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Abstract. In this paper, we give a variant of the Topkis-Veinott method for solving inequal-
ity constrained optimization problems. This method uses a linearly constrained positive
semi-definite quadratic problem to generate a feasible descent direction at each iteration.
Under mild assumptions, the algorithm is shown to be globally convergent in the sense that
every accumulation point of the sequence generated by the algorithm is a Fritz-John point of
the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency
condition (FJ1-SSOSC) and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC),
and then show, without any constraint qualification (CQ), that (i) if an FJ point z satisfies
the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that for any FJ point
y € N(2)\ {z}, fo(y) # fo(z), where fy is the objective function of the problem; (ii) if an
FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The
result (i) implies that the entire iteration point sequence generated by the method converges
to an FJ point. We also show that if the parameters are chosen large enough, a unit step
length can be accepted by the proposed algorithm.
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1. Introduction
Consider the optimization problem

min{fo(z) | z € X}, (1.1)

where X = {z € R" | fi(z)<0,i=1,..,m}and f;: R" - R,i =0,1,...,m, are continuously
differentiable. Assume that X # 0. Denote I = {1,...,m} and I° = I {J{0}.
Let z € X be a given feasible point of (1.1). Denote

I(z)={1 | i€ fi(z) =0}.

Recall that z is said to be a Fritz-John point of (1.1) if there is a vector (1,u) € R x ®™ such
that (7,u) >0, (,u) # 0 and

1V fo(z) + ity wiVfi(z) = 0;

uifi(z) =0, for i€l (1.2)

fi(z) £0, for i€l

\

We call such a pair (7,u) an FJ multiplier of z, and denote the set of all possible FJ multipliers
associated with z by M(z). If 7 # 0, then such an FJ point z is also a Karush-Kuhn-Tucker
(KKT) point of (1.1).
Given ! € X, methods of feasible direction [1, 19, 24, 26, 35] for solving (1.1) construct a
sequence {z*}% | such that, for all k,
ke X (1.3)

and
fo(z**1) < fo(z*). (1.4)

These two conditions turn out to be important in their own right in many contexts, e.g., (i)
when the objective function is not well defined outside the feasible set X or (ii) in real-time
applications, when it is crucial that a feasible solution is available at the next “stopping time” (see
[22] for discussion of optimization problems arising from design problems).

Some methods for solving (1.1), such as SQP type algorithms, stop at a KKT point of (1.1)
(1. 5. 10. 13, 14, 18, 24, 25, 26, 27, 34]. In the following example, no KKT point exists, though
the problem has a unique solution, FJ point. and bounded level sets. Methods that only stop
at KKT points may not work for this example.

Example 1.1 Consider the problem (P1):

min  fo(z) := (11)? + 2o + (z3)?
st. fi(z) =z + 5(z3)% <0,
fo(z) := —xz; — (z4)® < 0.

It is not hard to verify the following properties:
(al) (P1) has a unique solution z* = (0,0,0)7;



(b1) (P1) has a unique FJ point z* = (0,0,0)7;

(c1) (P1) does not have a KKT point;

(d1) for any Co > 0, the level set L(Co) = {z € R | fo(z) < Co,z € X} is bounded;

(el) for each z € X \ {z*}, the linear independence constraint qualification (LICQ) holds.

The following example shows that even if (1.1) has a KKT point, the solution of (1.1) is only
an FJ point.

Example 1.2 Consider the following problem (P2)

min fo(z) := (21)? + zo
s.t. fl(z:) = —-I - (Ig)s <0,
fa(z) :==z1 + (232)2 + (2!3)2 <0.
It is not hard to verify the following properties:
(a2) (P2) has a unique solution z* = (0,0,0)7;
(b2) z* = (0,0,0)7 is an FJ point of (P2), but it is not a KKT point of (P2);
(c2) (P2) has a KKT point 7 = (~1,1,0)7;
(d2) for any Cp > 0, the level set L(Co) = {z € ®® | fo(z) < Co,z € X} is bounded.
From properties (a2) and (c2) of this example, even if the SQP type algorithms [1, 5, 10, 13,
14, 18, 24, 25, 26, 27, 34] work for (P2), they may not be able to find its solution.
Given an estimate £ € X of the solution z* to the problem (1.1), Topkis and Veinott [35)
generated a search direction using the following linear programming

min v
st. Vio(x)Td < v,
filz) + Vfi(z)Td<v, i€l
-1<d, <1, j=1,...,n.

(1.5)

Like other feasible direction methods. once a feasible descent direction is obtained, a line search
is needed for the Topkis-Veinott method. From [1] and [35], the Topkis-Veinott method works
well for (P1) (also (P2)) though the SQP type methods mentioned above do not. However, the
subproblem (1.5) is also a source of disadvantages associated with the Topkis-Veinott method.
Due to linearity, (1.5) always produces extreme point solutions, and the directions obtained may
therefore depend more on properties of the feasible set X than on properties of the objective
function fo. Consequently, the convergence of the algorithm is, in general, slow and characterized
by zigzagging.

The approach suggested in this paper is based on the above two examples and a modification
of the subproblem (1.5) of the Topkis-Veinott method. In order to avoid nonuniqueness of the
direction, the extreme point solution in (1.5) and the slow convergence behaviour of the Topkis-
Veinott method, we introduce a penalty term in the objective function of (1.5) and some weights
in the constraints of (1.5). More precisely. we use the following positive semi-definite quadratic
problem to generate a search direction d at an estimate € X of the solution z* to the problem
(1.1),

min v+ %dTH(z)d
sit. Vfo(z)Td < ¢, (1.6)
fiz) + Vfi(z)Td < cv, i€,



where H(z) is a symmetric positive definite n x n matrix. We present the algorithm in Section
2 and establish its global convergence in Section 3.

It is known that the Topkis-Veinott method is globally convergent in the sense that every
accumulation point of the iteration point sequence is an FJ point of the problem without any
CQ. However, two questions remain: (I) Does the entire iteration point sequence converge to
an FJ point of (1.1)? (II) Is such an FJ point a strict local minimum of (1.1)? Robinson [33]
proved that if a KKT point satisfies the LICQ, the second-order sufficiency conditions (SOSC)
and the strict complementarity slackness (SCS), then it is an isolated KKT point. This result
has been widely used to prove the convergence of the entire iteration point sequence generated by
algorithms for general nonlinear programming (33, 24, 25, 26, 27]. In 1982, Robinson [34] proved
that if a KKT point satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ) and
the strong second-order sufficiency conditions (SSOSC), then it is an isolated KKT point. From
this result and the fact that every FJ point of (1.1) is a KKT point if the MFCQ holds, we can
easily deduce that if the MFCQ and the SSOSC hold, then the above question (I) has a positive
answer. Recently, Qi and Wei [30] proved that the Robinson conditions can be reduced to the
the positive linear independent regular condition (PLIRC) and the SSOSC. For question (II),
Qi [29] proved, for LC! optimization problem, that if a KKT point satisfies the SSOSC, then it
is a strict local minimum.

In Section 4, we introduce an FJ function, an FJ1-SSOSC and an FJ2-SSOSC, and then
prove, without any CQ, that (1) if an FJ point z satisfies the FJ1-SSOSC, then there exists a
neighborhood N(z) of z such that for any FJ point y € N(2) \ {z}, fo(y) # fo(2); (2) if an
FJ point z satisfies the FJ2-SSOSC, then it is a strict local minimum of (1.1). These results
improve (a) the conditions for the convergence of the entire iteration point sequence generated
by algorithms for general nonlinear programming [33, 24, 25, 26, 27] and (b) the conditions of a
strict local minimum [29].

Consider the following two-stage stochastic programs with fixed recourse (2, 3, 4, 6, 7, 16,
31, 32, 36)

min P(z) + ¢(z)
s.t. Az < b,

where P is a twice continuously differentiable convex function from X — R,

o(x) = / - T)u(w)ds,

1
Y(w-Tz) = ma.x{—EyTHy +yT(w-Tz) | Wy< q},

H € R™*™ is a symmetric positive definite matrix, c € ", A € R"™** b€ R, T € R™*" g €
R™ and W € R™*™ are fixed matrices or vectors, w € ™ is a random vector and p : R™ — R4
is a continuously differentiable probability density function.

Since it is impossible generally to demand the exact evaluation of the function ¢ and its
gradient, we always consider approximate problems of the form

min P(z)+ ¢n(x)

1.7
s.t. Az <'b, (L.7)



where

N
on(z) = Y citp(wi — Tx)p(w). (18)
1=1

The weights {o;}}¥., and points {w;}¥, are generated by a form of multidimensional numerical
integration rule. For the above problem (1.7), the calculation of the value of the objective
function P(z) + ¢n(z) at z¥ requires solving N quadratic programs (i=1, ..., N)

1
P(w; — Tz) = max{—§yTHy +yT(w-Tzr) | Wy<q).
This implies that the following line search procedure
fola* + P d*) = fo(*) < 0p/V fo(z*)Td*
is very costly, where
fo(z) = P(z) + ¢n(z).

it is, therefore, an interesting issue to avoid a line search for such problems.

In Section 5, we prove that the unit step can be accepted by the proposed algorithm if the
parameters c;, (i € I°) are chosen large enough under the assumption that Vf;(i € I°) are
globally Lipschitz on R". This may be useful for solving the problems when f;(z) and V f;(z),

i € I9, are extremely difficult to calculate at each point z.
Throughout the paper, we denote the Euclidean norm of a vector w by ||w|| and supp(w)=

2. The algorithm

Algorithm 1
(Initialization). Let o € (0,1),p € (0,1),c! > 0,(i € I°); choose ! € X and a symmetric

i
positive positive matrix H; € R**"; set k = 1.

Step 1: Solve the following subproblem

min v+ ldTde
2 2.1
sit. Vfo(r¥)Td < ckv, (2.1)
fi(z¥) + Vfi(z*)Td < cfv, i€l

Let ((d¥)T,v)T be one of its solutions.
Step 2: If ((d*)T,v)T =0, z¥ is a Fritz-John (FJ) point for (1.1), stop.

Step 3: Let ji be the smallest nonnegative integer j such that
fo(z* + Pd¥) - fole*) < 0p'V fo(*)Td* (2.2)

and
filz* + pPd*¥) <0, iel (2.3)



Set t, = pjk.

Step 4: Generate cf"'l > 0, for i € I°. Compute a new symmetric positive definite approx-
imation matrix Hy,; to the Hessian of the Lagrangian. Set z**1 = z* + t;d* k := k + 1 and
return to Step 1.

Remark 2.1 There are many methods to solve (2.1). One may use the dual quadratic
programming method of Kiwiel [17] and the interior point algorithms for convex quadratic
programming of Daya and Shetty [9], Hertog, Roos and Terlaky [15], Goldfarb and Liu [12],
Monteiro and Adler [20], Monteiro, Adler and Resende [21], and Ye and Tse [38]. In fact, if we
let

P = (Vfo(z*), VA (), ..., Vim(z*)T

and
af = (0, fa(z*), s = fen(@*))T,
then the dual problem of (2.1) is

o1 _
min §yT(PkT H'Poy + (a5)Ty
st Yo cky =1,
y >0,

(2.4)

where y € R™F!. It is clear that (2.4) is a standard-form positive semi-definite convex quadratic
programming problem. Hence, we can use the interior point algorithms mentioned above to
solve (2.4).

Suppose that y* is one of the solutions of (2.4). Then

d* = —-H.'P*

is a solution of (2.1). Notice that (2.4) is also a least-squares problem. One can also use other
methods such as the methods given in [11] to solve (2.4).

The following proposition indicates that Algorithm 1 is well-defined.

Proposition 2.1 For any given k, if ((d")T,vk)T = 0, then z* is an FJ point of (1.1). If
((d)T,v)T # 0 and z* € X, then there exists T, > 0 such that for any t € [0, 7],

oz + td¥) = fo(z¥) < otV fo(z*)Tdk

and
filzk +td*) <0, iel

Proof: Since ((d*)T,v;)7 is a solution of (2.1), we have the following Fritz-John conditions



(Theorem 4.2.6 of [1]),
( @k Hyd* + T, bV fi(zk) = 0

af(V fo(e¥)Td* — o) = 0;
af (fi(a*) + Vfi(a*)Td* = cfup) =0, for i€

V fo(z%)Td¥ < chuy;

fiz¥) + Vfi(a¥)TdF < cFvg, for i€ I

\

where @*, > 0 and @* > 0 are some multipliers with (¥ ;, @*) # 0. From the second equality of
(2.5), @*; # 0. Hence, if we let

then, the following Karush-Kuhn-Tucker (KKT) conditions for (2.1) hold,
dek + Z:ZO usf,-(Ik) =0

Yito cfuf =
u§(V fo(z*)Td* - chuy) =
uk(fi(z%) + V£i(z%)Td* — Fop) =0, for i€ I

V fo(z*)Td* < chug;

fi(z®) + Vfi(z¥)Td* < ckoy, for i€l

\

If ((d¥)T,v,)T = 0, then the above KKT conditions imply that there exist some multlphers
u* > 0 such that

:noukvfl( ) =0

uffi(xk) =0, for i€

\ fi(z¥) <0, for i€ I;

therefore, z* is an FJ point for (1.1) and the proof of the first part of this proposition is
completed‘.

We prove now the second part of this proposition. From Step 1, since (d”,v) = (0,0) is a
feasible solution of (2.1), we have

Vfo(z*)Td* < cfuk < ——?—(d")Tdek, (2.7)



which implies that d* = 0 if and only if v = 0. If ((¢*)T, )T # 0, then d* # 0 and

1
v < —E(d")Tde" <0.

Therefore,
V fo(zF)Td* < —%(d")Tde" <0 (2.8)
and
filz®) + Vfi(z®)TdF < -if-(d")Tdek <0, for iel (2.9)
If we let

gk(t) = fo(z* + td¥) — fo(z¥) - otV fo(*)Td¥,

then, we obtain, from (2.8), that
alt) = 95o(ck)Td +oft) - otV fo(z*)Td¢
= (1-0)tVfo(z*)Td* + o(t)

(1-0)ch
2

< = ()7 Hid®)t + of2),

which implies that there exists 7§ > 0 such that for any ¢ € [0, 7§,
qk(t) < 0. (2.10)
Similarly, for i € I = {i : fi(z¥) = 0,i € I}, from (2.9) and

filzk +td*) = fi(zk) +tVfi(e¥)Tdk + o(t)

£V fi(z*)Td* + oft)

—(%k‘—(d")Tdek)t +o(t),

IN

we have 7% > 0 such that for any t € [0.7F].
filz* +td*) <o0. (2.11)

For i € I\ I, from the continuity of f; and f;(z¥) < 0, we have 7¥ > 0 such that for any
t €[0.75).
filz* +td*) <. (2.12)

Let 7 = min{r¥ | i € I°}, the conclusion follows from (2.10), (2.11) and (2.12). Q.E.D.

Remark 2.2 It is worth noting that, for any given FJ point z of (1.1), if the MFCQ holds,

le.,



(H) there is a vectors z € R" such that
Vfi(z)Tz <0, for i€l(z),

then such an FJ point z is also a KKT point of (1.1). Furthermore, if f;,i € I are convex, then
the KKT point is also an optimal point of (1.1). In this paper, we do not assume (H) holds.
Therefore, Algorithm 1 generates only an FJ point of (2.1).

3. Global convergence

Throughout the sequel, the following conditions are assumed to hold.

(A1) Fori € IV,

0 < liminf ¢F < limsup cf < +00;
k—oo k—o00

(A2) the Hessian estimates {Hy}32, are bounded, i.e., there exists a scalar C; > 0 such that
for all k,

| Hill < C1; (3.1)

(A3) there exists a scalar C, > 0 such that, for all k, the Hessian estimates satisfy
dTHid > Co||d||?, for any d € R™. (3.2)

Theorem 3.1 Assume that (A1)-(A3) hold. Then Algorithm 1 described in Section 2 either
stops at an FJ point or generates a sequence {Ik 172, for which each accumulation point is an
FJ point of (1.1).

Proof: The first statement is obvious by using Proposition 2.1. Thus, suppose that there exists
an infinite index set K such that {r¥},ex — z*. From (2.7), we have for k € K,

1
=1V fo(a®) 14|l € v < =5 Caclld®|,

which implies that for k € X,
2

&l < ——=—— ||V mk 3.3

“ ” = CQ lim infke CS ” fO( )” ( )
< V :Ek 2. 3.4
'vk| > Cg(ll infke CS)QH fO( )" ( )

The second equality of the KKT conditions for (2.1), (A1), (3.3) and (3.4) imply that we may
assume, without loss of generality. that

lim d*=d"; lim v = v
keK .k—oo keK k—oo
kéiin ufzu:; k%izn cf=c:, for i€ I°
ek k—oc €K ,k—o0



It is clear that d* = 0 if and only if v, = 0. We assume by contradiction that z* is not an FJ
point of (1.1). From the KKT conditions for (2.1), we can deduce that d* # 0. On the other
hand, from (2.8) and (2.9), we have

* * C d *
Vfo(z*)Td s—%"’nd I <0

and

filz*) + Vfi(z")Td" < —ggc—:“d‘ll?' <0, for i€l
Therefore, there exists 6 > 0 such that for all k € K, k large enough,
Vfo(a*)Td* < =, (35)
Vfi(z*)TdF < -6, for i€ I(z*) (3.6)
and
fi(z*) < =6, for i eI\ I(z"). (3.7)

Similar to the proof of Proposition 2.1, using (3.5), (3.6) and (3.7), we can prove that there
exists 7. > 0, such that for k € K, k large enough,

ty > 7. >0. (3.8)
From (2.2), (3.5) and (3.8), we have, for k € K. k large enough,
fO(Ik+1) - fO(xk) < —UéT*a

which contradicts the fact that fo(z**!) — fo(z¥) — 0 as k — oo. The proof is completed.
Q.E.D.

The following proposition shows that the existence of an accumulation point in the sequence
generated by Algorithm 1 induces some regularity properties on this sequence.

Proposition 3.1 Assume that (A1)-(A3) hold. Suppose that the sequence {:15"“},‘3"=1 generated
by Algorithm 1 has an accumulation point. Then

lim ||z%*! - 2% = 0. (3.9)
k—oc

Proof: Since fo(z*) is monotonically decreasing, existence of an accumulation point of {zF}$2
and continuity of fo imply that the sequence {fo(z¥)}$2, is convergent. From

fo(z* + ted®) = fo(z*) < otV fo(z*)Td¥,

Cock
Vfo(a*)Td < —=2 |

and (Al). we have
lim t|d*|* =0,
k—o0

10



which implies that
lim t¢]|d¥|| = 0. (3.10)
k—o0

Since
251 — 2¥|| < tild¥],

the claim follows (3.10). Q.E.D.

Proposition 3.2 Let Z denote the set of all possible accumulation points of {z*}2 . If Z # 0,
then either Z is a singleton or Z is a connected set.

Proof: The claim follows (3.9) and Remark 14.1.1in [23]. Q.E.D.

4. Local structure of FJ points and the convergence of the entire
iteration point sequence

In order to study the convergence of the sequence {:rk}zil, it suffices to show that Z is a
singleton. In doing so, we need some strong regularity assumptions on the functions involved in
problem (1.1).

For any z € R" and any (7,u) € ® x R™, denote by FJ(z,,u) the FJ function

FJ(z,1,u) =Tfo(z Zulf,

Let

Fru(z) = Vo FJ(z,7,u) = 7V fo(z +Zu,Vf,
1=1

In what follows, in addition to (A1)-(A3), we assume that the following condition holds:
(A4) For each i € I°, Vf; is locally Lipschitzian, i.e., f; is an LC! function.

In general, assume that F : ®* — R™ is locally Lipschitzian. By Rademacher’s Theorem,
F is differentiable almost everywhere. Let Dr be the set where F is differentiable. Then the
generalized Jacobian of F at z in the sense of Clarke [8] is

OF(z) = co{ Eirg VF(z*)}. (4.1)

k

IT =T

In 28], the author introduced

OpF(z) = { lim VF(z "}
T €DF

Ik—'f

F is said to be semismooth at r € R" if F is Lipschitz continuous in an open neighbourhood of

z and the limit
lim Dd

DEOF(z+td’)
d' —d,t—0%t

11



exists for any vector d € R".

Definition 4.1 Let z be an FJ point of (1.1). We say that the point z satisfies the F.JI
strong second-order sufficiency conditions (FJ1-SSOSC) if for any FJ multiplier (7,u) € M(z),
all V € 0F; ,(z) are positive definite on the following set

Gi(z,ryu)=  {deR" | Vfo(2)Td=0, Vfi(2)Td=0 for i€ supp(u),

V£i(2)Td <0, for i€ (I(2)\ supp(u))}.

Definition 4.2 Let z be an FJ point of (1.1). We say that the point z satisfies the FJ2 strong
second-order sufficiency conditions (FJ2-SSOSC) if for any FJ multiplier (7,u) € M(z), all
V € OF; 4(z) are positive definite on the following set

Go(z,mu) = {de€R" | Vfo(2)Td <0, 7Vf(2)Td=0, Vfi(z)Td=0

for i€ supp(u), Vfi(z)Td <0, for i€ (I(z)\ supp(u))}.

It is clear that if an FJ point z satisfies the FJ2-SSOSC, then z satisfies the FJ1-SSOSC. If
7 # 0, then G; = Ga, the FJ1-SSOSC and the FJ2-SSOSC become the SSOSC introduced by
Robinson [34].

The following second-order mean value theorem for LC! functions can be found in [29].

Lemma 4.1 Suppose that f : W — R is an LC' function on W, where W is an open subset of
R". Let P =N f. Then for any x,y € W, there ezists t € [0,1] and V € OP(z + t(z — y)) such
that

1) = £(2) - V$(2) (- 2) = (3 - 2)V(y - 7).

Theorem 4.1 Suppose that z is an FJ point of (1.1). If z satisfies the FJ1-SSOSC, then there
ezists a neighborhood N(z) of z, such that for any FJ point y € N(z)\ {z},

fo(z) # fo(y). (4.2)

Proof. Suppose, by contradiction, that such a neighborhood N(z) of z does not exist. Then
there exists an FJ point sequence {z¥}% | such that z* # 2,

kliqrgo =z (4.3)
and
fol=*) = fo(z). (4.4)
For any given k, since z¥ is an FJ point of (1.1), we have (7, @*) € M(2¥). Let
by _ Tk, 07)
)= N

Then (7, u*) € M(2*) and ||(7x, u¥)|| = 1. We may assume, without loss of generality, that

kllm (15, u*) = (7, ). (4.5)

12



From the FJ conditions at z* and (74, u*) € M(z¥), we have, for all k,
( TkaO(Z )+ Ezelu sz( )= ;

q ubfi(F) =0, for i€

| fi(ZF) <0, for i€l
which combining with (4.3) and (4.5) implies
TV fo(2) + LieywiV fi(z) = 0;

¢ u;ifi(z) =0, for i€ I;

fi(z) £0, for i€l
Hence, (7,u) € M(z) and

Fru(2) =0. (4.6)
Since 2* is an FJ point of (1.1), we have f;(2¥) < 0 for i € I, which combining with (4.4) and
the facts that u; f;(z) = 0 and (7,u) > 0, implies, for all k,

FJ(z,7,u) = 1fo(z +Zuzf, >7’fo +Zu,f, FJz YTy U). (4.7)

1€l i€l

By Lemma 4.1, we have
FJ(z%,1,u) = FJ(z,7,u) + Frau(2)(2* — 2) + %(z’c - 2)TY(* - 2), (4.8)
where Vi € OF; (2 + ty(2F — 2)),0 < t; < 1. By (4.6). (4.7) and (4.8), we have for all k,
(z* - 2)W(z* - 2) 0. (4.9)

By (4. 1) and the Carathéodory Theorem, V} can be approximated by a convex combination of
VFTu( k). where z € Df,, areclose to z + ti(2* = 2) as we wish, j = 0, ...,n. Thus, we may

choose ~k € Dr, ., 2 k — zas | — oo for j =0.....n such that

IVE = N VL) <

1=0

b

=

where /\k =1, /\'C >0forall kand j =0,1,...,n. By (4.9), we have
] =0

Zf\"

Since F, is locally Lipschitzian. VF7 , is locally bounded in Dp, ,. Without loss of generality,
by passing to a subsequence, we may assume that Fry(z; ¥) — V7 for VI € 0pFyu(2) and

-z 2k — 2 1
o VFTu( )(W—_—zn)<o(—)- (4.10)

I‘!

l’*v)
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/\;c — )j as k — oo. Then 377 o Aj = 1,A; > 0. Since ||W;-;,k-_:_§—"|| = 1, we may also assume that

d = limj 0 Wi'ﬁk:_zu With this consideration, letting kK — oo in (4.10), we have

n
Y dTvid<o. (4.11)
j=1

On the other hand, for any i € supp(u), since uk — u;, there is k; such that for all k > k;,

uf > 0. Hence, for all k > [;, i € supp(u¥). Letting k = maz{k; | i € supp(u)}, we have, for
all k > k, supp(u) C supp(u), and hence, for k > k, that

filz%) = fi(z) =0, for i€ supp(u). (4.12)
By Taylor’s theorem, we have
0= fi(z*) - filz) = V()T (" - 2) + o(||2* - 2).
Dividing the above equality by ||z¥ — z|| and letting k — oo, we have
Vfi(2)Td=0, for i € supp(u). (4.13)

Similarly, from (4.4), we have
Vo(z)Td = 0. (4.14)

For i € I(z), fi(z) = 0. Thus, we have, from
02> fi(z¥) = filz) + Vfil2)T(zF = 2) + o[} 2% = 2])

Vfi(2)T (25 = 2) + o([l* - 2]),

Vi) (2 = 2) + o]z - 2]) < 0
that. for i € I(z)
VSi(z)Td <. (4.15)
The relations, (4.11). (4.13). (4.14) and (4.15). contradict the assumption that z satisfies the
FJ1-SSOSC. Hence the claim holds. Q.E.D.

Corollary 4.1 Assume that {z¥} is generated by Algorithm 1 and Z # 0, z* € Z. If =*
satisfies the FJ1-SSOSC, then Z s a singleton and

lim r* = 2", (4.16)

k—oc

Proof. Suppose that Z is not a singleton. From Proposition 3.2, we have y' € Z such that
y' # 2* and limj_o 3! = z*. Since for all k. fo(z¥*!) < fo(z*) and there is a set K such that
k = 1", we have fo(x*) = fo(z*), which implies that for all I,

foly') = folz*),
which contradicts Theorem 4.1. Hence Z is a singleton and (4.16) holds. Q.E.D.

limgex

We now show that the FJ2-SSOSC implies a strict local minimum of (1.1).

14



Theorem 4.2 Assume that an FJ point z of (1.1) satisfies the FJ2-SSOSC. Then z is a strict
local minimum of (1.1).

Proof: Suppose not. Then there is a sequence {z¥}% | such that z¥ — z, 2 # z, f;(2F) < 0 for
1€ I and

fo(z%) = fo(2) < 0. (4.17)
Without loss of generality, we may assume that

k

. -z
ey P B
Let (7,u) € M(z). Then
Fru(2) =0.
Similar to the discussions of (4.6)- (4.11), we have
n
Y dTvid<o. (4.18)

j=1
Here V7 has the same meaning as in the proof of Theorem 3.2.
Forie I,
02 fi(z¥) = fi(z) + Vi(2) (2 = 2) + of||z* - 2).
For i € I(2), fi(z) = 0. Thus, we have
Vii(2)T(F = 2) +o(|I=* - 2]) < 0.
Dividing the above expression by ||z¥ — z|| and let k — oo, we have
Vfi(z)Td <0, (4.19)

for i € I(z2).
From (4.17), we have
Vio(z)Td <o. (4.20)

On the other hand, from the FJ conditions. we have

Vi) + Y. wVfi(z) =0,

1€supp(u)

which combining with (4.19). (4.20) and the fact that supp(u) C I(z), yields that
Vi(z)Td=0. for i € supp(u), (4.21)

and

7V fo(2)Td = 0. (4.22)

(4.18)-(4.22) contradict the assumption that z satisfies the FJ2-SSOSC. Hence, the claim holds.
Q.E.D.

By using Theorem 3.1, Corollary 4.1 and Theorem 4.2, we have the following result.
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Corollary 4.2 Suppose that (A1)-(A4) hold, {z*}, is generated by Algorithm 1. If {z*}2,
has an accumulation point =* satisfying the FJ2-SSOSC, then z* is a strict local minimum of
(1.1) and z* — z*.

Example 4.1 Let N = {1,2,...} and p € N. Consider the following example (P3) with
parameter p,
min  fo(z) == (21)* + o
st. fi(z) = -z - (22)° <0,
fz(.’l)) =I+ ($2)2p + ($E3)2 <0.
It is not hard to verify the following properties.
(a3) (P3) has a unique solution z* = (0,0,0)7;
(b3) z* = (0,0,0)T is an FJ point of (P3), but it is not a KKT point of (P3);
(c3) (P3) has a KKT point z = (-1,1,0)T if p € {1,2}
(d3) for any co > 0, the level set L(co) = {z € R | fo(z) < co,z € X} is bounded.

Simple calculations yield that
Vfo(e*) = (0,1,0)", Vfi(z") = (=1,0,0), Vfy(z*) = (1,0,0)7,
M(z*) = {(0,a,0)T | a >0},
Gi(z*, mu”) = {(0,0,d3)T | d3 € R}

and
Ga(a*.mu,u") = {(0.d2,d3)T | d2 <0, }.

For any (7, (u*)T)T := (0,a.a)T € M(z*),

000
VFieue(z*)=2a| 01 0 |, if p=1
0 01
and
0 00
VFpeo(x®)=2a| 0 0 0 |, if pe N\ {1}.
0 01

Hence. if p = 1, then VF;. 4-(2*) is positive definite in G (z*, 7., u*) and Go(z*, 7, u*) for all FJ
multipliers (7., (u*)T)T € M(z*). Therefore. r* satisfies the FJ1-SSOSC and the FJ2-SSOSC.
Similarly, if p € N\ {1}. then z* satisfies the FJ1-SSOSC, but not the FJ2-SSOSC.

We consider Z now. Keep in mind p € {1.2} in this case. Simple calculations yield that

Vfo(z) = (-2.1.0)T. Vf(Z)=(-1,-5,07, Vfo(z*)=(1,2p,0)7,

and
Gi(z,7,4) = {(0,0,d3)T | d3 € R}.
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Since for any (7, (@)T)T € M(Z), 7 # 0, we have

Since
200
Vifo(z)=| 0 0 0
00O
0 0 0
Vi@ =] 0 -10 0
0 0 0
and
( 000
( 020 if p=1,
0 0 2
V2fo(z) =
0 0 0
( 012 0 | if p=2,
{ 0 0 2
we have, for any (7, (2)T)T € M(Z), that
g 0 0
a( 0 -89 if p=1,
0 0 2
Vnyﬁ(il_I)z
& 00
al 0 £ 0 if p=2.
\ 0 2

Hence. if p € {1,2}, then Z satisfies the FJ1-SSOSC and the FJ2-SSOSC.

From the above discussions, we can see that, if we solve (P3) by Algorithm 1, then Algorithm
1 either stops at an FJ point or generates a sequence {zk}z‘;l such that the sequence converges
to an FJ point of (P3).

5. Unit steps

In Section 3, we have established global convergence for Algorithm 1. In this section, we will
show that if we choose the parameters cf large enough, then a unit step will always be acceptable
by (2.2) and (2.3). We also obtain some new results for (1.1).

In order to study the unit step, we need the following blanket assumption.

(A5) For each i € I°, there exists L; > 0, such that for any r € ®" and any y € ®",

IVfi(z) = Vfi(y)ll < Lillz - yll.

17



Theorem 5.1 Suppose that (A1)-(A5) hold and {z*}$2, is generated by Algorithm 1. If

2L
.. ks 0
RO Ga-g) &
and
2L;
. . k > _—1 .
hkrglcgfcl =R for i€, (5.2)
then for k > 1,
fo(z* +d*) = fo(z*) < oV fo(F)TdF, (5.3)
and
filz¥+d¥) <0, for i€l (5.4)

Proof: We first prove (5.3), i.e., g¢(1) < 0. For k > 1, from (2.8) and (A5), we have

(1) = /0 IVfo(mk+tdk)Tdkdt-—ano(xk)Tdk
= (1-0)Vfo(z*)Td* + /0 1(v fo(zF +td*¥) = V fo(z*))T d*dt

1-0) 4
< -%cg(dk)Tdek + Lo||d¥|®
1—0)Cack
< -L20%ymp s et
c 9 s . ek 2LO
which implies that if ¢ > Gi-o) gr(1) < 0. Therefore, (5.3) follows (5.1).
o(1 —

We prove (5.4) now. For k£ > 1, from (2.9) and (A3) we have for each i € I,

Il

figk +d*) = (fi(z*) + Vfi(z¥)Td*) + /0 1(Vf,-(z‘° +td¥) - V fi(a*))Tdkdt
cka + Li||d“||2

ck
5 (") Hed* + Liljd*|?

IN

IN

CQC:C
—Tl!d"II2 + Lifld*|1%,
which implies that if ¢ > 2L;, then f;(z* + d*) < 0. Hence (5.4) follows (5.2). Q.E.D.

Let X° denote the interior point set of X and Xr; denote the FJ point set of (1.1). From
the proof of Theorem 5.1, we have the following result.

Proposition 5.1 Suppose that f;,i € I, satisfy (A5). If X # Xrs, then X0 is nonempty.
Proof: Let z € X — Xpj. For each i € I. choose ¢; satisfying the following relation
c 2 Q(Li + 1). (55)
Consider the following minimization problem
min v+ %de,
st. Vo(z)Td < v,
fi2) + Vfi(z)Td < cv, i€l
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Let d* be one of the solution. Since z is not an FJ point for (1.1), then d* # 0 by Theorem 3.1.
Similar to the proof of Theorem 5.1, we have, for i € I, that

filz + %) < =S| + L)
which implies that f;(z 4+ d?) < 0 by using d* # 0 and (5.5), i.e., X°#0. Q.E.D.

By Proposition 5.1, we have the following corollary.

Corollary 5.1 Suppose that f;,i € I, satisfy (A5). If X0 =0, then X = Xpy.

By Theorem 5.1, we can present a variant of Algorithm 1 which does not employ a line
search. The variant (Algorithm 2) is also globally convergent if the assumptions (A1)-(A5) hold.
Algorithm 2 Initialization, Step 1 and Step 2 are the same as those given in Algorithm 1.
Step 3: If

folz® +d%) = fo(z®) < oV fo(e*)Td* (5.6)

and

fiz¥+d¥y <0, iel, (5.7)
go to Step 4. Otherwise, set

ck if (5.6) is satisfied,

&=
2ck if (5.6) is not satisfied
and for i € 1,
& if (5.7) is satisfied,
k.
¢ =
2¢5 if (5.7) is not satisfied.
Go to Step 1.

Step 4. Set 21 = £k 4 d*, 5t = ¢ (1 € IY) and k := k + 1, return to Step 1.

Remark 5.1 It is worth pointing out that for all k > 1, t; = 1 does not imply that {z*} |
superlinearly converges to an FJ point of (1.1). In fact, d* in general is not a Newton direction.
Therefore. the proposed algorithm does not possess a superlinear convergence rate. For the
feasible direction methods with superlinear convergence rate, we refer readers to [24, 26, 30).
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