...,0+1, j=1,0eee,n+1. (5.5)

Constraint 5,1 indicates that every heliostat is assigned to a
(microprocessor). 5.2 constrains the microprocessor to be connected to
at most r heliostats. 5.3 yields p total microprocessors and one central
median, and 5.4 forces the heliostats to be connected to places of micro-
processors. 5.5 insures that a heliostat is either connected to one other
heliostat or not.

Problem 5 is a binary integer linear program 'with (n + l)2 variables,
This can be solved exactly by a direct branch-and-bound procedure, or it
may be solved by the simplex method by relaxing constraint (5.5) to
0< xij <1, 1In the latter case, an exacf solution may be found by further
branching on the values of fractional xij' The number of additional steps

may be small, as reported in Revelle and Swain [16§ . This



approach 1s: used in Section 4 ., In the following, we will denote
this method as Algorithm 1,

When n is large and the linear programming solution has many frac-
tional values, branch-and-bound procedures may prove inefficient in
finding a solution. In this case, some heuristic procedure may be

necessary.

One such procedure that we will use here is due to Teitz and Bart [18].
We have extended this method to the capacitated case here in which every
median must be connected to r vertices. The algorithm proceeds by starting
with a given set of p medians and of vertex assignments to those medians.
The first phase of the algorithm is to determine whether switching two
vertices assignments can lead to an overall reduction in the total
distance,

For this algorithm, we use a different definition for the value
of the p-median assignment, For a specific instance I of the problem, we let:

ov)= I ( I_ d(v,, v.)), (6)
Py eV v.ev, o

where Vi is the subset of r vertices connected to the median Vi and
the medians are VT(l), VT(Z),...,VT(p). This definition is used to
explicitly incorporate the capacity constraint on microprocessor connec-

tions.



Algorithm 2,

Step 1. Assign vertices to p medians such that each median is

connected to at most r vertices. Let the median set

be Vp = {VT(I), VT(Z),..., vT(p)}. Order all vertices
v, i < n, ] ¢ Vp by v Vi seees v, . Let j =1,

" 1 2 n-p
Let k =1, Let V. =V_,

P P
Step 2. Replace median ) by Yige Let V; = Vp - {VT(k)

Allocate each vertex VZ € V to the closest median vertex

}u {vi_}.
J

vq € V; that is connected to less than r vertices.
Calculate O V'), Ifo (V') <o (V"), then let V" = V',
P P P P p

If k < p, then, let k

k + 1 and repeat. If k = p, then,
leth=V;,letk=l. If j <n-p, let j = j + 1 and
repeat. If j = n-p and Vp has changed since Step 1, then

go to Step 1. If Vp has not changed, go to Step 3.

Step 3. For every pair of non-median vertices, (vi, vj), i43,

such that v, € V, and vy € Ver K $4:

k
If d(vi, Vl) + d(vj, Vk) < d(vi, vk) + d(vj, Vk)’ then let

a) V

. Vk - {vi} U {vj},

b) VQ

Go to Step 4.

VQ - {vj} U {Vi}.

Step 4. STOP, Vp is an approximate set of p-medians, and VT(l)’

VT(Z)""’ VT(p) are partitions of vertices to those medians.

We let 0y(I) = G(Vp) for an instance I of the problem.



This algorithm results in essentially a l-optimal assignment of
medians, Further A-optimal solutions as in Lin's [12] procedures for
the travelling salesman problem may also be found, but they require sub-
stantial increases in computational effort. The heuristic algorithm above
requires (n-p) p steps for each pass through Step 2 and (n--p)2 steps in
Step 3. The algorithm must terminate since at every cycle an improved
solutions is considered, and since there are a finite number of possible
starts for Step 2. The number of these possible starts is (2), the

number of possible median sets.

The main idea of the third method is to reduce the given initial
problem on the complete weighted graph G(V, E) to the solution of an
approximate variant of the p-median problem on a tree.

Let T(V, E) be a minimum spanning in G(V, E), which may be constructed
using Kruskal's algorithm [1, p. 172].

Let (Vi’ vj) € E. Removing the edge (Vi, vj) from T divides the tree

i E E hat
T into 2 components, Ti(vii Ei) and Tj(Vj, Ej) such tha

V = L]

Proposition 1 [11]. If !Vi[ > IVjI, then the median v* of the tree T

belongs to Vi'

Proof: Alternatively suppose that the median v* € Vj. Then, the value of
functional (3) will be increased by the value of the product of the length
of edge (vi, vj) and the difference [Vil - Ile. In other words, O (v¥)
will not be minimized.

In the following algorithm, we use the postorder traversal of T

defined below.



Definition ([1, p. 54]). Let T be a tree having root r with sons

Vl’ vz,..., Vk’ k > 0, In the case k = 0, the tree consists of the single

vertex r. A postorder traversal of T is defined recursively as:

1) Visit in postorder the subtrees with roots, Vis VoseesV, o

in that order,

2) Visit the root r.

Algorithm 3.

Step 1. Construct the minimum spanning tree T of the graph
G(V, E) using Kruskal's algorithm [1, p. 172]. Vertex

vn+1 will be the root of T,

Step 2. Employing the postorder transversal of T, assign each
vertexvieTa weight W(vi) which equals the number of
its descendants, in other words, the number of vertices
lying on all paths from v, to the leaveé. Allocate the

* to the vertex v

first median vl 0

Let 2 =1 and S = ¢.

. *
Step 3. Remove the edges adjacent to VQ and let le, ij,..., vjk
be the vertices formerly adjacent to vzu Include in S

the set of subtrees, Tl’ TZ""’Tk’ with roots vjl’ VjZ""'ij'
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Step 4. Choose from S, the subtree T* such that:

0

Wv, ) = max {W(v, )]
Joo % T,€8 J4

Step 5. In subtree T*, find the vertex Va such that

Step 6.

Step 7,

Step 8.

A(v) = min {A(v.)} where
a VV,GT* 1
i 0
= - . 7
A(Vi) lZW(vi) W(vjo) (7)

v_ is then the vertex with the most nearly equal number
o

of ancestors and descendants.

*

Allocate the median V%+l to the vertex Vg If 2 < p,

then let £ = 2 + 1 and go to Step 3.

*

Let {v*, VoseessV .} be the set of medians found. Again,
1’ "2 p+l ‘

using postorder traversal of T, connect any noncentral

median with any vertex vj which has not yet been con-

sidered and is a descendant of that median.

Connect any vertex not yet considered to the nearest
noncentral median which has less than r adjacent vertices.

Connect all noncentral medians with the central median,

*
Vp+1.
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It should be noted that the algorithm given above sequentially solves
the following three problems (a) the construction of a minimum spanning
tree, (b) the sequential allocation of p medians on this tree, and (c) the
connection of exactly r vertices with every noncentral median., It is
impossible to construct an exact polynomial algorithm for solving (a) and
(c) because the corresponding problem of constructing a minimum spanning

tree with bounded vertex degree is NP-complete [8, p. 206].

3. [Estimation of Time Complexity and Accuracy of the Algorithms,

We first estimate the maximum number of elementary operations required
by each algorithm for solving any instance of our problem. For Algorithm 1,
the time complexity is not polynomially bounded because it has been shown
that the simplex method may take an exponential number of steps to reach an
optimum [11], The branch~and-bound procedure may also involve an exponential

number of steps.

Algorithm 2 can involve as many steps as the number of possible median
sets, ( "), Since this grows exponentially with n for fixed r, Algorithm 2
is also not polynomially bounded. We note, however, that these bounds
apply to worst case behavior and that average case behavior may be much

better.
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We will now estimate the time complexity of Algorithm 3 step by step.

Step 1 may be completed in O(m log m) operations where m = ]E . Since,
in our case, we have a complete graph, m = 0(n2), then Step 1 has the esti-

mation O(n2 log n). Step 2 requires 0(m) operations. Step 3

_n
r+l

consists of O(p-cl) operations where ¢, is a constant and p =

1
Steps 4 and 5 in the long run require O(pen) operations. In fact, one
application of Steps 4 and 5 will take O(n) operations, if we construct

a list of the vertices in which each vertex is assigned the weight of the
subtree which includes that vertex and the corresponding value of A.

Step 6 requires O(p-cz) operations where c, is a constant. Steps 7 and 8

2
may be done in O(nz) operations., Combining these estimates, we obtain
the common estimation of O(n2 log n).

Algorithm 1 using the branch-and-bound procedure guarantees an optimal
solution, but Algorithms 2 and 3 provide only approximate solutions. We
next consider the accuracy of those algorithms.

Let I be an instance of our problem and let Ol(I) = Oopt(I), the
optimal solution value obtained using the exact algorithm 1. An instance
of this problem will be defined as a set of given vertex locations on a
predetermined size field. Let OZ(I) and 03(1) be the values of approximate
solutions found using Algorithms 2 and 3. The problem in the remainder

of this section is to determine the absolute performance ratios [8 , p. 128],

which are determined by the following formulas:
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0., (1)
o . _ 2 . ,
R2 = 1nf{r2 > 1: R2(I) = 01(1) < r2 for all possible instances I},
(8)
03(1)
R3 = 1nf{r3 > 1: R3(I) = 01(1) < rﬁ for all possible instances I},

We first present a lower bound estimate of the optimal solution, Gl(I).
For a problem with n vertices and p = (n/r+l) medians, the number of
connections between the medians and all vertices may be caluclated by the

following formula:

PR T T R ©

Let T be the set of all possible spanning trees for instance I,

Let us denote the minimum edge length in all such trees by

p_. = min {d(x., x.)}, (10)
min Vixg % )eTC T o

and let the maximum edge distance be

Ppax = WX lacx,, xj)}. (11)
V(xi,xj)ETC T

It is clear that
0, (1) > —= p . ° (12)

An optimal solution to the problem is not guaranteed by Algorithm 2,
but the value of the solution may be bounded. At termination of the
algorithm, no vertex may be substituted for another and lead to a lower

value, We let (v’i‘, v;,...,v;) be the median set in the optimal solution.
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Since none of these vertices which are not in the median set of the
approximate solution may be substituted for a median in the approximate

solution and lead to a:lower total distance, we obtain

d(vJv)+d(v,v ) < d(v,v)+d(v,v (13)
jeV% k? "L(k) jeVi

SL(k))

*
where v € VQ(k) in the approximate problem. This inequality holds for

every vertex vq € V () in the optimal solution,

k(]

We take a sum of the left hand sides of (13) for vi for all i and j

to find
: { )_><1)}
z I = I, d(v , V.) + d(v , v.) +d(v , v
iﬂ_javqsv% j3v45v% k(@3)’ “L(k)
i i i i
p
=r 02(1) + .§ § d(vk( 7y VQ(k))
i=1 3
J
>r 02(1) + rep, (14)

where GZ(I) is the value obtained in this instance by this approximate
algorithm, n =p(r + 1) is assumed, and all arcs have a least unit

lengths.

For the right hand side of (13), we obtain:

1
) z (Z d(v , v¥ ) + d(v‘ v¥ ) + d(v s V )
o 3 Sk k@) k) L)
P
< I L (Z d(vJ v, ) + I d(v s Vk( )) + d(v . Vk( ))

i=1 3 343 7 j#3

1 1
+ d(vi, VR(k)))

< (x=1)e0,(1) + 0, (1) + Teped (15)
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where dmax = max d(vi, vj). (14) and (15) give us the following.

V,,V,
i’

Proposition 2, The solution, 02(1) obtained by Algorithm 2, is bounded
by

02(1) < cl(I‘) +rp (dmax - 1), (16)
where ol(I) is the exact solution to (5).
Proof. This follows directly from (14) and (15).

The absolute performance ratio for Algorithm 2 may be obtained

by:
GZ(I) T p(dmax-l)
R, = inf{ —=/ <1 + —/—m
2 I 01(1) - or ,
r+l min
dmax-l
= 1 + —, (17)

pmin
n

using (16), (12), and p = We note that for a field of dimensions

r+l °
a by b, dmax < Jaz + b2, S0 R2 is bounded by a constant depending on
the field size.

We will now find the estimation for 03(I).

Proposition 3. After allocating p medians to the set of vertices any

subtree obtained from Algorithm 3 will include no more than:
n .
o0 = EE—— vertices,
where k = l_logz(p +1)
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Proof. We will proceed by induction on p. For p = 1, then k =1,

1) |log, (4 +1)] [log, (4 +2)],

2) ]__log2 @+ 2) ~_1°g2 o+ l)_[ + 1.

*_ * -
Let £ = min{%} such that [_].ogz(ﬂ, + l)_] = [_Logz o\ + 1)J. After
having allocated 2* medians, we will have 2% + 1 subtrees, It is clear that ip

Case 1 above there will exist at least one subtree with —E— vertices where
2

k = Llog2 QR+ l)_I, and, in Case 2, all subtrees will be the same size, in
other words, every subtree will have no more than -2— vertices, where

2
k= llog, (1 +1) +1. n

It follows from Proposition 2 that the maximum path length in such a
subtree will be no greater than

n
( F— - 1) pmax,

where k = ]_‘Log2 (p + l)J.

Let Tl’ T2"'°’Ts be the sequence of subtrees of the minimum spanning

tree T with corresponding roots v, s V. 5eee,V, , adjacent with the
Y s
central median v* . and such that w(v, ) > w(v, ) >eee> W(v, ).
p+l N5 R P

Then, possibly, starting with some t, 2 <t <s, each of the subtrees TQ,

where t < £ < s, will not have a median,
Let

S
b= I w(v. ). (18)
=t )
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It then follows from Proposition 3 that any subtree resulting from

Algorithm 3 will include no more than vertices, where k = |}og2 p + l}J.

n-b
2k
Without loss of generality, let p = Zm, where m > 1. (If not, p may be

decreased to the nearest power of 2.) Then

n-b n-b _  (n-b)(rt+l)

S, S T T m 49

In order to obtain an upper bound estimate of 03(1), it is necessary
to investigate the most "unsuitable" instance of the problem for Algorithm 3.
Obviously, this will occur when t = 2, that is, when all noncentral medians

It is clear that in this case each

(n-b) (r+1)
n

are allocated to a single tree, Tl'

of the subtrees T2, T3,...,TS will contain at most vertices.
The most "unsuitable" structure for subtrees, Tl’ T2’°"’Ts’ will be a
tree, that contains only one leaf (i.e., a path).
Let us denote by 031(1) the total distance from the vertices of
subtree 'I‘l to the corresponding nearest medians (Step 7 of Algorithm 3).
Let 032(1) be the total distance from the vertices of subtrees T2, T3,...,Tk,

to the corresponding nearest medians of subtree Tl (Step 8 of Algorithm 3).

Then
03(1) = 031(I) + 032(1). (20)

Let vj be one of the vertices of subtrees, T2’ T3""’Tk’ and let

vt be the nearest median in subtree Tl to vertex vj. Then, from the

triangle inequality in Euclidean space, it follows that:

d(v,, v) < d(v., v*.) + d@* (21)
37t i’ 'ptl

*
p+l? Vt)'



18

2 4

|

Figure 1. An example of the worst case tree for Algorithm 3.
Stars are used to show the median allocations.
The circle bounds the area of allocation of
vertices of subtrees, T2, T3,..., Tk.
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From Step 5 of Algorithm 3, it follows that every noncentral median

will be connected with no more than rg 7 = rhizgllj vertices. This
may be roughly estimated by rELEELlW' < ghiﬁill
Then
x P 2b(r41)
032(1) < I K d(v,, v +l) + ¥ —,
¥v.e T, 3P t=1 o
U 3
i=2

Let us estimate the right hand side term in (22).

any of the subtrees T2’ T3,..., Tk’ has no more than

(n-b) (x-1)
n

*
d (vp+l >t

It is clear that

Furthermore, the worst structure for any of these subtrees is a path.

Using these facts, we have

bep
* max
. z K d(Vj, Vp+l) < m) [1+2+,..+
v, € T, S
it v i n
i=2
_Mrt ey L an)iem? | baeben
(n=b) (r+1) on? 2n
2b {r+l) * 2b(r+l) , (n-b)(r+l)
L n ﬁ(vp+l, Vt) - n n

2be (r41) | 0 (n + r+l) | (n-b)(zHl) | n
n max 2(r+1)2 n

be (n-b) (n+r+l)

n max

(n-b) (r+1) _
n

max’ (23)

pmax[l + 2 4,0+

(24)

v.  (22)

vertices.

1] =

n
o
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Using (23) and (24), we may estimate 032(1) by:

+ b(n-b) (a+r+l) o . (25)
max max
2n n

b(n-b) (r+l)

0.,,(1)

We may also obtain an estimate for 031(1) by:

n_ . (n-b) (r+1) -
O31(1) < r+1  Pmax [1+2 4.4 n 1]
n_ o, (n-b)z(r+1)2 . B (n—b)z(r+1) 26
T r4l ' Poax = . Pnax’ (26)
2n 2n

Using (25) and (25), the following estimate of GB(I) is obtained.

(n=b) > (r+1) o BB L hob) (k)

03(I) 2n max n max n max

IN

_ n-b Y _ , -
= Ea—- nax [(n-b) (r+l) + b(r+1l) + 2b(n+r+l)]
- b [nt4n + 2bn + 2br + 2b] =
2n max
- b [n(2b + r+1) + 2b(r+1)]. 27)
max

2n
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Using (27) and (12), we may find the ratio R3 by:
e (300 eb)(n@brer) 26 (241)  Pmax
3 01(1) - 2nener pmin
_ Pnax . (n=b) (r+l) [n(2b+r+l) + 2b(r+l)] (28)
= 5 .
pmin 2n r
From (23) it follows that if we have b = 0, then:
R < P nax . (r+1) n (r+l) - O nax (r+l)2
3 - pmin 2nr Pmin 2r
that is (29)
Pnax (r+l)2
R, <
3 - p.. 2r ’
min
P
where is a constant that depends on the size of the field.
min
We observe that R2 and R3 are both bounded by constants when b is a
constant but that R3 may be O(n) if b = O0(n). This case is extremely

unlikely for a field with equally distributed heliostats. It should
also be noted that Algorithm 3 has the advantage of a polynomial bound

in time complexity,
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4. Computational Results.

A set of randomly generated problems was used to test the algorithms.

A FORTRAN code, SWICHR, was written to perform Algorithm 2, and another
FORTRAN code, MINST, was written for Algorithm 3. Both of these codes
were compiled on the non-optimized standard FORTRAN-G compiler on The
University of Michigan's Amdahl 470/V8 computer. All processing was also
done on this machine. The linear program of Algorithm 1 was executed by
the versatile MINOS package [14].

The linear program in (5) requires (n + 1)2 variables and more than
(n + l)2 rows. As n increases, the problem size becomes prohibitively
large and finding a solution becomes extremely expensive. For this reason,
tests of all three algorithms were limited to small n. The results in
Table 1 are for problems in a 1000 meter by 1000 meter field in which
n = 28 heliostats have randomly been placed uniformly in the field.

For these examples, the microprocessor capacity was set at ten and three
microprocessors were located within the field. The resulting linear
program for these examples included 842 rows, 785 columns and 3921 nonzero
elements, The CPU times given exclude input and solution output, Problems
2, 5, 6, 7 and 10 had some noninteger variables in their solution. These
problems required additional processing through branch-and-bound to obtain
an optimal all-integer result, The times reported for these problems do
not include that additional processing.

These problems were also solved by Algorithms 2 and 3 and the results
were compared with the optimal linear programming solution, Algorithm 2
was started with a randomly chosen median allocation. The average accuracy
of Algorithm 2 on the first set of problems was better than that of Algorithm

3 but its time requirement was greater.
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Table 2 contains results for 100 random heliostat sites and for a
capacity of 20 at each of 5 microprocessors. These problems are excesslvely
large for an efficient linear program solution, hence the results are
compared with thé length of the minimum spanning tree instead of the linear
program solution. Algorithm 2 again provides better average results but it
requires consistently more time,

It should be noted that the majority of calculation time is spent
determining distances between pairs of heliostats. Since this operation
only needs to be performed once, a combination of Algorithms 3 and 2 may
prove quite useful in practice. In finding the minimum spanning tree in
Algorithm 3, distances may be calculated and stored out of core. The
solution from Algorithm 3 may be used as an initialization for Algorithm 2

and the distances may be recovered without additional computation.
5. Conclusion.

The problem of minimizing cable connections in a solar power system
has been pre§ented. This task was modeled as a p-median problem with
additional constraints and three algorithms were presented for its solu-
tion. Worst case analysis of the algorithms indicated that one heuristic
method was polynomially bounded and that its absolute performance ratio
was, in general, bounded by a constant. Computational results supported

the relative efficiency of this polynomial heuristic algorithm.



Solutions for n

Table 1

28 Heliostats.

Linear Program

Algorithm 2

Algorithm 3

% of % of
Problem Itera- LP LP
Number CPUs tions Value CPUs Value Opti. CPUs Value Opti.
1 34.7 606 6095.7 .31 6306.4 103 .16 6528.1 107
2 32.5 559 6129.5 .32 6350.7 104 .16 7642,3 125
3 38.3 680 5839.7 .32 8301.0 144 .15 7618.6 130
4 30.4 529 5992.3 .32 6793.6 113 .16 6931.1 116
5 37.7 629 5818,1 .32 6716.8 115 .18 8577.3 147
6 37.0 651 5426,7 .32 6005.3 111 .16 7733.1 142
7 40.8 754 5894.4 31 6656.1 113 14 7925.4 134
8 30.0 519 5230.3 .31 6346.4 121 14 5964.6 114
9 45,0 765 5691.5 W31 7935.5 139 .14 8424,3 148
10 32.9 487 5711.5 .31 6382.0 112 .15 7348.8 129
Average 35.9 618 5783.0 .32 6788.4 118 .15 7469.4 129




Solutions for n = 100 Heliostats
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Table 2

Minimal
Spanning Algorithm 2 Multiple Algorithm 3 Multiple
Problem Tree of of
Number | Value CPUs Value MST CPUs Value MST
1 6961.2 10.5 | 22516.5 3.23 4.2 27679.8 3.98
9 6998. 3 10.2 | 19669.2 2.81 4.1 20321.9 2.90
3 7051. 6 l0.2 | 23107.3 3.28 4.1 23310.0 3.30
4 6635.9 10.3 | 22783.3 3.43 4.1 20603.0 3.10
5 7017.0 10.3 | 23285.5 3.32 4.1 25748.7 3.67
6 6493. 7 10.3 | 20549.5 3.16 4,1 25649.0 3.95
7 6892.0 l0.4 | 18542.7 2.69 4.1 25773.9 3,74
8 6641. 3 10.3 | 22196.7 3.34 4.1 24504.6 3.69
9 6993.1 l0.4 | 25149.0 3.60 4,1 29803.8 4,26
10 6759.1 0.3 | 18329.6 2,71 4,1 20978.2 3.10
Average 6844.6 10.3 | 21612.9 3.16 4.1 24437.3 3.57
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