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Abstract. Based on the notion of the e-subgradient, we present a unified tech-
nique to establish convergence properties of several methods for nonsmooth convex
minimization problems. Starting from the technical results, we obtain the global
convergence of: (i) the variable metric proximal methods presented by Bonnans,
Gilbert, Lemaréchal and Sagastizdbal, (ii) some algorithms proposed by Correa and
Lemaréchal and (iii) proximal point algorithm given by Rockafellar. In particular,
we grove that the Rockafellar-Todd gphenomenon does not occur for each of the

above mentioned methods. Moreover, we explore the convergence rate of {||z||}

and {f(2;)} when {z;} is unbounded and {f(z;)} is bounded for the nonsmooth
minimization methods (i), (ii) and (iii).
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1. Introduction

To establish convergence of algorithms for convex minimization, a usual assumption is,
at least, the existence of a minimum. This assumption has been removed for some meth-
ods [11, 9, 8, 10, 17, 6, 15, 16]. The study of the minimizing sequence was pioneered
by Auslender, Crouzeix and their colleagues [3, 2, 1], the relation between minimizing
and stationary sequences of unconstrained and constrained optimization problems has
appeared recently, (see [5]). Similar results for complementarity problems and variational

inequalities appeared in [7]. These papers were motivated by examples that presented in
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Rockafellar [12] and Todd [14], which show that in general a stationary sequence is not
necessarily a minimizing sequence.

Todd’s example has the following properties:

e h: R* — Ris convex and continuously differentiable.
o The sequence {h(zx)} is monotonically decreasing and limy—_., VA(z;) = 0.
o limy_ ., h(zx) > infrepn h(z).

We call the above phenomenon the Rockafellar-Todd (RT) phenomenon. Since most opti-
mization algorithms produce a sequence {x} that is only stationary, i.e., limy_., Vh(2;) =
0, it 1s therefore important to know what kind of algorithms generate such sequences that
are minimizing, i.e., limy_ A(x)) = the infimal value of .

The purpose of this paper is to propose a general model algorithm for minimizing
a proper lower-semicontinuous extended-valued convex function f : R* — R{J{oc} and
to establish the convergence properties without any additional assumption on f. We
shall focus on two aspects: the RT phenomenon and the convergence rates of {||z4||} and
{f(zx)} when {z;} is unbounded and {f(zx)} is bounded from below. These two issues
have not been discussed in the literature.

Let ||z||* denote the Euclidean norm of the vector z € R". The subdifferential of f at

z is a nonempty convex compact set
f(z)={g9:9€ R", fly) = flz)+ < g,y —a >, forallye R"}. (1.1)

For any € > 0, let
Ocf(x)={g:9€R" fly) 2 fla)+ <g,y—z > —¢ forally € R"}.  (1.2)

We are interested in estimating the e-minimum value of f, say f7, and also in identifying
a e-minimum point, for example, z*, where

flz) > f7 —¢ forall z € R, (1.3)

and

flz) > f(2*) —¢, for all z € R". (1.4)
Let f* = fz, the infimal value of f, R" = {a € R:a >0} and R = Rt {J{0}. With the

above notation, we may now state the method in detail:

Algorithm 1:
Let ;1 € R" be given. At the kth iteration, given z, € R™, generate (€ k, €2k, tks Tha1, Gra1) €
R x R§ x RY x R" x R" and gk41 € 0., f(2r41) satisfying the following inequality:

f@epr) < floe) = te < Grg1, Gepr > Ferp (1.5)
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&



The remainder of the paper is organized as follows. In Section 2, we give some basic
global convergence results for Algorithm 1 without any additional assumption on f. We
in particular give a sufficient condition for avoiding the RT phenomenon. In Section 3, we
discuss the convergence rate of Algorithm 1. In Section 4, we demonstrate that a number
of methods for convex optimization problems are special cases of Algorithm 1.

In addition to results on the convergence rates of {||zx||} and {f(z¢)}, a class of descent
algorithms for minimizing a continuously differentiable function is studied in [16].

2. Global Convergence

Theorem 2.1 Let (€14, €24, tk, Tht1,gk+1) be any sequence generated by Algorithm 1,
Yoreq €1k < 00 and Y poq tk = +o0.

(i) Either limy_o f(zr) = —oo or iminfy—w ||k = 0. In particular, if {x}} is
bounded, then every accumulation point, 2™ € R™ is an ¢*-minimum point of f, fi = f(z*)

and imy_, f(zx) = fi, where

¢ = sup{ lin_rl sup €zk-1: K1 15 an index set such that  lim gk =0}. (2.1
k€K k—oo k€K ,k—oo

(i) If inf{tx} > 0, then either limy_o, f(zx) = —00 or ||gk|| — 0. In this case, every
accumulation point of {x}} (if one exists) is an € -minimum point of f.
(iii) If a5 — 0 and there exists a sequence {my} with my > m > 0 such that for all
large k,
mllzien — 2l < dell gl (2.

then f(zx) — f5. Furthermore, if for all large k,
Thp1 — Tk = UkGrt1, (2.3)
then {xy} converges to a minimum point of f if one exists.

Proof: It is clear that either limy_.., f(zx) = —oo or {f(zx)} is a convergent sequence.
(1) Suppose that f(xx) is bounded from below. From (1.5), we obtain

Y Ufleegr) = flzg)] > —o0
k=1
which implies that
liinipf lgell = 0. (2.4)
Thus, there exists an infinite index set A7, such that limkeg, k—oo |gk]l = 0. If {24} is a

bounded set, then {x} has at least one accumulation point. Since {z} : k € K} is also a



bounded set, without loss of generality, we may assume that limyeg, k—oo ||z — 2*|| = 0.

Applying the e-subgradient inequality,
(@) 2 flap)+ < g — 2 > —€g 51,

we have that, for all € R,

flz) 2 f(z") = €.

This implies that f(z*) = fi. Conclusion (i) follows from f(z;) — f(:z:*)
(i1) Suppose that f(zy) is bounded from below. Using (1.5), we have

lim (lg]| = 0.

Let {zy : k € K'} be any convergent sequence of {zx}, limkex oo |2k — *

—_
S
13T

—

(2.6)

= 0. For

these {zy : k € K'}, by (2.5) and (2.6), we have that z* is an €*-minimum point of f.
(iii) From (i) of this theorem, it sufficies to consider the case that {f(zx)} is bounded
and {z;} is unbounded. Suppose that there exist £ € R",7 > 0 and ko such that for all

kaOa
< Gk, T — 2 > < —T.

This inequality and (1.5) imply that

flaka) = flaw) < —tillgep || + ek

IN

12—z k44l
Therefore, we have that for all £,
k
f(@rgr) = flag) < *TtkM— + €1k
1T = zhp|
(From (2.2),

k k
|21 — 21 < Z [i1 — 2] < m™! Ztngm“,

1=1 1=1
which implies that
D tillgra || = +oo

k=1

tngkH”@kili—uiQ + € 1.

—
o

-1
~

(2.8)

by using the unboundedness of {||zx||}. Therefore, there exists k;, such that for all & > ki,

k
oy — 2| <m™ Y tillginll.

1=1

Hence for all k& > ky,

k k
ke = 2l < fler =2+ ) Nz —aill < 2m70 ) tillgia -

1=1 =1

(2.9)



;From (2.7) and (2.9), we have

_m7 bl gk |
2 T tillgisll

This inequality, (2.8) and Lemma 3.1 given in [17] yield that

flaksr) = flae) < + €1k (2.10)

i[f(xkﬂ) — f(ax)] = —oo,

which contradicts that {f(zx)} is bounded from below. Therefore, for all z € R,

limsup < gk, z — xx > > 0. (2.11)

k—oo

The e-subgradient inequality,

flz) = flzk) 2 < gryx — 28 > —€251

and (2.11) yield that for all 2 € R",

f(@) > limsup f(zx) > fi.

k—o0

This implies that f(z)) — f3, which completes the proof of the first conclusion of (iii).
We now prove the second conclusion of (iii). It is easy to verify that for all z € R"

and all k:

lee — 2| = lleep = 2l + lloe = el +2 < 2 — Tppr, T — 2 > (2.12)
;From (2.3) and the definition of gx41, for all large k,

< T = Thpg1s Tha1 — T > > atp[f(zrsr) — f@) — €24).

Combining it with (2.12), we have,

[or = 2]* > flegrs = 2] + @ tillgrn I* + 2ati [ f(2rer) = f(z) = e2,]. (2.13)
Using any given minimum point * in (2.13), we have

|z — I*HQ > |eper — ;r*|]2 — 2aty€q k.
This implies that {z;} is bounded and the existence of
kh—ni |zx — 27||* = 1 < +o0.

Suppose there are two accumulation points 2} and z of {z;}. From the first part of this
theorem, z7 and z; are minimum points of f. As above, we have the existences of

=1 < oo, fori=1,2.

. *
B [|zy — ]

This implies that [; = 0 for i = 1,2 and 2] = ;. Therefore {z} has a unique accumula-
tion point. O



3. Local Convergence

In this section, we discuss the convergence rate of Algorithm 1 in the following two cases:
Case 1: * minimizes f and limy_., =} = z~.

Case 2: A global minimizer of f does not exist but inf,epnf(z) > —oo. In this case,
{llzx||} is unbounded and fF > —o0.

Let

€1,k €2k
= 0 = 7T/
|!9k+1’|2’ H9k+1l|’

fla) = f(z¥)
(bk + [|zpp1 — 27||)*

Theorem 3.1 Suppose that inf{t;} > 0,2* minimizes f and limy_o, xx = =*. If, for all
k, tr > ag, then

a

and

e = (tp — ax)

flerp) = fla7) <

o~ < Ve e .
Consequently,
(1) if for all k.c;. > ¢ € (0,400), then
—f{zin) = fl2°) ool
TPy Tr R AR AR M

lim flrrgr) = fle)
keRk—co  f(z4) — f(a*)

Proof: Using giy1 € 0, , f(Trs1), we have

=0,

f(2™) > f(zre) +91{+1(~T* — Tht1) — €24 > f(Thy1) — ||gk+1||||3** - $k+1H - bk“9k+1“-

This implies ‘
flagg) — fa7)

b + || 2hgr — 27|

lgesall =

which combined with (1.5) yields

flay) > fleem) + tellgenll® — ax
= flarpr) + tllgenll® = aillgen|?
> flawn) + gyt (k) = f@)]

Hence

(te — ax)(fzpga) — f(27))
(bx + [[zr41 — 27])?

flae) = f(27) 2 [flee) = fa7)][L + J



Therefore
flaen) - f(2") _ !
_ ) — fzrg1)=f(=*) (t—ar)(fzk)=f(z*)
fla) = flam) 7 14 e e

Thus, (3.1) follows.

Since /1 + (5t)2 — 3t (£ > 0) is a decreasing function, by (3.1), we have conclusions

(i) and (11). m)

The following theorem extends the related result of [16] for smooth optimization to
the case where f is only a proper lower-semicontinuous extended-valued function.

Theorem 3.2 Suppose that {z;} is generated by Algorithm 1 with €2 — 0 and .32, \/e1x <
+00. Suppose that (2.2) holds and {t}.} is a bounded set. If{z)} is unbounded and {f(xx)}

is bounded, then the rate of \/f(zr) — f5 converging to zero is less than geometric. Fur-

thermore, {”I—’;“i} is bounded.
Proof: From (2.2), we have for all k

leen — @l < T e — ail]

IA

m™ i [tigiall,
which implies that
ST g || = +oo, (3.2)

k=1
using that {z}} is unbounded. :
Since for all k, f(zx) > fy and {tx} is bounded, we obtain from (1.5) that

fo = flzw) < flawn) = flag)
< —tk||gk+1”2+€1,k

< =i (tillgeall)® + e

Hence
V flzk) = fo > max{0, \/g(tkllgkﬂn) — ek}

This inequality and our assumptions on t; and ¢ ; yield

Z \V/ f(‘Tk) —f5 = +00,
k=1

-1



which implies that |/ f(zx) — f; cannot converge to 0 with geometric rate.
We now prove the second part of the theorem. From (1.5) and (2.2),

fleem) = flae) < —tillgeal® + ax

< —%{*Hﬂﬂkﬂ — zg)* + €1,

which implies
2

k k
flaren) — flan) < —inf{ﬁz— = Lk} Y o 2l + Y e

L 1=1

On the other hand,
|k — ‘»1?1”2 < (Ef:l |Zig1 — 171'”)2

k
< REL i — .
Hence we obtain the following inequality by combining the above two inequalities

. 7712 . T —7 2 k
flarsr) — f(zy) < —1nf{T = 1,...,k,}”k+—1k——ll + ZEL“
1 1=1

which implies that {M‘—*lkil—lﬁ} is bounded since {f(z)} is bounded from below. There-
fore, {UI—,’:E} is bounded. 0

4. Applications

In this section, we demonstrate that a number of methods for convex optimization pfob-
lems are special cases of Algorithm 1. These contain

o A family of variable metric prozimal methods proposed in [/].
o The methods for conver minimization given in [6].

e Prozimal point algorithms introduced in [13].

Example 4.1 A family of variable metric proximal methods [4].
[ (4], the authars prapased a family of variable metric proximal algorithos hased on

the Moreau-Yosida regularization and quasi-Newton approximations. Given x € R" and

a symmetric positive definite n X n matrix B, let
1
vB(z) == f(z)—i—5<B(:—x),z—a:>, (4.1)

8



¥ = pp(z) := argmin{pp(z) : z € RN}, | (4.2)
. 1
b = f(xk) - f(x@ 9 < gy Wigj >, (4.3)
where Wy, = B!, gh € 9f(}).

With the notation in (4.1)-(4.3), we can state the algorithm of [4] as follows:

Algorithm 4.1: (GAP of [4])

Step 0: Start with some initial point z; and matrix By; choose some parameter mg € (0, 1);
set k=1.

Step 1: With é; given by (4.3), compute x4, satisfying

f(@es1) < flzx) = mobi. (4.4)

Step 2: Update By, increase k by 1 and loop to Step 1.

Lemma 4.1 Suppose that (zk41,9;) is generated by Algorithm 4.2. Let

ez = maz{0, [f(zr41) — f(zh)— < ghs Thgr — T >+ [f(2) = f(2)— < g}, Wagr >},

(4.5)

then
Gk € Oeyy f(Th41) (4.6)

and
fleen) < flan) = 5 < gf, Wigh > (4.7)

Thus, (1.5) holds with ty = %% Anin(Wy), where Amin(W) denotes the smallest eigenvalue
of a symmetric matriz W.

Proof: Using ¢} € 8f(z}), we have for all z € RV:
flz) =2 flah)+ <gpz - >
= floe)+ <gpt—akp > = [f(@r) = flzn) = <gpTepr —z>] (48)
—[f(ex) = flek) = < gk 2 — zp >).
On the other hand, from the definitions of z and g}, we have
oh = xp — Wigh. (4.9)

Substituting (4.9) into (4.8), (4.6) follows.



Since for all z € RN,

1 1
f(z}) + 5 < Bi(a} — zx), 2} — 2 >< f($)+§ < Bi(e - ap)ye -z >

Setting = zj, we have
flah) < flax)— < g, Wigg > (4.10)
by (4.9). Relations (4.10), (4.3) and (4.4) imply (4.7). m

Conclusion (a) in the Theorem 4.1 is the global convergence result of [5], while conclu-
sion (b) is a new one for this algorithm. Indeed, the assumptions in (b) can be satisfied

by viewing (qN-AP3) (or BFGS-AP3) and the Remark 4.1 of [4].
Theorem 4.1 (a) (Theorem 2.3 of [5]). Assume that f has a nonempty bounded set of
minima, and let {zx} be a sequence generated by (GAP). Then {zx} is bounded and, if

Y Amin(Wi) = (4.11)

k=1

any accumulation point of {zx} minimizes f. The same properties hold for the sequence
of prozimal points {z¥}. It also holds that liminfy_,« ||gt]| = 0.

(b) Suppose there exists ty such that for all large k,
The1 = T + t—k(mz - :Bk), (4.12)
where t, <t < +oo. If {|Wk||} is bounded and (4.11) holds, then f(zx) — f5.

Proof: (a) Since f has a nonempty bounded set of minima, the level sets of f are bounded.
Hence, {z}} and {z}} are bounded by (4.7) and (4.9). (In fact, this conclusion follows
due to [5, Theorem 2.3].) Using (4.4), we have

o — 0. (4.13)
;From (4.7), we obtain
< gp, Wigh, >— 0. (4.14)
Hence,
1
flazx) = fz)— < gk, Whgi >= bk — 5 < i Wigh >— 0. (4.15)

Results (4.13), (4.14) and (4.15) imply that if limex ||g5|| = 0, then limyer €26 = 0.
;From the definition of ¢*, we have €* = 0. Let ¢, = Z&Anin(Wy), then (4.11) and (i) of
Theorem 2.1 yield the first conclusion.

;From (4.13) and (4.14), we have

Jim f(a.) = Jim f(a})

10



This implies that every accumulation point of {z}} minimizes f by the first conclusion.
Using (4.7) and (4.11), we have liminfx_ ||¢%]| = 0.

(b) From (4.12) and (4.9), we have, for all large k, that
L I =zl < gkl
= T T ,
Al k+1 kIl = 119k

which implies that f(zx) — f; by using the assumptions in (b) and result (iii) in Theorem
2.1. In fact, we only need to note that we can let m; = t‘klt—lwkﬂ and let ¢; = 1 for all large

k. 0
Theorem 4.2 Suppose that the assumptions of (b) in Theorem 4.1 hold. If {z}} is un-
bounded and f; > —oo, then the rate of \/f(zk) — f3 converging to zero is less than

geometric and {Hm_zﬂf} is bounded.

Proof: The conclusions follow Lemma 4.1, Theorem 3.2 and (b) of Theorem 4.1. 0

Example 4.2: Algorithms given in [6].

In [6], Correa and Lemaréchal presented a simple and unified technique to establish
convergence of a number of minimization methods. These contain (i) the exact prox-
iteration, (ii) its implementable approximations, which include in particular (iii) bundle
methods, and finally (iv) the classical subgradient optimization scheme. Their methods

can be summarized as follows:

Algorithm 4.2: From an arbitrary point z; € R", the sequence {z;} constructed with
the following formulas:

Tkl = Tk = TEVk, (4.16)
Vi € Oey , f (1), (4.17)
fzrgn) < flaer) = mrellyel (4.18)

where €3 ) is nonnegative, 7, > 0 is the stepsize and m is a positive constant.

The following lemma shows that Algorithm 4.2 is a special case of Algorithm 1.

Lemma 4.2 Suppose that (€3 k, Tk, Tk+1, Tk) i generated by Algorithm 4.2. Let
ty = mTg, (4.19)

€25 = max{0, €3 + (1 — m)rk||7k||2}. (4.20)

11



Then
Ve € Oy f(Tht1) (4.21)

and (1.5) holds for any € x > 0.

Proof: It sufficies to prove that (4.21) holds. By (4.17), we have for all z € R",

flz) > f(xk)+ <Yy T — Tk > —€3k
= f(@er1)+ < = Thpr > +f(2k) = f(Tr41)F < Yoy Thgr — Tk > —€3.

This inequality, (4.16) and (4.18) imply that
f(2) 2 f(@rm)t < 9@ = 2ean > —[esp + (1= m)7e]| ]].

So (4.21) follows. )

The following is a main result of [6].

Theorem 4.3 (Proposition 2.2 of [6].) Suppose that (€3 k, Tk, Tks1,7k) i generated by
Algorithm 4.2.
(i) Assume that

Z T = +00, (4.22)
k=1
ear — 0, (4.23)
then f(zx) — f5.
(ii) If {7} is bounded and
Y e < +oo, (4.24)
k=1

then {z1} converges to a minimum point of f if there is such a minimum point.

Proof: (i) If the decreasing { f(zx)} tends to —oo, then the conclusion follows. Otherwise,
from (4.18), we have

o0

ZTkH'ka? < +00. (4.25)
k=1

This and (4.20) imply that {esx} tends to 0 if and only if {e;,} tends to 0. So the
conclusion follows by Lemma 4.2 and (iii) of Theorem 2.1.

(ii) Suppose f has a minimum point. Then {f(zx)} is bounded from below. Thus,
(4.25) holds. Inequalities (4.25) and (4.24) imply that

Z tkﬁg,k < 400

k=1

12



by the boundedness of {7x} and (4.19). The results of (iii) in Theorem 2.1 imply that
{zx} converges to a minimum point of f. O

Note that from (4.16) and Theorem 3.2, we obtain the following new convergence rate
for Algorithm 4.2.

Theorem 4.4 Let (63,k,7k,xk+i,’yk) be generated by Algorithm 4.1 with (4.22) and (4.23).
If {7} is bounded, {z\} is unbounded and f; > —oo, then the rate of \/f(zx) — f§ con-

verging to zero is less than geometric and {”—%”i} is bounded.

Example 4.3: A proximal point algorithm introduced in [13].

In [13], Rockafellar introduced two general criteria for finding the zero of an arbitrary
maximal monotone operator when the iteration points are given approximately. As an
application, he applied the results to a lower semicontinuous proper convex function f.
In this case, one of the algorithms follows:

Algorithm 4.3: For z, generate (0k, i, Tky1,9k+1) € RO x R X R* X R™ (gr41 €
0f(zk41)) satisfying

dist(0, Sk(z441)) < %nuH . (4.26)
where -
Y ok < o0, (4.27)
k=1
and !
Sk(z) = 0f(z) + )\—k(:z: — Tg). (4.28)

In the following discussion, we only assume that for all ,
1
oy € [0, 5] (4.29)

Lemma 4.3 Suppose that (ok, Ak, Th41,gk41) € R x R x Rt x R™ X R™ is generated

by Algorithm 4.3. Let
1 - Ok

= (4.30)
Then (1.5) holds for €y = €25 = 0. Furthermore,
1—o01)?
El n 032 ok = 2ll < tellgeall- (4.31)

13



Proof: By (4.26), (4.29) and (4.28), we have

1 o
g1 + —(@re1 = @ll < Tllzrss — 2l (4.32)
Mk Y

The inequality,

1
< Grk41 t ;\;‘(xk+1 — k), Thp1 — Tk > ||gryr + S\Z(I'kﬂ = zi)|llzks+1r — 2kl

and (4.32) imply that

1- Ok 9
< Ght1y Thgr — T >< — k41 — 2|
Therefore,
1- Ok 2
< Gk+15 Tk — Tk41 >Z |[:vk+1 - .’L‘k” . (4.33)
On the other hand, by (4.32), we have
140k
l|gk41]] < " |zk41 — k|- (4.34)
Inequalities(4.33) and (4.34) yield
< Gkt1, Tk — Tht1 > 2 Uk < Gkt15 Gr41 > - (4.35)

Applying the subgradient inequality for convex functions,

f@) > flarer) + tellgra ||

Hence, (1.5) follows.
;From (4.32), we have

1 - Ok
ke = il < llgnaall,
k

which implies that (4.31) holds. O

The following theorem indicates that the RT phenomenon does not occur for the
well-known Algorithm 4.3. In view of Theorem 2.1 and Lemma 4.3, it does not require
proof.

Theorem 4.5 Suppose that {(0k, Ak, Tht1, grt1)} is generated by Algorithm 4.3 with 332, A, =
+00.

(i) Either limy_o f(zx) = —oo or liminfy_ ||gk|]| = 0. In particular, if {z\} is
bounded, then f(zx) — fi and every accumulation point of {xx} is a minimum point of

f.

14



(i) If inf{\c} > 0, then either iminfi_o f(zk) = —00 or ||gk|| = 0. In this case,
every accumulation point of {zx} (if one exists) is a minimum point of f.

(iti) f(ze) = f5-

(iv) If for all k,op = 0, then {z}} converges to a minimum point of f if such one
exists.

For Algorithm 4.3, we obtain the following two basic convergence rate results from The-
orem 3.1 and Theorem 3.2.

Theorem 4.6 (a) Suppose that * minimizes f, z — z*, and there exist two scalars
r >0 and M > 0 such that for any ¢ satisfying ||z — z*|| < r,

flz) = f(z*) > M|z — z*||*. (4.36)
Then
(a1) If
kll»ngo Ak = A" € (0,400),

then f(zy) tends to f(z*) linearly.
(a2) If

khm Ak = +00,
then f(xy) tends to f(z*) superlinearly.

(b) Suppose that Y32 A\ = +00, {A¢} is bounded, {zx} is unbounded and fi > —oo.
Then the rate of \/f(zx) — f§ converging to zero is less than geometric and {Ux_zlﬁ} is
bounded.

Proof: We first prove (a). Since for all ,

and

flakr) = f(z7) <1
flay) = f(z=) =

Hence, we have, from (4.29), that

1 -0 f(z) = f(z*) flzrp) — f(2¥) g
(1+ ak)z/\kf(ka) — (@) |zes1 — 27| > 9M)\k.

which implies that (al) and (a2) hold by Theorem 3.1.

Cr =
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(b) From the definition of my in (2.2), we have, for Algorithm 4.3, that

)2
mg (1 Uk) > 1
(1 + O'k)2 -9
by (4.29). This implies that the results of (b) hold by using Theorem 3.2. O

It is worth noting that the conclusions (iii) in Theorem 4.5 and (b) in Theorem 4.6
are not contained in the convergence results given in [13]. Since Algorithm 4.3 is different
from those using linear search to produce the next iteration zyy; = x + txdi, where d; is
a linear search direction at the kth iteration, it is surprising that we can easily obtain the
same convergence properties for these two types of methods. We believe that the tool in
this paper is useful in the convergence analysis for optimization problems under a unified
framework.

References

[1] A. Auslender, Convergence of stationary sequences for variational inequalities
with maximal monotone operators, Applied Mathematics and Optimization 28
(1993) 161-172.

[2] A. Auslender, R. Cominetti and J.-P. Crouzeix, Convex functions with un-
bounded level sets and applications to duality theory, STAM Journal on Opti-
mization 3 (1993) 669-687.

[3] A. Auslender and J.-P. Crouzeix, Well behaved asymptotical convex functions,
Analyse Non-linémare (1989) 101-122.

[4] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizabal, A family of
variable metric proximal methods, Mathematical Programming 68 (1995) 15-47.

[5] C. C. Chou, K. F. Ng and J. S. Pang, Minimizing and stationary sequences for
optimization problems, manuscript, Department of Mathematical Sciences, The
Johns Hopkins University, Baltimore, Maryland, August 1995.

[6] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex mini-
mization, Mathematical Programming 62 (1993) 261-275.

[7] M. Fukushima and J-S. Pang, Minimizing and stationary sequences of merit
functions for complementarity problems and variational inequalities, manuscript,

Department of Mathematical Sciences, The Johns Hopkins University, Baltimore,
Maryland, August 1995.

16



[8] O. Giiler, On the convergence of the proximal point algorithm for convex mini-
mization, SIAM Journal on Control and Optimization 29 (1991) 403-419.

[9] K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimiza-
tion, Mathematical Programming 27 (1983) 320-341.

[10] B. Lemaire, About the convergence of the proximal method, in: D. Pallaschke,
ed., Advances in Optimization. Lecture Notes in Economics and Mathematics
System, (Springer,Berlin, 1992), 39-51.

[11] B. T. Poljak, A general methods for solving extremum problems, Soviet Mathe-
matics Doklady 8 (1967) 593-597.

[12] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ
1970.

[13] R.T. Rockafellar, Monotone operators and proximal point algorithm, SIAM Jour-
nal on Control and Optimization 14 (1976) 877-898.

[14] M. J. Todd, On convergence properties of algorithms for unconstrained mini-

mization, IMA Journal of Numerical Analysis 9 (1989) 435-441.

[15] Z. Wei and L. Qi, Convergence analysis of a proximal Newton method, AMR
95/33, Applied Mathematics Report, University of New South Wales, 1995.

[16] Z. Wei, L. Qi and H. Jiang, Some convergence properties of decent methods, AMR
95/34, Applied Mathematics Report, University of New South Wales, 1995.

[17] S. Q. Wu, Convergence properties of descent methods for unconstrained mini-
mization, Optimization 26 (1992) 229-237.

17



